To see the other types of publications on this topic, follow the link: Precise Point Positioning (PPP).

Journal articles on the topic 'Precise Point Positioning (PPP)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Precise Point Positioning (PPP).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Voytenko, A. V. "Realization of the Precise Point Positioning (PPP) technique and its accuracy." Geodesy and Cartography 927, no. 9 (October 20, 2017): 42–49. http://dx.doi.org/10.22389/0016-7126-2017-927-9-42-49.

Full text
Abstract:
The article notes that the replacement of the English name «Precise Point Positioning» (PPP) in Russian-language sources is possible using the term «accurate differential positioning» (TDP) technique. The author proposes to use both terms. This article contains information about the practical implementation of the PPP in the on-line service. The author has analyzed the research on the accuracy of PPP foreign and domestic experts and scholars. The author analyzed the data about the convergence time for PPP solutions. These data belong to another Russian scientist. The results of evaluating the accuracy of the PPP of different scientists led to the next. The author of this article gave the mean square errors topocentric coordinates of the geodetic points. The coordinates of the points must be obtained by dual-frequency GPS-measurements for a period of 24 hours with the help of PPP. The author proposed a formula for the calculation of the mean square error of the spatial position of geodetic point, if its position is obtained in the processing of dual-frequency GPS-observations of less than 24 hours. The article written conclusions about the features, defects and PPP development.
APA, Harvard, Vancouver, ISO, and other styles
2

Savchuk, Stepan, Janusz Cwiklak, and Alina Khoptar. "Precise Point Positioning Technique Versus Relative Positioning." Baltic Surveying 12 (June 29, 2020): 39–43. http://dx.doi.org/10.22616/j.balticsurveying.2020.006.

Full text
Abstract:
Precise point positioning is a GNSS based positioning method that is known to regaining more precise information about major systematical errors in its functional model. This method is seen as an advanced version of the conventional absolute positioning method that is able to offer higher accuracy of the estimate parameter. Contrarily, the relative positioning method is able to achieve high precise of the estimated parameters by using two or more receiver. Nowadays because of this development, the PPP technique it started to grow on the detriment of the relative GNSS positioning. PPP, it is able to offer point determination by processing undifferenced dual frequency receiver, combine with precise orbit and clock corrections offered by JPL to obtain centimeter/millimeter accuracy. The aim of this paper is to make a comparative study between Precise Point Positioning (PPP) versus relative positioning under different conditions.
APA, Harvard, Vancouver, ISO, and other styles
3

Bisnath, S., and P. Collins. "Recent Developments in Precise Point Positioning." GEOMATICA 66, no. 2 (June 2012): 103–11. http://dx.doi.org/10.5623/cig2012-023.

Full text
Abstract:
In standard Precise Point Positioning (PPP), the carrier phase ambiguities are estimated as real-valued constants, so that the carrier-phases can provide similar information as the pseudoranges. As a consequence, it can take tens of minutes to several hours for the ambiguities to converge to suitably precise values. Recently, new processing methods have been identified that permit the ambiguities to be estimated more appropriately as integer-valued constants, as they are in relative Real-Time Kinematic (RTK) positioning. Under these conditions, standard ambiguity resolution techniques can be applied to strengthen the PPP solution. The result can be a greatly reduced solution convergence and re-convergence period, representing a significant step toward improving the performance of PPP with respect to that of RTK processing. This paper describes the underlying principles of the method, why the enhancements work, and presents some results.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Xiao Yu, Jun Wang, and Ya Tao Liu. "Performance Analysis of GPS/BDS Precise Point Positioning." Applied Mechanics and Materials 713-715 (January 2015): 1123–26. http://dx.doi.org/10.4028/www.scientific.net/amm.713-715.1123.

Full text
Abstract:
Precise Point Positioning (PPP) with GPS measurements has achieved a level of success. In order to benefit from the multiple available constellations, research has been undertaken to combineGPS and BDS measurements in PPP processing.Mathematical models of GPS/BDS combined precise point positioning are introduced in this paper. GPS/BDS combined PPP models are developed based on the GPS-only PPP. The data pre-processing steps include applying satellite orbit and clock corrections, satellite antenna phase offset correction, receiver antenna phase offset correction, differential code bias corrections, troposphere delay corrections and the the Ionosphere-free observation combination is used. The results show that the positioning precision and convergence speed of GPS/BDS combined PPP are improved compared with GPS-only PPP.
APA, Harvard, Vancouver, ISO, and other styles
5

Petit, Gérard, and Zhiheng Jiang. "Precise Point Positioning for TAI Computation." International Journal of Navigation and Observation 2008 (February 28, 2008): 1–8. http://dx.doi.org/10.1155/2008/562878.

Full text
Abstract:
We discuss the use of some new time transfer techniques for computing TAI time links. Precise point positioning (PPP) uses GPS dual frequency carrier phase and code measurements to compute the link between a local clock and a reference time scale with the precision of the carrier phase and the accuracy of the code. The time link between any two stations can then be computed by a simple difference. We show that this technique is well adapted and has better short-term stability than other techniques used in TAI. We present a method of combining PPP and two-way time transfer that takes advantage of the qualities of each technique, and shows that it would bring significant improvement to TAI links.
APA, Harvard, Vancouver, ISO, and other styles
6

Zou, Junping, Ahao Wang, and Jiexian Wang. "Single-Frequency Precise Point Positioning Using Regional Dual-Frequency Observations." Sensors 21, no. 8 (April 18, 2021): 2856. http://dx.doi.org/10.3390/s21082856.

Full text
Abstract:
High-precision and low-cost single-frequency precise point positioning (SF-PPP) has been attracting more and more attention in numerous global navigation satellite system (GNSS) applications. To provide the precise ionosphere delay and improve the positioning accuracy of the SF-PPP, the dual-frequency receiver, which receives dual-frequency observations, is used. Based on the serviced precise ionosphere delay, which is generated from the dual-frequency observations, the high-precision SF-PPP is realized. To further improve the accuracy of the SF-PPP and shorten its convergence time, the double-differenced (DD) ambiguity resolutions, which are generated from the DD algorithm, are introduced. This method avoids the estimation of fractional cycle bias (FCB) for the SF-PPP ambiguity. Here, we collected data from six stations of Shanghai China which was processed, and the corresponding results were analyzed. The results of the dual-frequency observations enhanced SF-PPP realize centimeter-level positioning. The difference between the results of two stations estimated with dual-frequency observations enhanced SF-PPP were compared with the relative positioning results computed with the DD algorithm. Experimental results showed that the relative positioning accuracy of the DD algorithm is slightly better than that of the dual-frequency observations enhanced SF-PPP. This could be explained by the effect of the float ambiguity resolutions on the positioning accuracy. The data was processed with the proposed method for the introduction of the DD ambiguity into SF-PPP and the results indicated that this method could improve the positioning accuracy and shorten the convergence time of the SF-PPP. The results could further improve the deformation monitoring ability of SF-PPP.
APA, Harvard, Vancouver, ISO, and other styles
7

Tomasz, Hadaś. "GNSS-Warp Software for Real-Time Precise Point Positioning." Artificial Satellites 50, no. 2 (June 1, 2015): 59–76. http://dx.doi.org/10.1515/arsa-2015-0005.

Full text
Abstract:
Abstract On April 1, 2013 IGS launched the real-time service providing products for Precise Point Positioning (PPP). The availability of real-time makes PPP a very powerful technique to process GNSS signals in real-time and opens a new PPP applications opportunities. There are still, however, some limitations of PPP, especially in the kinematic mode. A significant change in satellite geometry is required to efficiently de-correlate troposphere delay, receiver clock offset, and receiver height. In order to challenge PPP limitations, the GNSS-WARP (Wroclaw Algorithms for Real-time Positioning) software has been developed from scratch at Wroclaw University of Environmental and Life Science in Poland. This paper presents the GNSS-WARP software itself and some results of GNSS data analysis using PPP and PPP-RTK (Real-Time Kinematic) technique. The results of static and kinematic processing in GPS only and GPS + GLONASS mode with final and real-time products are presented. Software performance validation in postprocessing mode confirmed that the software can be considered as a state-ofthe- art software and used for further studies on PPP algorithm development. The real-time positioning test made it possible to assess the quality of real-time coordinates, which is a few millimeters for North, East, Up in static mode, a below decimeter in kinematic mode. The accuracy and precision of height estimates in kinematic mode were improved by constraining the solution with an external, near real-time troposphere model. The software also allows estimation of real-time ZTD, however, the obtained precision of 11.2 mm means that further improvements in the software, real-time products or processing strategy are required.
APA, Harvard, Vancouver, ISO, and other styles
8

Azab, Mohamed, Ahmed El-Rabbany, M. Nabil Shoukry, Ramadan Khalil, and Akram Afifi. "Performance Analysis of GPS/GLONASS Precise Point Positioning." GEOMATICA 67, no. 4 (December 2013): 237–42. http://dx.doi.org/10.5623/cig2013-049.

