Academic literature on the topic 'Precise Point Positioning (PPP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Precise Point Positioning (PPP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Precise Point Positioning (PPP)"

1

Voytenko, A. V. "Realization of the Precise Point Positioning (PPP) technique and its accuracy." Geodesy and Cartography 927, no. 9 (October 20, 2017): 42–49. http://dx.doi.org/10.22389/0016-7126-2017-927-9-42-49.

Full text
Abstract:
The article notes that the replacement of the English name «Precise Point Positioning» (PPP) in Russian-language sources is possible using the term «accurate differential positioning» (TDP) technique. The author proposes to use both terms. This article contains information about the practical implementation of the PPP in the on-line service. The author has analyzed the research on the accuracy of PPP foreign and domestic experts and scholars. The author analyzed the data about the convergence time for PPP solutions. These data belong to another Russian scientist. The results of evaluating the accuracy of the PPP of different scientists led to the next. The author of this article gave the mean square errors topocentric coordinates of the geodetic points. The coordinates of the points must be obtained by dual-frequency GPS-measurements for a period of 24 hours with the help of PPP. The author proposed a formula for the calculation of the mean square error of the spatial position of geodetic point, if its position is obtained in the processing of dual-frequency GPS-observations of less than 24 hours. The article written conclusions about the features, defects and PPP development.
APA, Harvard, Vancouver, ISO, and other styles
2

Savchuk, Stepan, Janusz Cwiklak, and Alina Khoptar. "Precise Point Positioning Technique Versus Relative Positioning." Baltic Surveying 12 (June 29, 2020): 39–43. http://dx.doi.org/10.22616/j.balticsurveying.2020.006.

Full text
Abstract:
Precise point positioning is a GNSS based positioning method that is known to regaining more precise information about major systematical errors in its functional model. This method is seen as an advanced version of the conventional absolute positioning method that is able to offer higher accuracy of the estimate parameter. Contrarily, the relative positioning method is able to achieve high precise of the estimated parameters by using two or more receiver. Nowadays because of this development, the PPP technique it started to grow on the detriment of the relative GNSS positioning. PPP, it is able to offer point determination by processing undifferenced dual frequency receiver, combine with precise orbit and clock corrections offered by JPL to obtain centimeter/millimeter accuracy. The aim of this paper is to make a comparative study between Precise Point Positioning (PPP) versus relative positioning under different conditions.
APA, Harvard, Vancouver, ISO, and other styles
3

Bisnath, S., and P. Collins. "Recent Developments in Precise Point Positioning." GEOMATICA 66, no. 2 (June 2012): 103–11. http://dx.doi.org/10.5623/cig2012-023.

Full text
Abstract:
In standard Precise Point Positioning (PPP), the carrier phase ambiguities are estimated as real-valued constants, so that the carrier-phases can provide similar information as the pseudoranges. As a consequence, it can take tens of minutes to several hours for the ambiguities to converge to suitably precise values. Recently, new processing methods have been identified that permit the ambiguities to be estimated more appropriately as integer-valued constants, as they are in relative Real-Time Kinematic (RTK) positioning. Under these conditions, standard ambiguity resolution techniques can be applied to strengthen the PPP solution. The result can be a greatly reduced solution convergence and re-convergence period, representing a significant step toward improving the performance of PPP with respect to that of RTK processing. This paper describes the underlying principles of the method, why the enhancements work, and presents some results.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiao Yu, Jun Wang, and Ya Tao Liu. "Performance Analysis of GPS/BDS Precise Point Positioning." Applied Mechanics and Materials 713-715 (January 2015): 1123–26. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1123.

Full text
Abstract:
Precise Point Positioning (PPP) with GPS measurements has achieved a level of success. In order to benefit from the multiple available constellations, research has been undertaken to combineGPS and BDS measurements in PPP processing.Mathematical models of GPS/BDS combined precise point positioning are introduced in this paper. GPS/BDS combined PPP models are developed based on the GPS-only PPP. The data pre-processing steps include applying satellite orbit and clock corrections, satellite antenna phase offset correction, receiver antenna phase offset correction, differential code bias corrections, troposphere delay corrections and the the Ionosphere-free observation combination is used. The results show that the positioning precision and convergence speed of GPS/BDS combined PPP are improved compared with GPS-only PPP.
APA, Harvard, Vancouver, ISO, and other styles
5

Petit, Gérard, and Zhiheng Jiang. "Precise Point Positioning for TAI Computation." International Journal of Navigation and Observation 2008 (February 28, 2008): 1–8. http://dx.doi.org/10.1155/2008/562878.

Full text
Abstract:
We discuss the use of some new time transfer techniques for computing TAI time links. Precise point positioning (PPP) uses GPS dual frequency carrier phase and code measurements to compute the link between a local clock and a reference time scale with the precision of the carrier phase and the accuracy of the code. The time link between any two stations can then be computed by a simple difference. We show that this technique is well adapted and has better short-term stability than other techniques used in TAI. We present a method of combining PPP and two-way time transfer that takes advantage of the qualities of each technique, and shows that it would bring significant improvement to TAI links.
APA, Harvard, Vancouver, ISO, and other styles
6

Zou, Junping, Ahao Wang, and Jiexian Wang. "Single-Frequency Precise Point Positioning Using Regional Dual-Frequency Observations." Sensors 21, no. 8 (April 18, 2021): 2856. http://dx.doi.org/10.3390/s21082856.

Full text
Abstract:
High-precision and low-cost single-frequency precise point positioning (SF-PPP) has been attracting more and more attention in numerous global navigation satellite system (GNSS) applications. To provide the precise ionosphere delay and improve the positioning accuracy of the SF-PPP, the dual-frequency receiver, which receives dual-frequency observations, is used. Based on the serviced precise ionosphere delay, which is generated from the dual-frequency observations, the high-precision SF-PPP is realized. To further improve the accuracy of the SF-PPP and shorten its convergence time, the double-differenced (DD) ambiguity resolutions, which are generated from the DD algorithm, are introduced. This method avoids the estimation of fractional cycle bias (FCB) for the SF-PPP ambiguity. Here, we collected data from six stations of Shanghai China which was processed, and the corresponding results were analyzed. The results of the dual-frequency observations enhanced SF-PPP realize centimeter-level positioning. The difference between the results of two stations estimated with dual-frequency observations enhanced SF-PPP were compared with the relative positioning results computed with the DD algorithm. Experimental results showed that the relative positioning accuracy of the DD algorithm is slightly better than that of the dual-frequency observations enhanced SF-PPP. This could be explained by the effect of the float ambiguity resolutions on the positioning accuracy. The data was processed with the proposed method for the introduction of the DD ambiguity into SF-PPP and the results indicated that this method could improve the positioning accuracy and shorten the convergence time of the SF-PPP. The results could further improve the deformation monitoring ability of SF-PPP.
APA, Harvard, Vancouver, ISO, and other styles
7

Tomasz, Hadaś. "GNSS-Warp Software for Real-Time Precise Point Positioning." Artificial Satellites 50, no. 2 (June 1, 2015): 59–76. http://dx.doi.org/10.1515/arsa-2015-0005.

Full text
Abstract:
Abstract On April 1, 2013 IGS launched the real-time service providing products for Precise Point Positioning (PPP). The availability of real-time makes PPP a very powerful technique to process GNSS signals in real-time and opens a new PPP applications opportunities. There are still, however, some limitations of PPP, especially in the kinematic mode. A significant change in satellite geometry is required to efficiently de-correlate troposphere delay, receiver clock offset, and receiver height. In order to challenge PPP limitations, the GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) software has been developed from scratch at Wroclaw University of Environmental and Life Science in Poland. This paper presents the GNSS-WARP software itself and some results of GNSS data analysis using PPP and PPP-RTK (Real-Time Kinematic) technique. The results of static and kinematic processing in GPS only and GPS + GLONASS mode with final and real-time products are presented. Software performance validation in postprocessing mode confirmed that the software can be considered as a state-ofthe- art software and used for further studies on PPP algorithm development. The real-time positioning test made it possible to assess the quality of real-time coordinates, which is a few millimeters for North, East, Up in static mode, a below decimeter in kinematic mode. The accuracy and precision of height estimates in kinematic mode were improved by constraining the solution with an external, near real-time troposphere model. The software also allows estimation of real-time ZTD, however, the obtained precision of 11.2 mm means that further improvements in the software, real-time products or processing strategy are required.
APA, Harvard, Vancouver, ISO, and other styles
8

Azab, Mohamed, Ahmed El-Rabbany, M. Nabil Shoukry, Ramadan Khalil, and Akram Afifi. "Performance Analysis of GPS/GLONASS Precise Point Positioning." GEOMATICA 67, no. 4 (December 2013): 237–42. http://dx.doi.org/10.5623/cig2013-049.

Full text
Abstract:
Precise Point Positioning (PPP) with Global Positioning Systems (GPS) has attracted the attention of many researchers over the past decade. Recently, the Russian global navigation satellite system (GLONASS) has been modernized and restored to near full constellation status, which has made it more attractive for positioning and navigation. Having two healthy systems, namely GPS and GLONASS provides a combination of both constellations, which in turn promises to improve the availability, positioning accuracy, and reliability of PPP solutions. This study investigates the effect of combining GPS and GLONASS dual-frequency measurements on the static PPP solution and its sensitivity to different processing strategies. Many data sets from five globally distributed International GNSS Service (IGS) tracking stations were processed using the Bernese GPS software package. The addition of GLONASS constellation improved the satellite visibility and geometry by more than 60%, and 40%, respectively, and improves the positioning convergence by up to 41%, 38%, and 19% in east, north, and up directions, respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Liao, Shujian, Chenbo Yang, and Dengao Li. "Improving precise point positioning performance based on Prophet model." PLOS ONE 16, no. 1 (January 19, 2021): e0245561. http://dx.doi.org/10.1371/journal.pone.0245561.

Full text
Abstract:
Precision point positioning (PPP) is widely used in maritime navigation and other scenarios because it does not require a reference station. In PPP, the satellite clock bias (SCB) cannot be eliminated by differential, thus leading to an increase in positioning error. The prediction accuracy of SCB has become one of the key factors restricting positioning accuracy. Although International GNSS Service (IGS) provides the ultra-rapid ephemeris prediction part (IGU-P), its quality and real-time performance can not meet the practical application. In order to improve the accuracy of PPP, this paper proposes to use the Prophet model to predict SCB. Specifically, SCB sequence is read from the observation part in the ultra-rapid ephemeris (IGU-O) released by IGS. Next, the SCB sequence between adjacent epochs are subtracted to obtain the corresponding SCB single difference sequence. Then using the Prophet model to predict SCB single difference sequence. Finally, the prediction result is substituted into the PPP positioning observation equation to obtain the positioning result. This paper uses the final ephemeris (IGF) published by IGS as a benchmark and compares the experimental results with IGU-P. For the selected four satellites, compared with the results of the IGU-P, the accuracy of SCB prediction of the model in this paper is improved by about 50.3%, 61.7%, 60.4%, and 48.8%. In terms of PPP positioning results, we use Real-time kinematic (RTK) measurements as a benchmark in this paper. Positioning accuracy has increased by 26%, 35%, and 19% in the N, E, and U directions, respectively. The results show that the Prophet model can improve the performance of PPP.
APA, Harvard, Vancouver, ISO, and other styles
10

Jokinen, Altti, Shaojun Feng, Wolfgang Schuster, Washington Ochieng, Chris Hide, Terry Moore, and Chris Hill. "GLONASS Aided GPS Ambiguity Fixed Precise Point Positioning." Journal of Navigation 66, no. 3 (March 25, 2013): 399–416. http://dx.doi.org/10.1017/s0373463313000052.

Full text
Abstract:
The Precise Point Positioning (PPP) concept enables centimetre-level positioning accuracy by employing one Global Navigation Satellite System (GNSS) receiver. The main advantage of PPP over conventional Real Time Kinematic (cRTK) methods is that a local reference network infrastructure is not required. Only a global reference network with approximately 50 stations is needed because reference GNSS data is required for generating precise error correction products for PPP. However, the current implementation of PPP is not suitable for some applications due to the long time period (i.e. convergence time of up to 60 minutes) required to obtain an accurate position solution. This paper presents a new method to reduce the time required for initial integer ambiguity resolution and to improve position accuracy. It is based on combining GPS and GLONASS measurements to calculate the float ambiguity positioning solution initially, followed by the resolution of GPS integer ambiguities.The results show that using the GPS/GLONASS float solution can, on average, reduce the time to initial GPS ambiguity resolution by approximately 5% compared to using the GPS float solution alone. In addition, average vertical and horizontal positioning errors at the initial ambiguity resolution epoch can be reduced by approximately 17% and 4%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Precise Point Positioning (PPP)"

1

Shirazian, Masoud. "Quality description in GPS precise point positioning." Doctoral thesis, KTH, Geodesi och geoinformatik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-118349.

Full text
Abstract:
GPS processing, like every processing method for geodetic applications, relies upon least-squares estimation. Quality measures must be defined to assure that the estimates are close to reality. These quality measures are reliable provided that, first, the covariance matrix of the observations (the stochastic model) is well defined and second, the systematic effects are completely removed (i.e., the functional model is good). In the GPS precise point positioning (PPP) the stochastic and functional models are not as complicated as in the differential GPS processing. We will assess the quality of the GPS Precise Point Positioning in this thesis by trying to define more realistic standard deviations for the station position estimates. To refine the functional model from systematic errors, we have 1) used the phase observations to prevent introducing any hardware bias to the observation equations, 2) corrected observations for all systematic effects with amplitudes of more than 1cm, 3) used undifferenced observations to prevent having complications (e.g. linearly related parameters) in the system of observation equations. To have a realistic covariance matrix for the observations we have incorporated the ephemeris uncertainties into the system of observation equations. Based on the above-mentioned issues a PPP processing method is designed and numerically tested on the real data of some of the International GNSS Service stations. The results confirm that undifferenced stochastic-related properties (e.g. degrees of freedom) can be reliable means to recognize the parameterization problem in differenced observation equations. These results also imply that incorporation of the satellite ephemeris uncertainties might improve the estimates of the station positions. The effect of troposphere on the GPS data is also focused in this thesis. Of particular importance is the parameterization problem of the wet troposphere in the observation equations.

QC 20130218

APA, Harvard, Vancouver, ISO, and other styles
2

Kvarnström, Victor, and Jessica Wallerström. "Realtidsmätning inom fastighetsbildning med "Precise Point Positioning" (PPP)." Thesis, Högskolan Väst, Avdelningen för data-, elektro- och lantmäteriteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-9503.

Full text
Abstract:
Vid GNSS-positionering i samband med fastighetsbildningsåtgärder används vanligtvis den traditionella RTK-mätningen (Real-Time Kinematic) via SWEPOS nätverks-RTK-tjänst. Denna tjänst kräver mobiltelefontäckning eller motsvarande tvåvägskommunikation, vilket kan vara problematiskt inom områden med bristfällig mobiltelefontäckning. Under dessa förhållanden kan istället PPP-mätning (Precise Point Positioning) vara användbart vid fastighetsbildningsåtgärder då dessa tjänster tar emot korrektionsdata i realtid från satelliter. PPP kräver inte någon mobiltelefontäckning, däremot krävs en kommunikationslänk, en RTX-tjänst för att erhålla korrektioner externt från en RTX-satellit. Syftet med studien är att undersöka möjligheten till att nyttja PPP i realtid vid fastighetsbildningsåtgärder som ett alternativ till traditionell GNSS-mätning med nätverks-RTK. För att PPP ska vara ett alternativ till traditionell GNSS-mätning i realtid krävs det att mätosäkerhetskraven inom fastighetsbildning uppfylls. Mätosäkerheten undersöktes genom att utgå ifrån redan kända koordinater (RIX 95-punkter). Mätningarna har genomförts på fem olika platser i Sverige, Göteborg, Vänersborg, Karlstad, Torsby och Malung-Sälen. Mätdata som erhölls från undersökningsplatserna har analyserats samt jämförts med fastighetsbildningskraven. Resultatet av studien erhölls i form av analyserad mätdata med jämförelser mot redan kända (RIX 95) punkter. Avikelsen från känd RIX 95-punkt redovisas i resultatet utifrån tidsaspekten, den systematiska avvikelsen av translativ art, förändringar i avvikelsen från söder till norr samt utifrån två beräkningsmodeller, varav en translation och en transformation. För att få den erhållna mätdatan från RTX-tjänsten att överensstämma bättre med referenspunkten (RIX 95-punkten) togs beräkningsmodellerna fram för att möjliggöra modellering av systematiska avvikelser som uppkommit och därmed uppfylla kraven inom fasighetsbildningsåtgärder. Genom att ha analyserat och granskat olika samband har det framkommit att efter ca 20 minuters mätning, börjar precisionen för mätningarna att bli stabila. Utifrån resultatet är slutsatsen att PPP inte fungerar vid fastighetsbildningsåtgärder för områden inom stomnät, däremot fungerar metoden för skogs- och jordbruksfastigheter utanför stomnät. Förutsatt att en modellering genom translation alternativt transformation som är framtagen i denna studie används för att justera koordinaterna så fungerar PPP-mätning inom samtliga fastighetsbildningsåtgärder. Detta kräver då att mätdata erhålls efter 20 minuters mätning eller mer.
GNSS positioning in conjunction with the real property is usually used the traditional RTK measuring (Real-Time Kinematic) by SWEPOS network RTK service. This service requires mobile phone coverage or equivalent two-way communication, which can be problematic in areas with poor mobile phone coverage. Under these circumstances, PPP (Point Positioning Precise) could be more useful in real property measures when such services receives the correction data in real time from the satellites. PPP does not require any cell phone coverage, however it requires a communication link, a RTX service to obtain corrections externally from a RTX satellite. The purpose of the study is to examine the possibility of using PPP in real time at the real property as an alternative to traditional GNSS measurements with network RTK. The measurement uncertainty was investigated by starting out from already known coordinates (RIX 95 points). The measurements were performed out at five different locations in Sweden, Gothenburg, Vanersborg, Karlstad, Torsby and Malung-Salen. Measurement data obtained from the observations have been analyzed and compared with real property requirements. The results of the study were obtained in the form of data analyzed by comparison of the known (RIX 95) points. The deviation is known from RIX 95 point recognized in income based on the time factor, the bias of the translative case species, changes in deviation from south to north and from two calculation models, a translation and a transformation. To correct the measured values from the RTX service for a better match to the RIX 95 points calculation models were developed to facilitate the modeling of systematic deviations incurred and meet the demands of real property. Analyzing and examining various relationships have shown that after about 20 minutes of measuring, the precision of the measurements starts to become more stable. Based on the results, the conclusion is that the PPP does not work in real property areas within the core network, however, the method works for forestry and agricultural properties outside the core network. Assuming a modelling through translational alternative transformation, developed in this study is used to adjust the coordinates, the PPP measurement is working in all real property registration measures. This requires that the measurement data is obtained after 20 minutes of measurement or more.
APA, Harvard, Vancouver, ISO, and other styles
3

Reußner, Nico. "Die GLONASS-Mehrdeutigkeitslösung beim Precise Point Positioning (PPP)." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202164.

Full text
Abstract:
Precise Point Positioning (PPP) ermöglicht eine präzise Positionsbestimmung mittels globaler Satellitennavigationssysteme (Global Navigation Satellite System, GNSS) ohne die direkte Verwendung der Beobachtungsdaten von regionalen Referenzstationen. Die wesentlichste Einschränkung von PPP im Vergleich zu differenziellen Auswertetechniken (Real-Time Kinematic, RTK) ist die deutlich längere Konvergenzzeit. Voraussetzung für die Verkürzung der Konvergenzzeit ist die Festsetzung der geschätzten Mehrdeutigkeiten auf ganzzahlige Werte. Die Mehrdeutigkeitslösung verlangt ein robustes funktionales Modell und beruht auf einem zweistufigen Mehrdeutigkeitsfestsetzungsverfahren, welches frei von ionosphärischen Einflüssen 1. Ordnung ist. Die sowohl auf Code- als auch auf Phasenbeobachtungen basierende Melbourne-Wübbena-Linearkombination erlaubt hierbei eine einfache Festsetzung der Widelane-Mehrdeutigkeiten. Infolgedessen kann zur Berechnung der ionosphären-freien Linearkombination die im Vergleich zur Wellenlänge der ionosphären-freien Linearkombination deutlich größere Narrowlane-Wellenlänge verwendet werden. Zur Stabilisierung des im Normalfall lediglich auf den Beobachtungsdaten des amerikanischen Global Positioning System (GPS) beruhenden funktionalen Modells können die Beobachtungsdaten des russischen GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) beitragen. Aufgrund der Technik, die GLONASS zur Identifizierung der einzelnen Satelliten einsetzt (Frequency Division Multiple Access, FDMA), unterscheiden sich die Frequenzen der einzelnen Satelliten. Die leicht unterschiedlichen Frequenzen erschweren die Modellierung und Korrektion der instrumentell bedingten Signalverzögerungen (z. B. Fractional-Cycle Biases (FCB)). Vor diesem Hintergrund kann das konventionelle Mehrdeutigkeitsfestsetzungsverfahren nur bedingt für GLONASS verwendet werden. Die Untersuchung der instrumentell bedingten GLONASS-Signalverzögerungen sowie die Entwicklung einer alternativen Methode zur Festsetzung der GLONASS-Mehrdeutigkeiten mit dem Ziel einer kombinierten GPS/GLONASS-Mehrdeutigkeitslösung sind die Schwerpunkte der vorliegenden Arbeit. Die entwickelte alternative Mehrdeutigkeitsfestsetzungsstrategie baut auf der puren Widelane-Linearkombination auf, weshalb globale Ionosphärenmodelle unabdingbar sind. Sie eignet sich sowohl für GLONASS als auch für GPS und zeigt gleichwertige Ergebnisse für beide GNSS, wenngleich im Vergleich zur konventionellen Methode mit geringeren Mehrdeutigkeitsfestsetzungsquoten zu rechnen ist
Precise Point Positioning (PPP) allows for accurate Global Navigation Satellite System (GNSS) based positioning without the immediate need for observations collected by regional station networks. The fundamental drawback of PPP in comparison to differential techniques such as Real-Time Kinematic (RTK) is a significant increase in convergence time. Among a plurality of different measures aiming for a reduction of convergence time, fixing the estimated carrier phase ambiguities to integer values is the key technique for success. The ambiguity resolution asks for a robust functional model and rests upon a two-stage method ruling out first-order ionospheric effects. In this context the Melbourne-Wübbena linear combination of dual-frequency carrier phase and code measurements leverages a simple resolution of widelane ambiguities. As a consequence the in comparison to the wavelength of the ionosphere-free linear combination significantly longer narrowlane wavelength can be used to form the ionosphere-free linear combination. By default the applied functional model is solely based on observations of the Global Positioning System (GPS). However measurements from the GLObal’naya NAvigatsioannaya Sputnikovaya Sistema (GLONASS) can contribute to improve the model’s stability significantly. Due to the technique used by GLONASS to distinguish individual satellites (Frequency Division Multiple Access, FDMA), the signals broadcast by those satellites differ in their frequencies. The resulting slightly different frequencies constitute a barricade for both modelling and correcting any device-dependent signal delays, e.g. fractional-cycle biases (FCB). These facts limit the applicability of the conventional ambiguity-fixing approach when it comes to GLONASS signals. The present work puts a focus both on investigating the device-dependent GLONASS signal delays and on developing an alternative method for fixing GLONASS ambiguities with the ultimate objective of a combined GPS/GLONASS ambiguity resolution. The alternative ambiguity resolution strategy is based on the pure widelane linear combination, for which reason ionospheric corrections are indispensable. The procedure is applicable for GLONASS in the first instance but reveals equivalent results for both GPS and GLONASS. The disadvantage relative to the conventional approach is the reduced ambiguity fixing success rate
APA, Harvard, Vancouver, ISO, and other styles
4

Nosek, Jakub. "Testování metody Precise Point Positioning." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2020. http://www.nusl.cz/ntk/nusl-414313.

Full text
Abstract:
This diploma thesis deals with the Precise Point Positioning (PPP) method in various variants. The thesis describes the theoretical foundations of the PPP method and the most important systematic errors that affect accuracy. The accuracy of the PPP method was evaluated using data from the permanent GNSS station CADM, which is part of the AdMaS research center. Data of the period 2018 – 2019 were processed. The results of combinations of different GNSS and the results of different observation periods were compared. Finally, the accuracy was verified at 299 IGS GNSS stations.
APA, Harvard, Vancouver, ISO, and other styles
5

Jonsson, Fredrik, and Rickard Jäderberg. "Test av kinematisk Precise Point Positioning i realtid." Thesis, Högskolan i Gävle, Avdelningen för Industriell utveckling, IT och Samhällsbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-20121.

Full text
Abstract:
Utvecklingen av satellitbaserad positionsbestämning gör det idag befogat att begära låga osäkerheter med GNSS. Det är idag möjligt att uppnå osäkerheter kring centimetern. Bäst mätosäkerhet ger relativ mätning som sker med stöd av antingen enkelstations- eller nätverks-RTK. I Sverige erbjuder Lantmäteriet med sitt SWEPOS ett tätt referensnätverk som förser användaren med korrektionsdata oavsett position inom Sveriges gränser. Dock är det inte alla länder som kan erbjuda denna positionstjänst. Geografiskt stora länder har mycket svårt att skapa ett referensnät, det skulle betyda flera tusen stationer och gör det till en ekonomisk fråga. Det är bl.a. ur den synpunkten andra metoder har växt fram. En av dessa är Precise Point Positioning (PPP). Enligt G. Hedling (personlig kommunikation, 18 mars 2015) har PPP fått en väl etablering inom jordbruket samt på maritima gruv- och oljeplattformar. Metoden är lämplig vid stora öppna ytor och när avståndet till närmsta referensstation är stor. PPP använder sig av absolut positionering och kan mäta både statiskt och kinematiskt och resultat kan fås i realtid och genom efterberäkning. Det ligger i Lantmäteriets intresse att testa kinematisk PPP i Sverige och den här studien testar kinematisk PPP i realtid med programvaran BNC 2.11 och med korrektioner från International GPS Service (IGS). Enligt Bisnath & Gao (2009) erhålls decimeterosäkerhet med kinematisk PPP och för att bestämma dess tillförlitlighet har i den här studien koordinatavvikelse beräknats mellan BNC och enkelstations-RTK med stöd från SWEPOS. Koordinaterna från enkelstations-RTK har vid testerna angivits som de sanna koordinaterna, genom ett statiskt test har det undersökts om det är motiverat. Utifrån den statiska mätningen har även intialiseringstiden kunnat utredas, alltså den tid det tar för PPP att konvergera. Efterberäkningstjänsten CSRS-PPP har också testats och jämförts mot kända koordinater vid den statiska mätningen.Studien visar att efter närmare en timmes observation avviker PPP under 2 dm i plan mot enkelstations-RTK. Den visar också att 15-30 minuters konvergeringstid är nödvändig för att erhålla osäkerheter på några decimeter. Några av de faktorer som påverkar resultatet är bl.a. jonosfärstörning. högt PDOP-värde och antal processerade satelliter i mjukvarorna, hur mycket är svårt att säga. Vid en tappad signal krävs en ny omintialisering på flera tiotals minuter. Studien visar också att det är lämpligt att använda enkelstations-RTK som sanning. Vid den statiska mätningen avviker enkelstations-RTK kring centimetern mot den kända punktens koordinater, vilket anses godtagbart. CSRS-PPP uppvisar bra resultat och är inte mycket sämre än det resultat enkelstations-RTK redovisar.
Today it´s possible to achieve low uncertainties when surveying with GNSS. You can expect uncertainties around centimeter-level. The best results are achieved when using relative-surveying with corrections from single-station- or network-RTK. The Swedish mapping, cadastral and land registration authority (Lantmäteriet) is providing a well-developed network of reference stations. The network, called SWEPOS, offers corrections for its users independent of position within the Swedish borders. Far from all nations has the ability or the financial resources to create such an expanded network. Instead, other methods for satellite surveying have been developed, including Precise Point Positioning (PPP). According to G. Hedling (personal communication, 18 march 2015) PPP is well-established in the agriculture and in the maritime mining- and oil-industry. The method is suitable in open areas and it is independently of nearby reference stations. PPP is using what’s called absolute-surveying. The surveying is performed either kinematic or static and the results can be obtained thru post-processing or in real-time. “Lantmäteriet” has interest in testing kinematic PPP in Sweden and for this thesis kinematic PPP in real-time is tested with BNC 2.11 software and corrections is given from the International GPS Service (IGS). According to Bisnath & Gao (2009) it is possible to achieve uncertainties in decimeter-level with kinematic PPP. To determine the reliability of PPP the deviation has been calculated against single-station-RTK. The single-station-RTK coordinates have in this study been used as the “truth” and in an additional test using static measurements it has been investigated if that’s correct. From the static test the initialization time for PPP as well as the quality of the post-processing service CSRS-PPP has been studied.The results show that after nearly an hour of observation the deviation between PPP and single-station-RTK are below 2 dm for the level-coordinates. The initialization time of 15-30 minutes is necessary to achieve uncertainties of a few decimeters. Elements that are affecting the results are disturbance in the ionosphere, high PDOP and number of processed satellites in the software. In which extent it’s not possible to determine. When the signal is lost between rover and satellites a re-initialization of 15-30 minutes is needed. It also shows that it is reasonable to use single-station-RTK as the “truth”. Single-station-RTK deviates a proximately one centimeter in relation to known coordinates. The post-processing service CSRS-PPP gives remarkably good results not far from what single-station-RTK offers.
APA, Harvard, Vancouver, ISO, and other styles
6

Toluc, Ahmet Bayram. "Multi-GNSS Precise Point Positioning Using GPS, GLONASS and Galileo." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471490165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cohenour, John C. "Global Positioning System Clock and Orbit Statistics and Precise Point Positioning." Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1249043829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shirazian, Masoud. "Remarks on the quality of GPS precise point positioning using phase observations." Licentiate thesis, KTH, Geoinformatik och Geodesi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93966.

Full text
Abstract:
GPS processing, like every processing method for geodetic applications, relies upon least-squares estimation. Quality measures must be defined to assure that the estimates are close to reality. These quality measures are reliable provided that, first, the covariance matrix of the observations (the stochastic model) is well defined and second, the systematic effects are completely removed (i.e., the functional model is good). In the GPS precise point positioning (PPP) the stochastic and functional models are not as complicated as in the differential GPS processing. We will assess the quality of the GPS Precise Point Positioning in this thesis. To refine the functional model from systematic errors, we have 1) used the phase observations to prevent introducing any hardware bias to the observation equations, 2) corrected observations for all systematic effects with amplitudes of more than 1cm, 3) used undifferenced observations to prevent having complications (e.g. linearly related parameters) in the system of observation equations. To have a realistic covariance matrix for the observations we have incorporated the ephemeris’ uncertainties into the system of observation equations. The above-mentioned technique is numerically tested on the real data of some of the International GNSS Service stations. The results confirm that undifferenced stochastic-related properties (e.g. degrees of freedom) can be reliable means to recognize the parameterization problem in differenced observation equations. These results also imply that incorporation of the satellite ephemeris uncertainties might improve the estimates of the station positions.
QC 20120503
APA, Harvard, Vancouver, ISO, and other styles
9

Deliktas, Hilmi Can. "Investigation on the contribution of GLONASS observations to GPS Precise Point Positioning (PPP)." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1468936251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Choy, Sue Lynn, and suelynnc@gmail com. "An Investigation into the Accuracy of Single Frequency Precise Point Positioning (PPP)." RMIT University. Mathematical and Geospatial Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091105.115902.

Full text
Abstract:
This thesis investigates the major errors and processes affecting the performance of a viable, standalone point positioning technique known as single frequency Precise Point Positioning (PPP). The PPP processing utilises both single frequency code and carrier phase GPS observables. The mathematical model implemented is known as the code and quasi-phase combination. Effective measures to improve the quality of the positioning solutions are assessed and proposed. The a priori observations sigma (or standard deviation) ratio in the sequential least squares adjustment model plays a significant role in determining the accuracy and precision of the estimated solutions, as well as the solutions convergence time. An
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Precise Point Positioning (PPP)"

1

Gao, Yang. "Precise Point Positioning (PPP)." In Encyclopedia of Geodesy, 1–5. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-02370-0_13-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ramachandran, Duraisamy, Ami Hassan Md Din, Siti Aisah Ibrahim, and Abdullah Hisam Omar. "Real-Time Precise Point Positioning (RT-PPP) for Positioning and Mapping." In GCEC 2017, 891–913. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8016-6_64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Huang, Lingyong, Zhiping Lu, Baozhu Li, Guodong Xin, Wen An, Hao Lv, Ning Wang, and Xinfeng Zhou. "The Performance Analysis of Multi-system Integrated Precise Point Positioning (PPP)." In Lecture Notes in Electrical Engineering, 317–26. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0940-2_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kouba, Jan, François Lahaye, and Pierre Tétreault. "Precise Point Positioning." In Springer Handbook of Global Navigation Satellite Systems, 723–51. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42928-1_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pan, Zongpeng, Hongzhou Chai, Rui Wang, Chunhe Liu, Mingchen Shi, and Wenlong Qi. "Performance Evaluation of Galileo Precise Point Positioning." In Lecture Notes in Electrical Engineering, 422–34. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7759-4_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tegedor, Javier, Kees de Jong, Xianglin Liu, Erik Vigen, and Ola Øvstedal. "Real-Time Precise Point Positioning Using BeiDou." In International Association of Geodesy Symposia, 665–71. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/1345_2015_118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Wei, Peter Teunissen, Baocheng Zhang, and Sandra Verhagen. "Precise Point Positioning Using GPS and Compass Observations." In Lecture Notes in Electrical Engineering, 367–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37404-3_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Shaoguang, Yongliang Xiong, Dejun Wang, and Xiaoying Gong. "Kinematic Precise Point Positioning Algorithm with Constraint Condition." In Lecture Notes in Electrical Engineering, 541–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0940-2_47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

van Bree, R. J. P., S. Verhagen, and A. Hauschild. "Real Time Satellite Clocks in Precise Point Positioning." In Geodesy for Planet Earth, 935–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20338-1_117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Jiang, Xiaotao Li, Xingyu Chen, Jianghui Geng, Qiang Wen, and YuanXin Pan. "Performance Analysis of Multi-GNSS Precise Point Positioning." In China Satellite Navigation Conference (CSNC) 2017 Proceedings: Volume III, 377–87. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4594-3_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Precise Point Positioning (PPP)"

1

Jokinen, Altti, Shaojun Feng, Washington Ochieng, Chris Hide, Terry Moore, and Chris Hill. "Fixed ambiguity Precise Point Positioning (PPP) with FDE RAIM." In 2012 IEEE/ION Position, Location and Navigation Symposium - PLANS 2012. IEEE, 2012. http://dx.doi.org/10.1109/plans.2012.6236939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jokinen, Altti, Cameron Ellum, Iain Webster, Surendran Shanmugam, and Kevin Sheridan. "NovAtel CORRECT with Precise Point Positioning (PPP): Recent Developments." In 31st International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2018). Institute of Navigation, 2018. http://dx.doi.org/10.33012/2018.15824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jokinen, Altti, Cameron Ellum, Iain Webster, and Sara Masterson. "NovAtel CORRECT with Precise Point Positioning (PPP): Recent Developments." In 29th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2016). Institute of Navigation, 2016. http://dx.doi.org/10.33012/2016.14600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kalinnikov, Vlad, Alexander Ustinov, Renat Zagretdinov, Alexander Tertyshnikov, and Nikolay Kosarev. "The Precise Point Positioning Method (PPP) in environmental monitoring applications." In XXV International Symposium, Atmospheric and Ocean Optics, Atmospheric Physics, edited by Gennadii G. Matvienko and Oleg A. Romanovskii. SPIE, 2019. http://dx.doi.org/10.1117/12.2539130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guyennon, Nicolas, Giancarlo Cerretto, Patrizia Tavella, and Francois Lahaye. "Further Characterization of the Time Transfer Capabilities of Precise Point Positioning (PPP)." In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walter, Todd, Juan Blanch, Lance de Groot, and Laura Norman. "Assessment of Ionospheric Correction Behavior for Use with Precise Point Positioning (PPP)." In 2021 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2021. http://dx.doi.org/10.33012/2021.17853.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gill, Maninder, Sunil Bisnath, John Aggrey, and Garrett Seepersad. "Precise Point Positioning (PPP) using Low-Cost and Ultra-Low-Cost GNSS Receivers." In 30th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2017). Institute of Navigation, 2017. http://dx.doi.org/10.33012/2017.15123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bellad, Vijaykumar, Thyagaraja Marathe, Behnam Aminian, Nicholas Valentine, Sabitha Sarvasiddhi, Zahid Baji, Murray Petryshen, and Vincent Chen. "Performance Analysis of Precise Point Positioning (PPP) with Rx Networks High Accuracy Assistance Service." In 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019). Institute of Navigation, 2019. http://dx.doi.org/10.33012/2019.17089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kowalczyk, Kamil, and Janusz Bogusz. "Application of PPP Solution to Determine the Absolute Vertical Crustal Movements: Case Study for Northeastern Europe." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.207.

Full text
Abstract:
To estimate the relationship between vertical movements of the Earth’s crust, geoid temporal changes and Mean Sea Level (MSL) variations, a knowledge about the absolute (determined from satellite and space techniques) height changes over time is required. In this paper, we give an idea of determining the height changes with a use of Vertical Switching Edge Detection (VSED) algorithm. On the basis of the least squares estimation, the VSED method detects the discontinuities in time series and determines the values of jumps at the same time. We used the time series from PPP (Precise Point Positioning) solution obtained in NGL (Nevada Geodetic Laboratory) using satellite data gathered at more than 50 permanent stations located in Latvia, Lithuania and northeastern Poland. The minimum time span of data was set up to 3 years. Data were pre-analyzed by removing outliers and interpolating small gaps. The obtained results give an overview of a possibility of the proposed method to be used and the ongoing vertical movements on the area we considered.
APA, Harvard, Vancouver, ISO, and other styles
10

Melnikov, Andrey, Anton Poddubsky, Mikhail Aleshin, and Alena Kalyadina. "THE STUDY OF POSSIBILITY OF USING WEB SERVICE CSRS-PPP FOR PROCESSING THE RESULTS OF GNSS OBSERVATIONS BY PRECISE POINT POSITIONING METHOD FOR GEODETIC SUPPORT OF CADASTRAL WORKS." In 20th International Multidisciplinary Scientific GeoConference Proceedings SGEM 2020. STEF92 Technology, 2020. http://dx.doi.org/10.5593/sgem2020/2.2/s09.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography