Academic literature on the topic 'Poynting vector and energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Poynting vector and energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Poynting vector and energy"
Krumm, Peter, and Donald Bedford. "The gravitational Poynting vector and energy transfer." American Journal of Physics 55, no. 4 (April 1987): 362–63. http://dx.doi.org/10.1119/1.15172.
Full textJanhunen, P., A. Olsson, N. A. Tsyganenko, C. T. Russell, H. Laakso, and L. G. Blomberg. "Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid-2 EMMA data." Annales Geophysicae 23, no. 5 (July 28, 2005): 1797–806. http://dx.doi.org/10.5194/angeo-23-1797-2005.
Full textĈakareski, ??, and A. E. Emanuel. "Poynting vector and the quality of electric energy." European Transactions on Electrical Power 11, no. 6 (November 2001): 375–81. http://dx.doi.org/10.1002/etep.4450110605.
Full textPelosi, Giuseppe, and Stefano Selleri. "Energy in Electromagnetism: The Poynting Vector [Historical Corner]." IEEE Antennas and Propagation Magazine 59, no. 6 (December 2017): 148–53. http://dx.doi.org/10.1109/map.2017.2752641.
Full textMorris, Noah A., and Daniel F. Styer. "Visualizing Poynting vector energy flow in electric circuits." American Journal of Physics 80, no. 6 (June 2012): 552–54. http://dx.doi.org/10.1119/1.3679838.
Full textUstinov, Andrey, Svetlana Khonina, and Alexey Porfirev. "Formation of Inverse Energy Flux in the Case of Diffraction of Linearly Polarized Radiation by Conventional and Generalized Spiral Phase Plates." Photonics 8, no. 7 (July 16, 2021): 283. http://dx.doi.org/10.3390/photonics8070283.
Full textStafeev, S. S., and V. V. Kotlyar. "Formation of an elongated region of energy backflow using ring apertures." Computer Optics 43, no. 2 (April 2019): 193–99. http://dx.doi.org/10.18287/2412-6179-2019-43-2-193-199.
Full textGadre, Nitin Ramchandra. "A relook at radiation by a point charge. I." Canadian Journal of Physics 95, no. 11 (November 2017): 1142–49. http://dx.doi.org/10.1139/cjp-2017-0071.
Full textHerrmann, F., and G. Bruno Schmid. "The Poynting vector field and the energy flow within a transformer." American Journal of Physics 54, no. 6 (June 1986): 528–31. http://dx.doi.org/10.1119/1.14554.
Full textFaria, J. A. B. "Poynting Vector Flow Analysis for Contactless Energy Transfer in Magnetic Systems." IEEE Transactions on Power Electronics 27, no. 10 (October 2012): 4292–300. http://dx.doi.org/10.1109/tpel.2012.2191421.
Full textDissertations / Theses on the topic "Poynting vector and energy"
Maltoni, Matteo. "Energy emission by moving charges." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16347/.
Full textRizvi, Syed Azhar Abbas Papas Charles Herach Papas Charles Herach. "The critical points of Poynting vector fields /." Diss., Pasadena, Calif. : California Institute of Technology, 1988. http://resolver.caltech.edu/CaltechETD:etd-11082007-131130.
Full textOliveira, Lucas Vitor Fonseca de. "Otimização metaheurística de linhas de transmissão pela avaliação do vetor de poynting utilizando o método dos elementos de contorno." Universidade Federal de Juiz de Fora, 2012. https://repositorio.ufjf.br/jspui/handle/ufjf/1659.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-02T12:44:37Z (GMT) No. of bitstreams: 1 lucasvitorfonsecadeoliveira.pdf: 1420167 bytes, checksum: b5075b7ccc33c587012a46901a9b21af (MD5)
Made available in DSpace on 2016-07-02T12:44:37Z (GMT). No. of bitstreams: 1 lucasvitorfonsecadeoliveira.pdf: 1420167 bytes, checksum: b5075b7ccc33c587012a46901a9b21af (MD5) Previous issue date: 2012-03-30
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Com a abertura legal do setor elétrico brasileiro na década de 90 para investimentos privados, em especial com a implantação sistemática de leilões para definição dos concessionários de transmissão, diversos estudos foram efetuados com o objetivo de viabilizar projetos de linha de transmissão de modo a concorrem nesses leilões. Grandes transmissoras, como Furnas, Chesf e Eletronorte promoveram pesquisas em consórcio com empresas construtoras de linhas e fabricante de ferragens e isoladores, com o objetivo de desenvolverem projetos com baixa relação Reais/MW transmitido. Neste cenário, muitos projetos de linhas de potência natural elevada foram idealizados e implantados, e como fruto desses projetos, publicações foram realizadas descrevendo os resultados obtidos. Todavia, apesar da quantidade, qualidade e riqueza das informações publicadas, a descrição do processo de otimização dos parâmetros elétricos da linha, em especial da impedância característica, não receberam destaque, sendo muita das vezes suprimida nos artigos. Neste sentido, este trabalho propõe a investigação de um método inovador de otimização da capacidade de transmissão de linhas de potência natural elevada, através da análise indireta dos efeitos da variação do posicionamento dos cabos condutores no feixe sobre a impedância característica da linha, por meio de uma abordagem original que utiliza basicamente o vetor de Poynting como função objetivo do Método de Otimização por Enxame de Partículas, sendo os campos elétricos e magnéticos necessários para definição do vetor de Poynting calculados por meio do Método dos Elementos de Contorno. O método foi validado utilizando como exemplos a otimização das configurações de feixes da linha de 500 kV Interligação Norte/SUL III – Trecho 2 e Linha de 500 kV Presidente Dutra / Teresina / Sobral / Fortaleza. Foram encontrados ganhos na capacidade de transmissão de 7% e 22% respectivamente devido à redução da impedância característica calculada após a otimização através da rotina Line Constants do programa ATP/EMTP, e comparando-a com os valores originais.
With the legal opening for private investments in the Brazilian energy sector in the 90's, in particular the systematic implementation of auctions for defining power transmission concessions, several studies were made with the aim of developing transmission line projects in order to compete in these auctions. Major transmission companies such as Furnas, Eletronorte and CHESF promoted consortium research with line builders and hardware and insulators manufacturers, in order to develop projects with low cost/MW transmitted. In this scenario, many projects of high surge-impedance loading lines were developed and implemented, and as a result of these projects, publications were made describing the results. However, despite the quantity, quality and resourcefulness of published information, the descriptions of the optimization process of electrical line parameters, especially regarding characteristic impedance, were not given prominence, being often suppressed from the articles. Thus, this study proposes the investigation of a method for optimizing the transmission capacity of high surge-impedance loading lines, varying the power cables in the bundle, indirectly reducing its characteristic impedance through an original approach that uses basically the Poynting's vector as objective function of the Particle Swarm Optimization method.The electric and magnetic fields needed for defining the Poynting vector were calculated using the Boundary Element Method. The method was validated through the optimization of bundle configuration, using as a model the characteristics of the 500 kV line North / South Interconnection III - Segment 2 and the 500 kV line Presidente Dutra / Teresina / Sobral / Fortaleza. It was found transmission capacity gains of 7% and 22% respectively, by reducing the characteristic impedance, which was calculated after the optimization using the EMTP/ATP Line Constants Program, comparing it with the original values.
Senosi, Kgotlaesele Johnson. "Vector boson production with the ALICE detector." Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27310.
Full textStanić, Milan. "Design of energy-efficient vector units for in-order cores." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405647.
Full textEn los últimos 15 años, la potencia disipada y el consumo de energía se han convertido en elementos cruciales del diseño de la práctica totalidad de sistemas de computación. El escalado del tamaño de los transistores conlleva densidades de potencia más altas y, en consecuencia, sistemas de refrigeración más complejos y costosos. Mientras que la potencia disipada es crítica para sistemas de alto rendimiento, como por ejemplo centros de datos, debido a su uso de gran potencia, para sistemas móviles la duración de la batería es la preocupación principal. Para el mercado de procesadores móviles de prestaciones más modestas, los límites permitidos para la potencia, energía y área del chip son significativamente más bajas que para los servidores, ordenadores de sobremesa, portátiles o móviles de gama alta. El objetivo final en sistemas de gama baja es igualmente el de incrementar el rendimiento, pero sólo si el "presupuesto" para energía o área no se ve comprometido. Tradicionalmente, las arquitecturas vectoriales han sido usadas en el ámbito de la supercomputación, con diversas implementaciones exitosas. La eficiencia energética y el alto rendimiento de los procesadores vectoriales, así como que se puedan aplicar a ámbitos emergentes, motivan a continuar la investigación en arquitecturas vectoriales. No obstante, añadir soporte paravectores basado en diseños convencionales conlleva incrementos de potencia y área que no son aceptables para procesadores móviles de gama baja. Además, no existen herramientas apropiadas para realizar esta investigación. En esta tesis, proponemos un diseño integrado vectorial-escalar para arquitecturas ARM de bajo consumo, que principalmente reutiliza el hardware escalar ya presente en el procesador para implementar el soporte de ejecución de instrucciones vectoriales. El elemento clave del diseño es nuestro modelo de ejecución por bloques propuesto en la tesis, que agrupa instrucciones de cómputo vectorial para ejecutarlas de manera coordinada. Complementamos esto con un diseño integrado avanzado que implementa tres ideas para incrementar el rendimiento eficientemente en cuanto a la energía consumida: (1) encadenamiento (chaining) desde la jerarquía de memoria, (2) reenvío (forwarding) directo de los resultados, y (3) instrucciones de memoria "shape", con patrones de acceso complejos. Además, esta tesis presenta dos herramientas para medir y analizar lo apropiado de usar microarquitecturas vectoriales para una aplicación. La primera herramienta es VALib, una biblioteca que permite la vectorización manual de aplicaciones, cuyo propósito principal es el de recolectar datos para una caracterización detallada a nivel de instrucción, así como el de generar trazas para la segunda herramienta, SimpleVector. SimpleVector es un simulador rápido basado en trazas que estima el tiempo de ejecución de una aplicación vectorial en la microarquitectura vectorial candidata. Finalmente, la tesis también evalúa las características del procesador Knight's Corner, con unidades SIMD en orden sencillas. Lo aprendido en estos análisis se ha aplicado en el diseño integrado.
Frautschi, Mark A. "Pseudoscalar and vector meson production in the TRISTAN energy region /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487759914758637.
Full textLaycock, Thomas Daniel. "Dark matter excitations via massive vector bosons." Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=21959.
Full textUn model d'excitations matière sombre est etudié dans une tentative d'explication de la ligne d'emission anormalement large observé par le spectrographe SPI sur INTEGRAL originaire du bulbe galactique de la Voie Lactée. La matière sombre WIMP proposée possède un partenaire ayant une masse de quelques MeV supplémentaires. La diffusion entre les particules de matière sombre mène aux excitations et à la désintégration ultérieure en une paire électron-positron. De cette façon, l'énergie cinétique des particules de matière sombre peut être convertie en paires électron-positron se déplaçant suffisement lentement pour produire l'étroite ligne d'annihilation observée. Avec un espacement en masse suffisement grand, les considérations cinématique et un profil de densité de la matière sombre cuspy contraignent les excitations au bulbe galactique, où la vitesse d'échappement, et donc la fraction de particules matière sombre au-dessus du seuil cinétique, est grande.
Huang, Ruth Christiana. "Designing Anti-Islanding Detection Using the Synchrophasor Vector Processor." DigitalCommons@CalPoly, 2013. https://digitalcommons.calpoly.edu/theses/1001.
Full textLee, Bong Jae. "Fabrication and Analysis of Multilayer Structures for Coherent Thermal Emission." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19839.
Full textLeggat, Duncan. "Study of single top quarks in association with vector bosons." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/11557.
Full textBooks on the topic "Poynting vector and energy"
Tam, Eddie Sun-Keung. Evaluation of geometry variation in metallic tubes with a concentric tube Poynting vector technique. Ottawa: National Library of Canada, 1990.
Find full textJean, Piaget. The composition of forces and the problem of vectors. Leeds: Centre for Studies in Science and Mathematics Education, University of Leeds, 1990.
Find full text1976-, Nersesov Sergey G., ed. Stability and control of large-scale dynamical systems: A vector dissipative systems approach. Princeton, N.J: Princeton University Press, 2011.
Find full textS, Madheswaran, and Institute for Social and Economic Change, eds. Casuality between energy consumption and output growth in Indian cement industry: An application of panel vector error correction model. Bangalore: Institute for Social and Economic Change, 2010.
Find full textRobyns, Benoit. Vector Control of Induction Machines: Desensitisation and Optimisation Through Fuzzy Logic. London: Springer London, 2012.
Find full textVal'eho, Mal'donado, and Nikolay Chaynov. Calculation of kinematics and dynamics of inline piston engines. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1058850.
Full textMagnetospheric-ionospheric poynting flux: Final report. Menlo Park, CA: SRI International, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Magnetospheric-ionospheric poynting flux: Final report. Menlo Park, CA: SRI International, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Magnetospheric-ionospheric poynting flux: Final report. Menlo Park, CA: SRI International, 1994.
Find full textGeorgiopoulos, C., and J. Lannutti. Vector Computing in Experimental High Energy Physics: Scri School on Vector Computing in Experimental High Energy Physics. World Scientific Pub Co Inc, 1989.
Find full textBook chapters on the topic "Poynting vector and energy"
Dodd, John N. "Intensity, Energy Density, the Poynting Vector, and Their Spectral Distributions." In Atoms and Light: Interactions, 35–43. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4757-9331-4_5.
Full textWeik, Martin H. "Poynting vector." In Computer Science and Communications Dictionary, 1313. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_14433.
Full textFerreira, J. A. "Poynting Vector, a Method to Describe the Mechanism of Power Conditioning." In Electromagnetic Modelling of Power Electronic Converters, 15–33. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2014-3_2.
Full textAlleau, Thierry. "Hydrogen: An Energy Vector." In Low Emission Power Generation Technologies and Energy Management, 139–77. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557976.ch4.
Full textDeschamps, M. "Attenuation Along the Poynting Vector Direction of Inhomogeneous Plane Waves in Anisotropic Solids." In Review of Progress in Quantitative Nondestructive Evaluation, 111–17. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4791-4_13.
Full textBretón, Nora. "Vector Fields Resembling Dark Energy." In Astrophysics and Space Science Proceedings, 61–73. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02063-1_5.
Full textFisher, G. H., B. T. Welsch, and W. P. Abbett. "Can We Determine Electric Fields and Poynting Fluxes from Vector Magnetograms and Doppler Measurements?" In Solar Flare Magnetic Fields and Plasmas, 153–63. New York, NY: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-3761-1_11.
Full textProskuryakov, Alexander. "Vector Meson Production at HERA." In International Europhysics Conference on High Energy Physics, 401–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59982-8_40.
Full textBrunet, Yves. "Energy Storage: Applications to the Electricity Vector." In Low Emission Power Generation Technologies and Energy Management, 1–49. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557976.ch1.
Full textBaur, U. "Electroweak Vector Bosons: Standard Model and Beyond." In XXIV International Conference on High Energy Physics, 1256–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74136-4_148.
Full textConference papers on the topic "Poynting vector and energy"
Lee, B. J., and Z. M. Zhang. "Energy Streamlines in Near-Field Thermal Radiation." In ASME 2008 First International Conference on Micro/Nanoscale Heat Transfer. ASMEDC, 2008. http://dx.doi.org/10.1115/mnht2008-52210.
Full textManjang, Salama, Yedi George, and Ikhlas Kitta. "Analysis of power losses of the 150 kV transmission using Poynting vector." In 2012 International Conference on Power Engineering and Renewable Energy (ICPERE). IEEE, 2012. http://dx.doi.org/10.1109/icpere.2012.6287221.
Full textDEAN, CLEON E., and JAMES P. BRASELTON. "VISUALIZATION OF THE ENERGY FLOW FOR ELASTIC WAVES: COMPARISON AND CONTRAST OF CONVENTIONAL VECTOR FIELD VS. COLOR CODED REPRESENTATION OF THE POYNTING VECTOR." In Theoretical and Computational Acoustics 2003 - The Sixth International Conference (ICTCA). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702609_0007.
Full textKumja, M., Ng Kim Choon, Wai Soong Loh, and Christopher Yap. "Numerical and Experimental Study on Heat Transfer Process Under Microwave Irradiation Using Reflector to Enhance Energy Absorption Rate." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56332.
Full textLiu, Yuan Bin, Jun Qiu, Rong Jin, and Lin Hua Liu. "Artificial Opals: Reflection Spectra and Distribution Laws of Energy Transfer." In ASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/mnhmt2016-6510.
Full textClayton, Erik H., and Philip V. Bayly. "Brain Response to Extracranial Acoustic Loads: Shear Wave Propagation Characterized by Vector Fields." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63245.
Full textBasu, S., B. J. Lee, and Z. M. Zhang. "Near-Field Radiation Calculated With an Improved Dielectric Function Model for Doped Silicon." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68314.
Full textChen, Yu-Bin, and Chien-Jing Chen. "Interaction Between the Magnetic Polariton and Surface Plasmon Polariton." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63333.
Full textKumar, Vijay, and Nirmal K. Viswanathan. "Poynting Vector of Complex Optical Fields." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.fw4f.5.
Full textVelichko, E. A., and A. P. Nickolaenko. "Umov-poynting vector in visualization of plasmons." In 2016 IEEE 13th International Conference on Laser and Fiber-Optical Networks Modeling (LFNM). IEEE, 2016. http://dx.doi.org/10.1109/lfnm.2016.7851226.
Full textReports on the topic "Poynting vector and energy"
Khasanov, Kholmurad. Directed Radiation of High-Energy Light Against Gravity Vector. Edited by Lotfia Elnai and Ramy Mawad. Journal of Modern trends in physics research, December 2014. http://dx.doi.org/10.19138/mtpr/(14)33-41.
Full textCaspi, S. The vector potential and stored energy of thin cosine (n{theta}) helical wiggler magnet. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/207361.
Full textCaspi, S. The 3D Vector Potential, Magnetic Field and Stored Energy in a Thin cos2 theta Coil Array. Office of Scientific and Technical Information (OSTI), July 1997. http://dx.doi.org/10.2172/1011371.
Full textHong, Tae Min. Final Technical Report: New Physics in Higgs or Higgsinos Using Vector Boson Fusion, Missing Energy, and ATLAS Trigger System Upgrades. Office of Scientific and Technical Information (OSTI), July 2018. http://dx.doi.org/10.2172/1461880.
Full textYazgan, Efe. Search for a Standard Model Higgs boson in CMS via vector boson fusion in the $H \to W W \to$ lepton neutrino lepton neutrino channel and optimization of energy reconstruction in CMS using test beam 2006 data. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/1415819.
Full text