Full text
Abstract:
Precise Point Positioning (PPP) with Global Positioning Systems (GPS) has attracted the attention of many researchers over the past decade. Recently, the Russian global navigation satellite system (GLONASS) has been modernized and restored to near full constellation status, which has made it more attractive for positioning and navigation. Having two healthy systems, namely GPS and GLONASS provides a combination of both constellations, which in turn promises to improve the availability, positioning accuracy, and reliability of PPP solutions. This study investigates the effect of combining GPS and GLONASS dual-frequency measurements on the static PPP solution and its sensitivity to different processing strategies. Many data sets from five globally distributed International GNSS Service (IGS) tracking stations were processed using the Bernese GPS software package. The addition of GLONASS constellation improved the satellite visibility and geometry by more than 60%, and 40%, respectively, and improves the positioning convergence by up to 41%, 38%, and 19% in east, north, and up directions, respectively.
APA, Harvard, Vancouver, ISO, and other styles
9

Liao, Shujian, Chenbo Yang, and Dengao Li. "Improving precise point positioning performance based on Prophet model." PLOS ONE 16, no. 1 (January 19, 2021): e0245561. http://dx.doi.org/10.1371/journal.pone.0245561.

Full text
Abstract:
Precision point positioning (PPP) is widely used in maritime navigation and other scenarios because it does not require a reference station. In PPP, the satellite clock bias (SCB) cannot be eliminated by differential, thus leading to an increase in positioning error. The prediction accuracy of SCB has become one of the key factors restricting positioning accuracy. Although International GNSS Service (IGS) provides the ultra-rapid ephemeris prediction part (IGU-P), its quality and real-time performance can not meet the practical application. In order to improve the accuracy of PPP, this paper proposes to use the Prophet model to predict SCB. Specifically, SCB sequence is read from the observation part in the ultra-rapid ephemeris (IGU-O) released by IGS. Next, the SCB sequence between adjacent epochs are subtracted to obtain the corresponding SCB single difference sequence. Then using the Prophet model to predict SCB single difference sequence. Finally, the prediction result is substituted into the PPP positioning observation equation to obtain the positioning result. This paper uses the final ephemeris (IGF) published by IGS as a benchmark and compares the experimental results with IGU-P. For the selected four satellites, compared with the results of the IGU-P, the accuracy of SCB prediction of the model in this paper is improved by about 50.3%, 61.7%, 60.4%, and 48.8%. In terms of PPP positioning results, we use Real-time kinematic (RTK) measurements as a benchmark in this paper. Positioning accuracy has increased by 26%, 35%, and 19% in the N, E, and U directions, respectively. The results show that the Prophet model can improve the performance of PPP.
APA, Harvard, Vancouver, ISO, and other styles
10

Jokinen, Altti, Shaojun Feng, Wolfgang Schuster, Washington Ochieng, Chris Hide, Terry Moore, and Chris Hill. "GLONASS Aided GPS Ambiguity Fixed Precise Point Positioning." Journal of Navigation 66, no. 3 (March 25, 2013): 399–416. http://dx.doi.org/10.1017/s0373463313000052.

Full text
Abstract:
The Precise Point Positioning (PPP) concept enables centimetre-level positioning accuracy by employing one Global Navigation Satellite System (GNSS) receiver. The main advantage of PPP over conventional Real Time Kinematic (cRTK) methods is that a local reference network infrastructure is not required. Only a global reference network with approximately 50 stations is needed because reference GNSS data is required for generating precise error correction products for PPP. However, the current implementation of PPP is not suitable for some applications due to the long time period (i.e. convergence time of up to 60 minutes) required to obtain an accurate position solution. This paper presents a new method to reduce the time required for initial integer ambiguity resolution and to improve position accuracy. It is based on combining GPS and GLONASS measurements to calculate the float ambiguity positioning solution initially, followed by the resolution of GPS integer ambiguities.The results show that using the GPS/GLONASS float solution can, on average, reduce the time to initial GPS ambiguity resolution by approximately 5% compared to using the GPS float solution alone. In addition, average vertical and horizontal positioning errors at the initial ambiguity resolution epoch can be reduced by approximately 17% and 4%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
11

Nistor, Sorin, and Aurelian Stelian Buda. "High rate 30 seconds vs clock interpolation in precise point positioning (PPP)." Geodetski vestnik 60, no. 3 (2016): 482–94. http://dx.doi.org/10.15292/geodetski-vestnik.2016.03.482-494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nistor, Sorin, and Aurelian Stelian Buda. "High rate 30 seconds vs clock interpolation in Precise Point Positioning (PPP)." Geodetski vestnik 60, no. 03 (2016): 483–94. http://dx.doi.org/10.15292/geodetski-vestnik.2016.03.483-494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Jiao, Guoqiang, Shuli Song, Yulong Ge, Ke Su, and Yangyang Liu. "Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance." Sensors 19, no. 11 (May 31, 2019): 2496. http://dx.doi.org/10.3390/s19112496.

Full text
Abstract:
With the launch of BDS-3 and Galileo new satellites, the BeiDou navigation satellite system (BDS) has developed from the regional to global system, and the Galileo constellation will consist of 26 satellites in space. Thus, BDS, GPS, GLONASS, and Galileo all have the capability of global positioning services. It is meaningful to evaluate the ability of global precise point positioning (PPP) of the GPS, BDS, GLONASS, and Galileo. This paper mainly contributes to the assessment of BDS-2, BDS-2/BDS-3, GPS, GLONASS, and Galileo PPP with the observations that were provided by the international Global Navigation Satellite System (GNSS) Monitoring and Assessment System (iGMAS). The Position Dilution of Precision (PDOP) value was utilized to research the global coverage of GPS, BDS-2, BDS-2/BDS-3, GLONASS, and Galileo. In particular, GPS-only, BDS-2-only, BDS-2/BDS-3, GLONASS-only, Galileo-only, and multi-GNSS combined PPP solutions were analyzed to verify the capacity of the PPP performances in terms of positioning accuracy, convergence time, and zenith troposphere delay (ZTD) accuracy. In view of PDOP, the current BDS and Galileo are capable of global coverage. The BDS-2/BDS-3 and Galileo PDOP values are fairly evenly distributed around the world similar to GPS and GLONASS. The root mean square (RMS) of positioning errors for static BDS-2/BDS-3 PPP and Galileo-only PPP are 10.7, 19.5, 20.4 mm, and 6.9, 18.6, 19.6 mm, respectively, in the geographic area of the selected station, which is the same level as GPS and GLONASS. It is worth mentioning that, by adding BDS-3 observations, the positioning accuracy of static BDS PPP is improved by 17.05%, 24.42%, and 35.65%, and the convergence time is reduced by 27.15%, 27.87%, and 35.76% in three coordinate components, respectively. Similar to the static positioning, GPS, BDS-2/BDS-3, GLONASS, and Galileo have the basically same kinematic positioning accuracy. Multi-GNSS PPP significantly improves the positioning performances in both static and kinematic positioning. In terms of ZTD accuracy, the difference between GPS, BDS-2/BDS-3, GLONASS, and Galileo is less than 1 mm, and the BDS-2/BDS-3 improves ZTD accuracy by 20.48% over the BDS-2. The assessment of GPS, BDS-2, BDS-2/BDS-3, GLONASS, Galileo, and multi-GNSS global PPP performance are shown to make comments for the development of multi-GNSS integration, global precise positioning, and the construction of iGMAS.
APA, Harvard, Vancouver, ISO, and other styles
14

El Manaily, Emad, Mahmoud Abd Rabbou, Adel El-Shazly, and Moustafa Baraka. "Evaluation of Quad-Constellation GNSS Precise Point Positioning in Egypt." Artificial Satellites 52, no. 1 (March 1, 2017): 9–18. http://dx.doi.org/10.1515/arsa-2017-0002.

Full text
Abstract:
Abstract Commonly, relative GPS positioning technique is used in Egypt for precise positioning applications. However, the requirement of a reference station is usually problematic for some applications as it limits the operational range of the system and increases the system cost and complexity On the other hand; the single point positioning is traditionally used for low accuracy applications such as land vehicle navigation with positioning accuracy up to 10 meters in some scenarios which caused navigation problems especially in downtown areas. Recently, high positioning accuracy can be obtained through Precise Point Positioning (PPP) technique in which only once GNSS receiver is used. However, the major drawback of PPP is the long convergence time to reach to the surveying grade accuracy compared to the existing relative techniques. Moreover, the PPP accuracy is significantly degraded due to shortage in satellite availability in urban areas. To overcome these limitations, the quad constellation GNSS systems namely; GPS.GLONASS, Galileo and BeiDou can be combined to increase the satellite availability and enhance the satellite geometry which in turn reduces the convergence time. In Egypt, at the moment, the signals of both Galileo and BeiDou could be logged with limited number of satellites up to four and six satellites for both Systems respectively. In this paper, we investigated the performance of the Quad-GNSS positioning in both dual- and single-frequency ionosphere free PPP modes for both high accurate and low cost navigation application, respectively. The performance of the developed PPP models will be investigated through GNSS data sets collected at three Egyptian cities namely, Cairo, Alexandria and Aswan.
APA, Harvard, Vancouver, ISO, and other styles
15

Elsobeiey, Mohamed. "Precise Point Positioning using Triple-Frequency GPS Measurements." Journal of Navigation 68, no. 3 (November 25, 2014): 480–92. http://dx.doi.org/10.1017/s0373463314000824.

Full text
Abstract:
Precise Point Positioning (PPP) performance is improving under the ongoing Global Positioning System (GPS) modernisation program. The availability of the third frequency, L5, enables triple-frequency combinations. However, to utilise the modernised L5 signal along with the existing GPS signals, P1-C5 differential code bias must be determined. In this paper, the global network of Multi-Global Navigation Satellite System Experiment (MGEX) stations was used to estimate P1-C5 satellites differential code biases $(DCB_{P1 - C5}^S )$. Mathematical background for triple-frequency linear combinations was provided along with the resultant noise and ionosphere amplification factors. Nine triple-frequency linear combinations were chosen, based on different criteria, for processing the modernised L5 signal along with the legacy GPS signals. Finally, test results using real GPS data from ten MGEX stations were provided showing the benefits of the availability of the third frequency on PPP solution convergence time and the precision of the estimated parameters. It was shown that triple-frequency combinations could improve the PPP convergence time and the precision of the estimated parameters by about 10%. These results are considered promising for using the modernised GPS signals for precise positioning applications especially when the fully modernised GPS constellation is available.
APA, Harvard, Vancouver, ISO, and other styles
16

Xu, Aigong, Zongqiu Xu, Xinchao Xu, Huizhong Zhu, Xin Sui, and Huasheng Sun. "Precise Point Positioning Using the Regional BeiDou Navigation Satellite Constellation." Journal of Navigation 67, no. 3 (January 17, 2014): 523–37. http://dx.doi.org/10.1017/s0373463313000842.

Full text
Abstract:
On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.
APA, Harvard, Vancouver, ISO, and other styles
17

Elmezayen, Abdelsatar, and Ahmed El-Rabbany. "Precise Point Positioning Using World’s First Dual-Frequency GPS/GALILEO Smartphone." Sensors 19, no. 11 (June 6, 2019): 2593. http://dx.doi.org/10.3390/s19112593.

Full text
Abstract:
The release of the world’s first dual-frequency GPS/Galileo smartphone, Xiaomi mi 8, in 2018 provides an opportunity for high-precision positioning using ultra low-cost sensors. In this research, the GNSS precise point positioning (PPP) accuracy of the Xiaomi mi 8 smartphone is tested in post-processing and real-time modes. Raw dual-frequency observations are collected over two different time windows from both of the Xiaomi mi 8 smartphone and a Trimble R9 geodetic-quality GNSS receiver using a short baseline, due to the lack of a nearby reference station to the observation site. The data sets are first processed in differential modes using Trimble business center (TBC) software in order to provide the reference positioning solution for both of the geodetic receiver and the smartphone. An in-house PPP software is then used to process the collected data in both of post-processing and real-time modes. Precise ephemeris obtained from the multi-GNSS experiment (MGEX) is used for post-processing PPP, while the new NAVCAST real-time GNSS service, Germany, is used for real-time PPP. Additionally, the real-time PPP solution is assessed in both of static and kinematic modes. It is shown that the dual-frequency GNSS smartphone is capable of achieving decimeter-level positioning accuracy, in both of post-processing and real-time PPP modes, respectively. Meter-level positioning accuracy is achieved in the kinematic mode.
APA, Harvard, Vancouver, ISO, and other styles
18

Pandey, D., R. Dwivedi, O. Dikshit, and A. K. Singh. "GPS AND GLONASS COMBINED STATIC PRECISE POINT POSITIONING (PPP)." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 3, 2016): 483–88. http://dx.doi.org/10.5194/isprsarchives-xli-b1-483-2016.

Full text
Abstract:
With the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs), satellite navigation is undergoing drastic changes. Presently, more than 70 satellites are already available and nearly 120 more satellites will be available in the coming years after the achievement of complete constellation for all four systems- GPS, GLONASS, Galileo and BeiDou. The significant improvement in terms of satellite visibility, spatial geometry, dilution of precision and accuracy demands the utilization of combining multi-GNSS for Precise Point Positioning (PPP), especially in constrained environments. Currently, PPP is performed based on the processing of only GPS observations. Static and kinematic PPP solutions based on the processing of only GPS observations is limited by the satellite visibility, which is often insufficient for the mountainous and open pit mines areas. One of the easiest options available to enhance the positioning reliability is to integrate GPS and GLONASS observations. This research investigates the efficacy of combining GPS and GLONASS observations for achieving static PPP solution and its sensitivity to different processing methodology. Two static PPP solutions, namely standalone GPS and combined GPS-GLONASS solutions are compared. The datasets are processed using the open source GNSS processing environment <i>gLAB</i> 2.2.7 as well as <i>magicGNSS</i> software package. The results reveal that the addition of GLONASS observations improves the static positioning accuracy in comparison with the standalone GPS point positioning. Further, results show that there is an improvement in the three dimensional positioning accuracy. It is also shown that the addition of GLONASS constellation improves the total number of visible satellites by more than 60% which leads to the improvement of satellite geometry represented by Position Dilution of Precision (PDOP) by more than 30%.
APA, Harvard, Vancouver, ISO, and other styles
19

Pandey, D., R. Dwivedi, O. Dikshit, and A. K. Singh. "GPS AND GLONASS COMBINED STATIC PRECISE POINT POSITIONING (PPP)." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 3, 2016): 483–88. http://dx.doi.org/10.5194/isprs-archives-xli-b1-483-2016.

Full text
Abstract:
With the rapid development of multi-constellation Global Navigation Satellite Systems (GNSSs), satellite navigation is undergoing drastic changes. Presently, more than 70 satellites are already available and nearly 120 more satellites will be available in the coming years after the achievement of complete constellation for all four systems- GPS, GLONASS, Galileo and BeiDou. The significant improvement in terms of satellite visibility, spatial geometry, dilution of precision and accuracy demands the utilization of combining multi-GNSS for Precise Point Positioning (PPP), especially in constrained environments. Currently, PPP is performed based on the processing of only GPS observations. Static and kinematic PPP solutions based on the processing of only GPS observations is limited by the satellite visibility, which is often insufficient for the mountainous and open pit mines areas. One of the easiest options available to enhance the positioning reliability is to integrate GPS and GLONASS observations. This research investigates the efficacy of combining GPS and GLONASS observations for achieving static PPP solution and its sensitivity to different processing methodology. Two static PPP solutions, namely standalone GPS and combined GPS-GLONASS solutions are compared. The datasets are processed using the open source GNSS processing environment <i>gLAB</i> 2.2.7 as well as <i>magicGNSS</i> software package. The results reveal that the addition of GLONASS observations improves the static positioning accuracy in comparison with the standalone GPS point positioning. Further, results show that there is an improvement in the three dimensional positioning accuracy. It is also shown that the addition of GLONASS constellation improves the total number of visible satellites by more than 60% which leads to the improvement of satellite geometry represented by Position Dilution of Precision (PDOP) by more than 30%.
APA, Harvard, Vancouver, ISO, and other styles
20

Yang, Fuxin, Lin Zhao, Liang Li, Shaojun Feng, and Jianhua Cheng. "Performance Evaluation of Kinematic BDS/GNSS Real-Time Precise Point Positioning for Maritime Positioning." Journal of Navigation 72, no. 1 (September 18, 2018): 34–52. http://dx.doi.org/10.1017/s0373463318000644.

Full text
Abstract:
Real-time Precise Point Positioning (PPP) has been evolved as a cost-effective technique for highly precise maritime positioning. For a long period, maritime PPP technology has mainly relied on the Global Positioning System (GPS). With the revitalisation of GLONASS and the emerging BeiDou navigation satellite system (BDS), it is now feasible to investigate real-time navigation performance of multi-constellation maritime PPP with GPS, BDS and GLONASS. In this contribution, we focus on maritime PPP performance using real world maritime kinematic data and real-time satellite correction products. The results show that BDS has lower position accuracy and slower convergence time than GPS. The BDS and GPS combination has the best performance among the dual-constellation configurations. Meanwhile, the integration of BDS, GLONASS and GPS significantly improves the position accuracy and the convergence time. Some outliers in the single constellation configuration can be mitigated when multi-constellation observations are utilised.
APA, Harvard, Vancouver, ISO, and other styles
21

Akpınar, Burak, and Nedim Onur Aykut. "Determining the Coordinates of Control Points in Hydrographic Surveying by the Precise Point Positioning Method." Journal of Navigation 70, no. 6 (May 24, 2017): 1241–52. http://dx.doi.org/10.1017/s0373463317000236.

Full text
Abstract:
After Global Navigation Satellite Systems (GNSS) were first used in the field of hydrography in 1980, developments in hydrographic surveying accelerated. Survey precision in hydrography has been improved for both horizontal and vertical positioning and seafloor acoustic measurement by means of these new developments. Differential Global Positioning System (DGPS), Real Time Kinematic (RTK) and Network RTK (NRTK) techniques are the satellite-based positioning techniques that are commonly used in shallow water surveys and shoreline measurements. In line with these developments, the newer Precise Point Positioning (PPP) has been introduced. Combining precise satellite positions and clocks with dual-frequency GNSS data, PPP can provide position solutions from the centimetre to decimetre level. In this study, the coordinates of control points were determined by using the Post-Process PPP (PP-PPP) technique. Seven test points, which are the points of the Continuously Operating Reference Station - Turkey (CORS-TR) network, are selected near the shorelines within Turkey. The 24-hour data was split from one to six hours by one hour periods. Automatic Point Positioning Service (APPS) was selected to process the data. The poisoning error of the test points were given and compared with International Hydrographic Organization (IHO) S44 hydrographic survey standards.
APA, Harvard, Vancouver, ISO, and other styles
22

Malik, Jabir Shabbir. "Performance Analysis of Static Precise Point Positioning Using Open-Source GAMP." Artificial Satellites 55, no. 2 (June 1, 2020): 41–60. http://dx.doi.org/10.2478/arsa-2020-0004.

Full text
Abstract:
AbstractIn addition to Global Positioning System (GPS) constellation, the number of Global Navigation Satellite System (GLONASS) satellites is increasing; it is now possible to evaluate and analyze the position accuracy with both the GPS and GLONASS constellation. In this article, statistical analysis of static precise point positioning (PPP) using GPS-only, GLONASS-only, and combined GPS/GLONASS modes is evaluated. Observational data of 10 whole days from 10 International GNSS Service (IGS) stations are used for analysis. Position accuracy in east, north, up components, and carrier phase/code residuals is analyzed. Multi-GNSS PPP open-source package is used for the PPP performance analysis. The analysis also provides the GNSS researchers the understanding of the observational data processing algorithm. Calculation statistics reveal that standard deviation (STD) of horizontal component is 3.83, 13.80, and 3.33 cm for GPS-only, GLONASS-only, and combined GPS/GLONASS PPP solutions, respectively. Combined GPS/GLONASS PPP achieves better positioning accuracy in horizontal and three-dimensional (3D) accuracy compared with GPS-only and GLONASS-only PPP solutions. The results of the calculation show that combined GPS/GLONASS PPP improves, on an average, horizontal accuracy by 12.11% and 60.33% and 3D positioning accuracy by 10.39% and 66.78% compared with GPS-only and GLONASS-only solutions, respectively. In addition, the results also demonstrate that GPS-only solutions show an improvement of 54.23% and 62.54% compared with GLONASS-only PPP mode in horizontal and 3D components, respectively. Moreover, residuals of GLONASS ionosphere-free code observations are larger than the GPS code residuals. However, phase residuals of GPS and GLONASS phase observations are of the same magnitude.
APA, Harvard, Vancouver, ISO, and other styles
23

Innac, Anna, Antonio Angrisano, Salvatore Gaglione, Mario Vultaggio, and Nicola Crocetto. "Performance Comparison among Multi-GNSS Single Frequency Precise Point Positioning Techniques." Kartografija i geoinformacije 18, no. 32 (December 15, 2019): 80–99. http://dx.doi.org/10.32909/kg.18.32.6.

Full text
Abstract:
Precise Point Positioning (PPP) is a technique able to compute high accuracy positioning anywhere using a single GNSS receiver and without the need for corrections from reference stations. A wide range of possible PPP algorithms, using different correction models and processing strategies, exist for both post-processing and real-time applications. PPP relies on accurate satellite and clock data, with the use of precise carrier-phase measurements. Single Frequency-PPP (SF-PPP) is currently under investigation by the scientific community, owing to its cheap implementation with respect to classical differential positioning and multi-frequency un-differenced techniques. Unfortunately, the carrier-phase observable is ambiguous by an a priori unknown integer number of cycles, called ambiguity, which is difficult to resolve with SF receivers. The aim of this paper was to study the opportunity provided by the use of a multi-GNSS constellation applied to two widespread SF-PPP models, based on different carrier-phase and code observable combinations. The algorithms were tested using static data collection carried out in an open-sky scenario. The results show decimeter level accuracy on the horizontal and vertical components of the position.
APA, Harvard, Vancouver, ISO, and other styles
24

Cai, Changsheng, Zhizhao Liu, and Xiaomin Luo. "Single-frequency Ionosphere-free Precise Point Positioning Using Combined GPS and GLONASS Observations." Journal of Navigation 66, no. 3 (March 14, 2013): 417–34. http://dx.doi.org/10.1017/s0373463313000039.

Full text
Abstract:
Single-frequency Precise Point Positioning (PPP) using a Global Navigation Satellite System (GNSS) has been attracting increasing interest in recent years due to its low cost and large number of users. Currently, the single-frequency PPP technique is mainly implemented using GPS observations. In order to improve the positioning accuracy and reduce the convergence time, we propose the combined GPS/GLONASS Single-Frequency (GGSF) PPP approach. The approach is based on the GRoup And PHase Ionospheric Correction (GRAPHIC) to remove the ionospheric effect. The performance of the GGSF PPP was tested using both static and kinematic datasets as well as different types of precise satellite orbit and clock correction data, and compared with GPS-only and GLONASS-only PPP solutions. The results show that the GGSF PPP accuracy degrades by a few centimetres using rapid/ultra-rapid products compared with final products. For the static GGSF PPP, the position filter typically converges at 71, 33 and 59 minutes in the East, North and Up directions, respectively. The corresponding positioning accuracies are 0·057, 0·028 and 0·121 m in the East, North and Up directions. Both positioning accuracy and convergence time have been improved by approximately 30% in comparison to the results from GPS-only or GLONASS-only single-frequency PPP. A kinematic GGSF PPP test was conducted and the results illustrate even more significant benefits of increased accuracy and reliability of PPP solutions by integrating GPS and GLONASS signals.
APA, Harvard, Vancouver, ISO, and other styles
25

Li, Haojun, Jingxin Xiao, Shoujian Zhang, Jin Zhou, and Jiexian Wang. "Introduction of the Double-Differenced Ambiguity Resolution into Precise Point Positioning." Remote Sensing 10, no. 11 (November 9, 2018): 1779. http://dx.doi.org/10.3390/rs10111779.

Full text
Abstract:
According to the advantages of the precise point positioning (PPP) and the double-differenced (DD) model based algorithm, a new method for the integration of DD integer ambiguity resolution into PPP is presented. This method uses the undifferenced ambiguity estimated with PPP computation and the DD ambiguity generated from the DD model based algorithm to realize the PPP ambiguity fixing. In the presented method, the selection of the undifferenced ambiguity bases on the ratio test of the DD ambiguity and the ratio values based weight is used in PPP processing. This ensures the quality of the used undifferenced ambiguity. To validate the presented method, two experiments are implemented using the ten days (11 to 20 August 2014) data from local and regional reference stations and the moved two receivers. The results of the presented strategy show that improvements are achieved in all three coordinate components. The 1-h, 2-h, and 4-h PPP results indicate that the mean relative improvements were about 19%, 18%, and 15% for north, east, and up components. These results also show that prominent improvements of 29%, 31%, and 25% for north, east, and up components were obtained when the ratio values based weight was used. The application of the presented method in the displacement monitoring was implemented with the experiment and it showed that the PPP estimation computed with the presented strategy benefits local or regional displacement monitoring and improves the detecting ability for displacement.
APA, Harvard, Vancouver, ISO, and other styles
26

DeSanto, John B., C. David Chadwell, and David T. Sandwell. "Kinematic Post-processing of Ship Navigation Data Using Precise Point Positioning." Journal of Navigation 72, no. 3 (November 6, 2018): 795–804. http://dx.doi.org/10.1017/s0373463318000887.

Full text
Abstract:
Seafloor geodetic studies such as Global Positioning System (GPS)-Acoustic experiments often require the measurement platform on the sea surface to be positioned accurately to within a few centimetres. In this paper, we test the utility of Precise Point Positioning (PPP) for this application with two experiments. The first fixed platform experiment is a comparison between three independent processing software packages: Positioning and Navigation Data Analyst (PANDA), Global Navigation Satellite System-Inferred Positioning System and Orbit Analysis Simulation Software (GIPSY-OASIS), and the Canadian Spatial Reference System (CSRS)) and a more accurate solution based on conventional differential processing of a remote GPS station in the Aleutian Islands. The second moving platform experiment is a comparison among the three PPP software packages using 40 hours of ship navigation data collected during the Roger Revelle RR1605 cruise 170 nautical miles southwest of Palau in May 2016. We found the PPP solutions were repeatable to 5·49 cm in the horizontal components and 12·4 cm in the vertical component. This demonstrates not only that PPP is a useful tool for positioning marine platforms in remote locations, but also that modern ship navigation instruments such as the Kongsberg Seapath 330 + are suitable for seafloor geodetic application.
APA, Harvard, Vancouver, ISO, and other styles
27

Malik, Jabir Shabbir. "Performance Evaluation of Precise Point Positioning Using Dual Frequency Multi-GNSS Observations." Artificial Satellites 55, no. 4 (December 1, 2020): 150–70. http://dx.doi.org/10.2478/arsa-2020-0011.

Full text
Abstract:
Abstract In addition to GPS and GLONASS constellation, the number of (Global Navigation Satellite System) GNSS satellites are increasing, it is now possible to evaluate and analyze the position accuracy with multi GNSS constellation. In this paper, statistical assessment of static Precise Point Positioning (PPP) using GPS, GLONASS, dual system GPS/GLONASS, three system GPS/GLONASS/Galileo, GPS/GLONASS/BeiDou and multi system GPS/GLONASS/Galileo/BeiDou PPP combinations is evaluated. Observation data of seven whole days from seven IGS multi GNSS experiment (MGEX) stations is used for analysis. Position accuracy and convergence time is analyzed. Results show that the GPS/GLONASS positioning accuracy increases over GPS PPP. Standard deviations (STDs) of position errors for GPS PPP are 4.63, 3.00 and 6.96 cm in east, north and up components while STDs for GPS/GLONASS PPP are 4.10, 3.42 and 6.50 cm respectively. Root mean square for three dimension (RMS3D) for GPS/GLONASS PPP solution is 8.96 cm. With the addition of Galileo and BeiDou to the combined GPS/GLONASS further enhances the positioning accuracy. Root mean square for horizontal component reach to 5.35 cm of GPS/GLONASS/Galileo/BeiDou PPP solutions. Results analysis of GPS/GLONASS/Galileo PPP solutions show an improvement of convergence time by only 3.81% to achieve accuracy level of 3.0 cm over GPS/GLONASS/BeiDou PPP mode. Results also demonstrate that position accuracy improvement after adding BeiDou observations to the GPS/GLONASS PPP mode is not significant.
APA, Harvard, Vancouver, ISO, and other styles
28

Wu, Qiong, Mengfei Sun, Changjie Zhou, and Peng Zhang. "Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone." Sensors 19, no. 9 (May 11, 2019): 2189. http://dx.doi.org/10.3390/s19092189.

Full text
Abstract:
The update of the Android system and the emergence of the dual-frequency GNSS chips enable smartphones to acquire dual-frequency GNSS observations. In this paper, the GPS L1/L5 and Galileo E1/E5a dual-frequency PPP (precise point positioning) algorithm based on RTKLIB and GAMP was applied to analyze the positioning performance of the Xiaomi Mi 8 dual-frequency smartphone in static and kinematic modes. The results showed that in the static mode, the RMS position errors of the dual-frequency smartphone PPP solutions in the E, N, and U directions were 21.8 cm, 4.1 cm, and 11.0 cm, respectively, after convergence to 1 m within 102 min. The PPP of dual-frequency smartphone showed similar accuracy with geodetic receiver in single-frequency mode, while geodetic receiver in dual-frequency mode has higher accuracy. In the kinematic mode, the positioning track of the smartphone dual-frequency data had severe fluctuations, the positioning tracks derived from the smartphone and the geodetic receiver showed approximately difference of 3–5 m.
APA, Harvard, Vancouver, ISO, and other styles
29

Tegedor, J., and O. Øvstedal. "Triple carrier precise point positioning (PPP) using GPS L5." Survey Review 46, no. 337 (December 6, 2013): 288–97. http://dx.doi.org/10.1179/1752270613y.0000000076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Su, Ke, and Shuanggen Jin. "Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data." Journal of Navigation 71, no. 6 (July 12, 2018): 1363–80. http://dx.doi.org/10.1017/s0373463318000462.

Full text
Abstract:
Tropospheric delay is one of the main error sources in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP). Zenith Hydrostatic Delay (ZHD) accounts for 90% of the total delay. This research focuses on the improvements of ZHD from tropospheric models and real meteorological data on the PPP solution. Multi-GNSS PPP experiments are conducted using the datasets collected at Multi-GNSS Experiments (MGEX) network stations. The results show that the positioning accuracy of different GNSS PPP solutions using the meteorological data for ZHD correction can achieve an accuracy level of several millimetres. The average convergence time of a PPP solution for the BeiDou System (BDS), the Global Positioning System (GPS), Global Navigation Satellite System of Russia (GLONASS), BDS+GPS, and BDS+GPS+GLONASS+Galileo are 55·89 min, 25·88 min, 33·30 min, 20·50 min and 15·71 min, respectively. The results also show that atmospheric parameters provided by real meteorological data have little effect on the horizontal components of positioning compared to the meteorological model, while in the vertical component, the positioning accuracy is improved by 90·6%, 33·0%, 22·2% and 19·8% compared with the standard atmospheric model, University of New Brunswick (UNB3m) model, Global Pressure and Temperature (GPT) model, and Global Pressure and Temperature-2 (GPT2) model and the convergence times are decreased 51·2%, 32·8%, 32·5%, and 32·3%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
31

Malinowski, Marcin, and Janusz Kwiecień. "A Comparative Study of Precise Point Positioning (PPP) Accuracy Using Online Services." Reports on Geodesy and Geoinformatics 102, no. 1 (December 1, 2016): 15–31. http://dx.doi.org/10.1515/rgg-2016-0025.

Full text
Abstract:
Abstract Precise Point Positioning (PPP) is a technique used to determine the position of receiver antenna without communication with the reference station. It may be an alternative solution to differential measurements, where maintaining a connection with a single RTK station or a regional network of reference stations RTN is necessary. This situation is especially common in areas with poorly developed infrastructure of ground stations. A lot of research conducted so far on the use of the PPP technique has been concerned about the development of entire day observation sessions. However, this paper presents the results of a comparative analysis of accuracy of absolute determination of position from observations which last between 1 to 7 hours with the use of four permanent services which execute calculations with PPP technique such as: Automatic Precise Positioning Service (APPS), Canadian Spatial Reference System Precise Point Positioning (CSRS-PPP), GNSS Analysis and Positioning Software (GAPS) and magicPPP - Precise Point Positioning Solution (magicGNSS). On the basis of acquired results of measurements, it can be concluded that at least two-hour long measurements allow acquiring an absolute position with an accuracy of 2-4 cm. An evaluation of the impact on the accuracy of simultaneous positioning of three points test network on the change of the horizontal distance and the relative height difference between measured triangle vertices was also conducted. Distances and relative height differences between points of the triangular test network measured with a laser station Leica TDRA6000 were adopted as references. The analyses of results show that at least two hours long measurement sessions can be used to determine the horizontal distance or the difference in height with an accuracy of 1-2 cm. Rapid products employed in calculations conducted with PPP technique reached the accuracy of determining coordinates on a close level as in elaborations which employ Final products.
APA, Harvard, Vancouver, ISO, and other styles
32

Nistor, S., and A. S. Buda. "Ambiguity Resolution In Precise Point Positioning Technique: A Case Study." Journal of Applied Engineering Sciences 5, no. 1 (May 1, 2015): 53–60. http://dx.doi.org/10.1515/jaes-2015-0007.

Full text
Abstract:
Abstract Because of the dynamics of the GPS technique used in different domains like geodesy, near real-time GPS meteorology, geodynamics, the precise point positioning (PPP) becomes more than a powerful method for determining the position, or the delay caused by the atmosphere. The main idea of this method is that we need only one receiver – preferably that have dual frequencies pseudorange and carrier-phase capabilities – to obtain the position. Because we are using only one receiver the majority of the residuals that are eliminated in double differencing method, we have to estimate them in PPP. The development of the PPP method allows us, to use precise satellite clock estimates, and precise orbits, resulting in a much more efficient way to deal with the disadvantages of this technique, like slow convergence time, or ambiguity resolution. Because this two problem are correlated, to achieve fast convergence we need to resolve the problem of ambiguity resolution. But the accuracy of the PPP results are directly influenced by presence of the uncalibrated phase delays (UPD) originating in the receivers and satellites. In this article we present the GPS errors and biases, the zenith wet delay and the necessary time for obtaining the convergence. The necessary correction are downloaded by using the IGS service.
APA, Harvard, Vancouver, ISO, and other styles
33

Alkan, R. M., and T. Öcalan. "Usability of the GPS Precise Point Positioning Technique in Marine Applications." Journal of Navigation 66, no. 4 (May 9, 2013): 579–88. http://dx.doi.org/10.1017/s0373463313000210.

Full text
Abstract:
This study investigates the accuracy of an online Precise Point Positioning (PPP) service operated by the Geodetic Survey Division of Natural Resources Canada (NRCan), Canadian Spatial Reference System (CSRS)-PPP, by using single/dual-frequency Global Positioning System (GPS) data collected by dual-frequency geodetic-grade and Original Equipment Manufacturer (OEM) board type single-frequency GPS receivers. In this work, a kinematic test was carried out in Halic Bay (Golden Horn), Istanbul, Turkey, to assess the performance of the PPP method in a dynamic environment. Based on this study, it can be concluded that the coordinates estimated from the online CSRS-PPP service have a potential of about metre-level accuracy by processing single frequency data collected by an OEM receiver and about a decimetre to a few centimetres level accuracy by processing dual frequency data collected by a geodetic-grade receiver. In general, results show that the PPP technique has become a significant alternative to the conventional relative (differential) positioning techniques (i.e., Differential GPS (DGPS), Real-time Kinematic (RTK)). The technique does not suffer from the drawbacks of the DGPS technique and has potential to provide the same position accuracy without the requirement for a reference station. Consequently, it has been concluded that the PPP technique may be effectively used in marine applications due to its ease of use and provision of high accuracy, as well as being able to offer reduced field operational costs.
APA, Harvard, Vancouver, ISO, and other styles
34

Pan, Lin, Xiaohong Zhang, Jingnan Liu, Xingxing Li, and Xin Li. "Performance Evaluation of Single-frequency Precise Point Positioning with GPS, GLONASS, BeiDou and Galileo." Journal of Navigation 70, no. 3 (February 1, 2017): 465–82. http://dx.doi.org/10.1017/s0373463316000771.

Full text
Abstract:
In view that most Global Navigation Satellite System (GNSS) users are still using single-frequency receivers due to the low costs, single-frequency Precise Point Positioning (PPP) has been attracting increasing attention in the GNSS community. For a long period, single-frequency PPP technology has mainly relied on the Global Positioning System (GPS). With the recent revitalisation of the Russian GLONASS constellation and two newly emerging constellations, BeiDou and Galileo, it is now feasible to investigate the performance of Four-Constellation integrated Single-Frequency PPP (FCSF-PPP) with GPS, GLONASS, BeiDou and Galileo measurements. In this study, a FCSF-PPP model is presented to simultaneously process observations from all four GNSS constellations. Datasets collected at 47 globally distributed four-system Multi-GNSS Experiment (MGEX) stations on seven consecutive days and a kinematic experimental dataset are employed to fully assess the performance of FCSF-PPP. The FCSF-PPP solutions are compared to GPS-only and combined GPS/GLONASS single-frequency PPP solutions. The results indicate that the positioning performance is significantly improved by integrating multi-constellation signals.
APA, Harvard, Vancouver, ISO, and other styles
35

Noomwongs, Nuksit, Raksit Thitipatanapong, Sunhapos Chantranuwathana, and Sanya Klongnaivai. "Driver Behavior Detection Based on Multi-GNSS Precise Point Positioning Technology." Applied Mechanics and Materials 619 (August 2014): 327–31. http://dx.doi.org/10.4028/www.scientific.net/amm.619.327.

Full text
Abstract:
Driver behavior is the key to safe mobility. In general, vehicle maneuvers can be determined from acceleration of the vehicle. Physically, the acceleration and brake can be detected with longitudinal acceleration while turning and lane change can be detected with lateral acceleration. Nowadays, navigation system technologies have been much improved both on availability and accuracy with combination of multiple navigation satellite systems. Normally, it’s called Multi-GNSS (multiple global navigation satellite system). With decimeter precision and the update rate scale up to 10-Hz, the GNSS could be an alternative solution for driver behavior detection. In this paper, advance Multi-GNSS with precise point position (PPP) technique was presented with a simple maneuver detection algorithm. The advantage of PPP over conventional navigation is decimeter accuracy without direct connection to any reference base station. The experimental Multi-GNSS receiver was JAVAD Delta G3T that installed on a utility vehicle. This high performance multi-GNSS navigation system was investigated with the driving behavior detection algorithm. The precise point positioning (PPP) technique in combination with multiple satellite navigation system (GPS+GLONASS+GALOLEO+QZSS) were applied in this study. The PPP technique improved the output of detection algorithm in acceleration limit from 260% error in conventional navigation system (GPS) to 20% of incidents with PPP.
APA, Harvard, Vancouver, ISO, and other styles
36

Xiong, Chunbao, Lina Yu, and Lewen Zhao. "Analysis on the Impacts of Slant Tropospheric Delays on Precise Point Positioning." Applied Sciences 9, no. 22 (November 14, 2019): 4884. http://dx.doi.org/10.3390/app9224884.

Full text
Abstract:
Tropospheric delay is one main factor affecting the accuracy of precise point positioning (PPP) ambiguity-float and fixed solutions. Investigations mainly focused on evaluating the contributions of tropospheric corrections to the accuracy and reliability of PPP solutions. The tropospheric corrections generally contained the zenith tropospheric delay (ZTD) and the horizontal gradients estimated from relative positioning or PPP. However, the estimated tropospheric delays can be partly absorbed by the carrier phase residuals if the stochastic model is not well-defined. Therefore, along with the ZTD and horizontal gradients, the carrier phase residuals from PPP backward filter are considered to reconstruct slant tropospheric delay (STD). Based on the proposed STD model, its marginal effects on GPS PPP were investigated. Results indicated that the consideration of carrier phase residuals for STD modeling can improve the three-dimensional accuracy to 0.5 cm/1 cm/1.2 cm in the South/North/Up (N/E/U) components. Then, the effects of internal and external STD corrections on PPP float and fixed solutions were analyzed. Compared to the ZTD + gradients augmentation, STD corrections from the same station could improve the PPP accuracy by 51%/51%/60%; the large improvements were because the multipath error and observation noise were eliminated. In comparison, the improvement was 14%/28%/31% using external STD corrections, which indicated the effects of unmodeled tropospheric errors in the phase residuals. The ambiguity-fixing results indicated that the fixing rate of PPP ambiguity was increased by 30% with STD augmentation. As the BeiDou System (BDS) suffered longer convergence than that of GPS, the benefits of STD modeling to the BDS observations were also validated. Overall, the results validated the performance of STD-augmented PPP, which demonstrated the potential application of high-accuracy troposphere products.
APA, Harvard, Vancouver, ISO, and other styles
37

Yang, Liu, Jingxiang Gao, Zengke Li, Fangchao Li, Chao Chen, and Yifan Wang. "New Satellite Selection Approach for GPS/BDS/GLONASS Kinematic Precise Point Positioning." Applied Sciences 9, no. 24 (December 4, 2019): 5280. http://dx.doi.org/10.3390/app9245280.

Full text
Abstract:
With the development of global satellite navigation systems, kinematic Precise Point Positioning (PPP) is facing the increasing computational load of instantaneous (single-epoch) processing due to more and more visible satellites. At this time, the satellite selection algorithm that can effectively reduce the computational complexity causes us to consider its application in GPS/BDS/GLONASS kinematic PPP. Considering the characteristics of different systems and satellite selection algorithms, we proposed a new satellite selection approach (NSS model) which includes three different satellite selection algorithms (maximum volume algorithm, fast-rotating partition satellite selection algorithm, and elevation partition satellite selection algorithm). Additionally, the inheritance of ambiguity was also proposed to solve the situation of constantly re-estimated integer ambiguity when the satellite selection algorithm is used in PPP. The results show that the NSS model had a centimeter-level positioning accuracy when the original PPP and optimal dilution of precision (DOP) algorithm solution were compared in kinematic PPP based on the data at five multi-GNSS Experiment (MGEX) stations. It can also reduce a huge amount of computation at the same time. Thus, the application of the NSS model is an effective method to reduce the computational complexity and guarantee the final positioning accuracy in GPS/BDS/GLONASS kinematic PPP.
APA, Harvard, Vancouver, ISO, and other styles
38

Chen, Chao, Guorui Xiao, Guobin Chang, Tianhe Xu, and Liu Yang. "Assessment of GPS/Galileo/BDS Precise Point Positioning with Ambiguity Resolution Using Products from Different Analysis Centers." Remote Sensing 13, no. 16 (August 18, 2021): 3266. http://dx.doi.org/10.3390/rs13163266.

Full text
Abstract:
Suffering from hardware phase biases originating from satellites and the receiver, precise point positioning (PPP) requires a long convergence time to reach centimeter coordinate accuracy, which is a major drawback of this technique and limits its application in time-critical applications. Ambiguity resolution (AR) is the key to a fast convergence time and a high-precision solution for PPP technology and PPP AR products are critical to implement PPP AR. Nowadays, various institutions provide PPP AR products in different forms with different strategies, which allow to enable PPP AR for Global Positioning System (GPS) and Galileo or BeiDou Navigation System (BDS). To give a full evaluation of PPP AR performance with various products, this work comprehensively investigates the positioning performance of GPS-only and multi-GNSS (Global Navigation Satellite System) combination PPP AR with the precise products from CNES, SGG, CODE, and PRIDE Lab using our in-house software. The positioning performance in terms of positioning accuracy, convergence time and fixing rate (FR) as well as time to first fix (TTFF), was assessed by static and kinematic PPP AR models. For GPS-only, combined GPS and Galileo PPP AR with different products, the positioning performances were all comparable with each other. Concretely, the static positioning errors can be reduced by 21.0% (to 0.46 cm), 52.5% (to 0.45 cm), 10.0% (to 1.33 cm) and 21.7% (to 0.33 cm), 47.4% (to 0.34 cm), 9.5% (to 1.16 cm) for GPS-only and GE combination in north, east, up component, respectively, while the reductions are 20.8% (to 1.13 cm), 42.9% (to 1.15 cm), 19.9% (to 3.4 cm) and 20.4% (to 0.72 cm), 44.1% (to 0.66 cm), 10.1% (to 2.44 cm) for kinematic PPP AR. Overall, the positioning performance with CODE products was superior to the others. Furthermore, multi-GNSS observations had significant improvements in PPP performance with float solutions and the TTFF as well as the FR of GPS PPP AR could be improved by adding observations from other GNSS. Additionally, we have released the source code for multi-GNSS PPP AR, anyone can freely access the code and example data from GitHub.
APA, Harvard, Vancouver, ISO, and other styles
39

Nistor, Sorin, and Aurelian Stelian Buda. "Analysis of GNSS Data Using Precise Point Positioning Technique for the Determination of Permanent Station in Romania." Mathematical Modelling in Civil Engineering 11, no. 3 (September 1, 2015): 31–37. http://dx.doi.org/10.1515/mmce-2015-0013.

Full text
Abstract:
Abstract To obtain the coordinates by means of precise point positioning (PPP) technique we need to use the undifferenced GPS pseudocode and carrier phase observations but to obtain the “precise” positioning we need precise orbit and clock data too. This products and other information for obtaining the results by using PPP technique on a centimeter level accuracy can be downloaded from different locations, but the most reliable satellite ephemerides and clock correction are available from International GNSS Service (IGS). In the PPP analysis we determined the parameters such as the receiver clock error, ionospheric delays code biases, code multipath and the total neutral atmosphere delay of the observations. For the determination of the permanent station coordinates, using the PPP technique, we used precise orbit and clock solutions to enable absolute positioning of a single receiver. In this article we present the results obtained by using the PPP technique on the permanent station Oradea, from which we can conclude that the PPP technique can be used for different GNSS application.
APA, Harvard, Vancouver, ISO, and other styles
40

Hartanto, Prayudha. "PENGGUNAAN KINEMATIK GNSS PRECISE POINT POSITIONING (PPP) PADA SURVEI GAYABERAT AIRBORNE SULAWESI." JURNAL ILMIAH GEOMATIKA 22, no. 2 (November 30, 2016): 82. http://dx.doi.org/10.24895/jig.2016.22-2.638.

Full text
Abstract:
<p class="judulabstrakindo"> ABSTRAK</p><p class="abstrakindo">Metode <em>Precise Point Positionin</em>g (PPP) adalah metode penentuan posisi teliti yang hanya menggunakan sebuah receiver GNSS dual frekuensi. Metode ini dapat digunakan untuk menentukan posisi teliti objek-objek yang diam (<em>static</em>) maupun bergerak (<em>kinematic</em>). Pada penelitian ini, akan dipaparkan mengenai penggunaan kinematik PPP dalam penentuan posisi pesawat terbang pada survei gayaberat <em>airborne</em> di Sulawesi tahun 2008. Data yang digunakan adalah jalur terbang pesawat pada <em>day of year</em> (DOY) 291 dan 274. Perangkat lunak yang digunakan adalah Waypoint<sup>®</sup> Grafnav. Hasil pengolahan menggunakan metode PPP tersebut kemudian dibandingkan dengan hasil pengolahan data Diferensial GPS (DGPS) dengan 1 titik ikat untuk DOY 291 dan 2 titik ikat untuk DOY 274. Hasil perbandingan pada DOY 291 menunjukkan nilai RMS untuk arah timur, utara dan tinggi masing-masing sebesar 0,024 m; 0,020 m dan 0,039 m. Pada DOY 274, RMS yang diperoleh adalah 0,032 m; 0,011 m dan 0,058 m masing-masing untuk arah timur, utara dan tinggi. Hasil-hasil tersebut mengindikasikan bahwa metode PPP dapat digunakan untuk menentukan posisi pesawat terbang dengan fraksi ketelitian sentimeter. Tingkat ketelitian posisi ini sudah memenuhi syarat untuk digunakan pada survei gayaberat <em>airborne</em>.</p><p class="katakunci"><strong>Kata kunci</strong>: GNSS, kinematik PPP, gayaberat airborne, DGPS</p><p class="katakunci"> </p><p class="abstrak"> ABSTRACT</p><p class="abstraking">The Precise Point Positioning (PPP) is a positioning method which only use a dual frequency GNSS receiver. This method can be used to determine the precise position of either static (static) or moving objects (kinematic). In this paper, we will discuss the application of kinematic PPP for the 2008 Sulawesi airborne gravity survey. By using a commercial GNSS processing software called Waypoint® Grafnav, we determine the PPP solutions for the aircraft trajectory of the day of year (DOY) 291 and 274. Each solution then be compared to the Differential GPS (DGPS) results, which use one base station for DOY 291 and two reference stations for DOY 274. The PPP solution of DOY 291 gives RMS error of 0.024 m eastward, 0.020 m northward, and 0.039 m upward. Moreover, the comparison of DOY 274 gives RMS error of 0.032 m eastward, 0.011 m northward, and 0.058 m upward. These centimeter level RMS errors show that PPP is a compatible positioning method for airborne gravity survey.</p><p class="katakunci"><strong><em>Keywords</em></strong><em>: GNSS, </em><em>k</em><em>inematic PPP, airborne gravity, DGPS</em><em></em></p>
APA, Harvard, Vancouver, ISO, and other styles
41

Yasyukevich, Anna, Semen Syrovatskii, and Yury Yasyukevich. "Changes in the GNSS precise point positioning accuracy during a strong geomagnetic storm." E3S Web of Conferences 196 (2020): 01001. http://dx.doi.org/10.1051/e3sconf/202019601001.

Full text
Abstract:
Based on the data from dual-frequency receivers of global navigation satellite systems (GNSS), we analyze the changes in GNSS positioning accuracy during the August 25-26, 2018 strong geomagnetic storm on a global scale. The storm is one of the strongest geomagnetic events of the solar cycle 24. To analyze the positioning quality, we calculated coordinates using the precise point positioning (PPP) method in the kinematic mode. We recorder a significant degradation in the PPP positioning accuracy during the main phase of the storm. The maximum effect is observed in the middle and high latitudes of the US-Atlantic longitude sector. The average PPP error during the storm is shown to exceed ~0.5 m, that is up to 5 times higher than the values typical on quiet days. Areas with increased PPP errors is revealed to correspond to the regions with significant increase in the intensity of total electron content variations of 10–20 min period range. This increase is presumably due to the auroral oval expansion toward middle latitudes.
APA, Harvard, Vancouver, ISO, and other styles
42

Rabbou, Mahmoud Abd, and Ahmed El-Rabbany. "Single-Frequency Precise Point Positioning Using Multi-Constellation GNSS: GPS, GLONASS, Galileo and BeiDou." GEOMATICA 70, no. 2 (June 2016): 113–22. http://dx.doi.org/10.5623/cig2016-203.

Full text
Abstract:
Single-frequency precise point positioning (PPP) presents a cost-effective positioning technique for a large number of users. However, it possesses low positioning accuracy and convergence time compared with the dual-frequency PPP. Single-frequency PPP commonly employs GPS satellite systems that suffer from poor satellite geometry, especially in dense urban areas. We develop a new single-frequency PPP model that combines the observations of current GNSS constellations, including GPS, GLONASS, Galileo and Beidou. The MGEX IGS final precise products are utilized to account for the orbital and clock errors, while the IGS final global ionospheric maps (GIM) model is used to correct for the ionospheric delay. The GNSS inter-system biases are treated as additional unknowns in the estimation process. The con tri bution of the additional GNSS observations to single-frequency PPP is assessed through solution comparison with its traditional GPS-only counterpart. Various GNSS combinations are considered in the assessment, including GPS/GLONASS, GPS/Galileo, GPS/BeiDou and all-constellation GNSS. It is shown that the additional GNSS observations enhance the PPP solution accuracy and convergence time in comparison with the tra di tional GPS-only solution. Except for stations with a sufficient number of tracked BeiDou satellites, both Galileo and BeiDou have marginal effects on the positioning accuracy due to their limited number of satel lites. However, for stations with a sufficient number of visible BeiDou satellites, an average of 40% PPP accuracy improvement is obtained. The major contribution to the PPP accuracy enhancement is obtained from GLONASS satellite observations.
APA, Harvard, Vancouver, ISO, and other styles
43

Zhu, Hongyu, Linyuan Xia, Dongjin Wu, Jingchao Xia, and Qianxia Li. "Study on Multi-GNSS Precise Point Positioning Performance with Adverse Effects of Satellite Signals on Android Smartphone." Sensors 20, no. 22 (November 11, 2020): 6447. http://dx.doi.org/10.3390/s20226447.

Full text
Abstract:
The emergence of dual frequency global navigation satellite system (GNSS) chip actively promotes the progress of precise point positioning (PPP) technology in Android smartphones. However, some characteristics of GNSS signals on current smartphones still adversely affect the positioning accuracy of multi-GNSS PPP. In order to reduce the adverse effects on positioning, this paper takes Huawei Mate30 as the experimental object and presents the analysis of multi-GNSS observations from the aspects of carrier-to-noise ratio, cycle slip, gradual accumulation of phase error, and pseudorange residual. Accordingly, we establish a multi-GNSS PPP mathematical model that is more suitable for GNSS observations from a smartphone. The stochastic model is composed of GNSS step function variances depending on carrier-to-noise ratio, and the robust Kalman filter is applied to parameter estimation. The multi-GNSS experimental results show that the proposed PPP method can significantly reduce the effect of poor satellite signal quality on positioning accuracy. Compared with the conventional PPP model, the root mean square (RMS) of GPS/BeiDou (BDS)/GLONASS static PPP horizontal and vertical errors in the initial 10 min decreased by 23.71% and 62.06%, respectively, and the horizontal positioning accuracy reached 10 cm within 100 min. Meanwhile, the kinematic PPP maximum three-dimensional positioning error of GPS/BDS/GLONASS decreased from 16.543 to 10.317 m.
APA, Harvard, Vancouver, ISO, and other styles
44

Pandele, Alexandru, Costel Cherciu, Marius Trușculescu, Claudiu Drăgășanu, and Sergiu-Ştefan Mihai. "COTS based GNSS Receiver with Precise Point Positioning for CubeSats." MATEC Web of Conferences 304 (2019): 07009. http://dx.doi.org/10.1051/matecconf/201930407009.

Full text
Abstract:
The paper presents the work towards developing a COTS based GNSS receiver and integrating Precise Point Positioning algorithms to facilitate close proximity operations for CubeSats in formation flying and during docking or rendezvous manoeuvres. We initially present the driving requirements identified for these types of missions. Besides fitting a standard CubeSat, the receiver has to weigh less than 0.3 kg, consume less than 5 W and be multi-frequency and multi-onstellation. Next, follows the identification of a commercial off the shelf GNSS receiver that can be easily customized to fit the basic requirements of a GNSS space receiver and on which Precise Orbit Determination (POD) algorithms can be implemented. For the start of the activity three commercial receivers were selected as proposed candidates to be traded off regarding the degree to which they fulfil the requirements, the degree of openness and of manufacturer support. A COTS microcontroller shall be then selected to control the operation of the COTS receiver. We then expand on the proposed general architecture of the system from COTS modules to their integration philosophy, with a discussion on the means of delivering the correction factors to the receiver. PPP corrections are expected to be delivered either via ground stations or via the geostationary satellite based commercial services. The PPP algorithms are to be implemented on the microcontroller, which will also try to maximize the availability of a precise PVT solution by incorporating a neural network fed by an orbit propagator and the PPP algorithm. The neural network shall estimate a precise position whenever PPP corrections are not available. The training of the neural network shall be done on the ground, allowing for a small footprint on board. A preliminary design of the hardware and the planned qualification plan is concluding the work.
APA, Harvard, Vancouver, ISO, and other styles
45

Gross, Jason N., Ryan M. Watson, Stéphane D’Urso, and Yu Gu. "Flight-Test Evaluation of Kinematic Precise Point Positioning of Small UAVs." International Journal of Aerospace Engineering 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/1259893.

Full text
Abstract:
An experimental analysis of Global Positioning System (GPS) flight data collected onboard a Small Unmanned Aerial Vehicle (SUAV) is conducted in order to demonstrate that postprocessed kinematic Precise Point Positioning (PPP) solutions with precisions approximately 6 cm 3D Residual Sum of Squares (RSOS) can be obtained on SUAVs that have short duration flights with limited observational periods (i.e., only ~≤5 minutes of data). This is a significant result for the UAV flight testing community because an important and relevant benefit of the PPP technique over traditional Differential GPS (DGPS) techniques, such as Real-Time Kinematic (RTK), is that there is no requirement for maintaining a short baseline separation to a differential GNSS reference station. Because SUAVs are an attractive platform for applications such as aerial surveying, precision agriculture, and remote sensing, this paper offers an experimental evaluation of kinematic PPP estimation strategies using SUAV platform data. In particular, an analysis is presented in which the position solutions that are obtained from postprocessing recorded UAV flight data with various PPP software and strategies are compared to solutions that were obtained using traditional double-differenced ambiguity fixed carrier-phase Differential GPS (CP-DGPS). This offers valuable insight to assist designers of SUAV navigation systems whose applications require precise positioning.
APA, Harvard, Vancouver, ISO, and other styles
46

Cavalheri, Emerson Pereira, and Marcelo Carvalho dos Santos. "Improved kinematic Precise Point Positioning performance with the use of map constraints." Journal of Applied Geodesy 14, no. 2 (April 26, 2020): 191–204. http://dx.doi.org/10.1515/jag-2019-0034.

Full text
Abstract:
AbstractA positioning approach combining satellite measurements with a map representing the ground-truth trajectory is developed with the main objective of improving the availability of solutions for a mobile vehicle. For the positioning model, the Precise Point Positioning (PPP) technique is augmented with an alternative map-matching to find a probable space where the true vehicle or platform position is located. Then, by using a selection criterion based on the precise carrier phase residuals, the best candidate position within the space can be determined. This process provides an accurate initial position to the PPP filter, different from the standard PPP approach that relies on a point position using the less accurate pseudorange observables. A controlled experiment of a mobile receiver navigating over a pre-defined trajectory was conducted. The results show that the approach offers an instantaneous initial convergence, eliminating the re-convergences during two GNSS obstructions of 32 and 17 seconds, while constantly keeping the solution on the correct trajectory, even when tracking 3 to 2 satellites. This approach outperforms the standard PPP and RTK solutions in terms of convergences and re-convergences. These results are corroborated when comparing the average and standard deviation of residuals to the standard PPP model. For the pseudorange residuals, improvements of 17.5 cm and 24.3 cm in the average and standard deviation respectively were achieved. The carrier phase residuals standard deviation of the proposed approach was 3 cm better than that of the standard PPP.
APA, Harvard, Vancouver, ISO, and other styles
47

Lin, Chen, Guanye Wu, Xiaomin Feng, Dingxing Li, Zhichao Yu, Xuanwei Wang, Yonggang Gao, Jinyun Guo, Xiaole Wen, and Wenbin Jian. "Application of Multi-System Combination Precise Point Positioning in Landslide Monitoring." Applied Sciences 11, no. 18 (September 9, 2021): 8378. http://dx.doi.org/10.3390/app11188378.

Full text
Abstract:
To verify the positioning performance and reliability of multi-system combination Precise Point Positioning in landslide monitoring, we carried out a multi-system combination Precise Point Positioning calculation experiment on the monitoring data of a single landslide disaster area in Fujian Province. The coordinates of the monitoring points obtained by a continuously operating reference station and the monitoring station for static relative positioning were used as reference values. The GPS system was used as the standard system and the combined PPP solution mode of G/R/C, G/R/E and G/R/E/C was used to obtain the surface displacement of the landslide area. The research showed that multi-system combination PPP converges to the centimeter level in about 30 min. The average value of internal accordant precision was more than 1 mm after convergence, and that of the external accordant precision was more than 5 cm, which meets the centimeter-level accuracy requirements in rapid landslide deformation monitoring.
APA, Harvard, Vancouver, ISO, and other styles
48

El-Rahman, Mahmoud Abd, and Ahmed El-Rabbany. "Performance Evaluation of USTEC Product for Single-Frequency Precise Point Positioning." GEOMATICA 67, no. 4 (December 2013): 253–57. http://dx.doi.org/10.5623/cig2013-051.

Full text
Abstract:
Geodetic-grade dual-frequency GPS receivers are typically used for precise point positioning (PPP). Unfortunately, these receiver systems are expensive and may not provide a cost-effective solution in many instances. The use of low-cost single-frequency GPS receivers, on the other hand, are limited by the effect of ionospheric delay. A number of mitigation techniques have been proposed to account for the effect of ionospheric delay for single-frequency GPS users. Unfortunately, however, those mitigation techniques are not suitable for PPP. More recently, the U.S. Total Electron Content (USTEC) product has been developed by the National Oceanic and Atmospheric Administration (NOAA), which describes the ionospheric total electron content in high resolution over most of North America. This paper investigates the performance of USTEC and studies its effect on single-frequency PPP solution. A performance comparison with two widely-used ionospheric mitigation models is also presented.
APA, Harvard, Vancouver, ISO, and other styles
49

Elsobeiey, Mohamed, and Ahmed El-Rabbany. "On Modelling of Second-Order Ionospheric Delay for GPS Precise Point Positioning." Journal of Navigation 65, no. 1 (November 25, 2011): 59–72. http://dx.doi.org/10.1017/s0373463311000531.

Full text
Abstract:
Recent developments in GPS positioning show that a user with a standalone GPS receiver can obtain positioning accuracy comparable to that of carrier-phase-based differential positioning. Such technique is commonly known as Precise Point Positioning (PPP). A significant challenge of PPP, however, is that about 30 minutes or more is required to achieve centimetre to decimetre-level accuracy. This relatively long convergence time is a result of the un-modelled GPS residual errors. A major residual error component, which affects the convergence of PPP solution, is higher-order Ionospheric Delay (IONO). In this paper, we rigorously model the second-order IONO, which represents the bulk of higher-order IONO, for PPP applications. Firstly, raw GPS measurements from a global cluster of International GNSS Service (IGS) stations are corrected for the effect of second-order IONO. The corrected data sets are then used as input to the Bernese GPS software to estimate the precise orbit, satellite clock corrections, and Global Ionospheric Maps (GIMs). It is shown that the effect of second-order IONO on GPS satellite orbit ranges from 1·5 to 24·7 mm in radial, 2·7 to 18·6 mm in along-track, and 3·2 to 15·9 mm in cross-track directions, respectively. GPS satellite clock corrections, on the other hand, showed a difference of up to 0·067 ns. GIMs showed a difference up to 4·28 Total Electron Content Units (TECU) in the absolute sense and an improvement of about 11% in the Root Mean Square (RMS). The estimated precise orbit clock corrections have been used in all of our PPP trials. NRCan's GPSPace software was modified to accept the second-order ionospheric corrections. To examine the effect of the second-order IONO on the PPP solution, new data sets from several IGS stations were processed using the modified GPSPace software. It is shown that accounting for the second-order IONO improved the PPP solution convergence time by about 15% and improved the accuracy estimation by 3 mm.
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Gen, Xiaohong Zhang, and Pan Li. "Improving the Performance of Galileo Uncombined Precise Point Positioning Ambiguity Resolution Using Triple-Frequency Observations." Remote Sensing 11, no. 3 (February 8, 2019): 341. http://dx.doi.org/10.3390/rs11030341.

Full text
Abstract:
Compared with the traditional ionospheric-free linear combination precise point positioning (PPP) model, the un-differenced and uncombined (UDUC) PPP model using original observations can keep all the information of the observations and be easily extended to any number of frequencies. However, the current studies about the multi-frequency UDUC-PPP ambiguity resolution (AR) were mainly based on the triple-frequency BeiDou navigation satellite system (BDS) observations or simulated data. Limited by many factors, for example the accuracy of BDS precise orbit and clock products, the advantages of triple-frequency signals to UDUC-PPP AR were not fully exploited. As Galileo constellations have been upgraded by increasing the number of 19 useable satellites, it makes using Galileo satellites to further study the triple-frequency UDUC-PPP ambiguity resolution (AR) possible. In this contribution, we proposed the method of multi-frequency step-by-step ambiguity resolution based on the UDUC-PPP model and gave the reason why the performance of PPP AR can be improved using triple-frequency observations. We used triple-frequency Galileo observations on day of year (DOY) 201, 2018 provided by 166 Multi-GNSS Experiment (MGEX) stations to estimate original uncalibrated phase delays (UPD) on each frequency and to conduct both dual- and triple-frequency UDUC-PPP AR. The performance of UDUC-PPP AR based on post-processing mode was assessed in terms of the time-to-first-fix (TTFF) as well as positioning accuracy with 2-hour observations. It was found that triple-frequency observations were helpful to reduce TTFF and improve the positioning accuracy. The current statistic results showed that triple-frequency PPP-AR reduced the averaged TTFF by 19.6 % and also improved the positioning accuracy by 40.9, 31.2 and 23.6 % in the east, north and up directions respectively, compared with dual-frequency PPP-AR. With an increasing number of Galileo satellites, it is expected that the robustness and accuracy of the triple-frequency UCUD-PPP AR can be improved further.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography