Contents
Academic literature on the topic 'Précision de tracking'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Précision de tracking.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Précision de tracking"
Monteys, Xavier, and Pere Fuertes. "LE CORBUSIER. STREETS, PROMENADES, SCENES AND ARTEFACTS." Journal of Architecture and Urbanism 40, no. 2 (June 16, 2016): 151–61. http://dx.doi.org/10.3846/20297955.2016.1194606.
Full textMithoowani, Siraj, Andrew Mulloy, Augustin Toma, and Ameen Patel. "To err is human: A case-based review of cognitive bias and its role in clinical decision making." Canadian Journal of General Internal Medicine 12, no. 2 (August 30, 2017). http://dx.doi.org/10.22374/cjgim.v12i2.166.
Full textDissertations / Theses on the topic "Précision de tracking"
Larkin, Dominic. "Banc d’essai pour caractérisation en conditions réelles extérieures de modules en concentration photovoltaïque." Mémoire, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10505.
Full textPham, The Hung. "Robust planning and control of unmanned aerial vehicles." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG003.
Full textThe objective of this thesis is to realize the modeling, trajectory planning, and control of an unmanned helicopter robot for monitoring large areas, especially in precision agriculture applications. Several tasks in precision agriculture are addressed. In pest surveillance missions, drones will be equipped with specialized cameras. A trajectory will be researched and created to enable unmanned aircraft to capture images of entire crop areas and avoid obstacles during flight. Infected areas will be then identified by analyzing taken images. In insecticides spraying, the aircraft must be controlled to fly in a pre-programmed trajectory and spray the insecticide over all the infected crop areas.In the first part, we present a new complete coverage path planning algorithm by proposing a new cellular decomposition which is based on a generalization of the Boustrophedon variant, using Morse functions, with an extension of the representation of the critical points. This extension leads to a reduced number of cells after decomposition. Genetic Algorithm (GA) and Travelling Salesman Problem (TSP) algorithm are then applied to obtain the shortest path for complete coverage. Next, from the information on the map regarding the coordinates of the obstacles, non-infected areas, and infected areas, the infected areas are divided into several non-overlapping regions by using a clustering technique. Then an algorithm is proposed for generating the best path for a Unmanned Aerial Vehicle (UAV) to distribute medicine to all the infected areas of an agriculture environment which contains non-convex obstacles, pest-free areas, and pests-ridden areas.In the second part, we study the design of a robust control system that allows the vehicle to track the predefined trajectory for a dynamic model-changing helicopter due to the changes of dynamic coefficients such as the mass and moments of inertia. Therefore, the robust observer and control laws are required to adopt the changes in dynamic parameters as well as the impact of external forces. The proposed approach is to explore the modeling techniques, planning, and control by the Takagi-Sugeno type technique. To have easily implantable algorithms and adaptable to changes in parameters and conditions of use, we favor the synthesis of Linear Parameter Varying (LPV) Unknown Input Observer (UIO), LPV quadratic state feedback, robust state feedback, and static output feedback controllers. The observer and controllers are designed by solving a set of Linear Matrix Inequality (LMI) obtained from the Bounded Real Lemma and LMI regions characterization.Finally, to highlight the performances of the path planning algorithms and generated control laws, we perform a series of simulations in MATLAB Simulink. Simulation results are quite promising. The coverage path planning algorithm suggests that the generated trajectory shortens the flight distance of the aircraft but still avoids obstacles and covers the entire area of interest. Simulations for the LPV UIO and LPV controllers are conducted with the cases that the mass and moments of inertias change abruptly and slowly. The LPV UIO is able to estimate state variables and the unknown disturbances and the estimated values converge to the true values of the state variables and the unknown disturbances asymptotically. The LPV controllers work well for various reference signals (impulse, random, constant, and sine) and several types of disturbances (impulse, random, constant, and sine)
Rantoson, Rindra. "Numérisation 3D d'objets transparents par polarisation dans l'IR et par triangulation dans l'UV." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00692460.
Full textSanders, Rindra. "Numérisation 3D d'objets transparents par polarisation dans l'IR et par triangulation dans l'UV." Thesis, Dijon, 2011. http://www.theses.fr/2011DIJOS039/document.
Full textTwo non-conventional methods for the 3D digitization of transparent objects via non-contact measurement are reported in this thesis. 3D digitization is a well acknowledged technique for opaque objects and various commercial solutions based on different measurement approaches are available in the market offering different types of resolution at different prices. Since these techniques require a diffused or lambertian surface, their application to transparent surfaces fails. Indeed, rays reflected by the transparent surface are perturbed by diverse inter-reflections induced by the refractive properties of the object. Therefore, in industrial applications like quality control, the transparent objects are powder coated followed by their digitization. However, this method is expensive and can also produce inaccuracies. Among the rare methods suggested in the literature, shape from polarization provides reliable results even though their accuracy had to be improved by coping with the inter-reflections. The two proposed solutions handle the extension of the existing methods to wavelengths beyond visible ranges: - shape from polarization in Infra Red (IR) range to deal with the above-mentioned inter-reflections; - scanning by Ultra Violet (UV) laser (based on triangulation scheme) to overcome the refraction problem that can be feasibly applied in industrial applications. The characteristic physical properties of transparent objects led us to explore the IR and UV ranges; since, transparent glass has strong absorption bands in the IR and UV ranges and therefore has opaque appearance. The first approach exploits the specular reflection of the considered object surface in IR and the second one exploits the fluorescence property of the object when irradiated with UV rays. Shape from polarization traditionally based on telecentric lenses had to be adapted with non-telecentric lenses to be used in the IR range. Thus, an approximation of the orthographic model is developed in this thesis while a validation method is implemented and integrated in the reconstruction process after Stokes parameters estimation, in order to improve the accuracy of the results. Some results of digitized objects are presented, which prove the feasibility of the shape from polarization method in the IR range to be used for transparent objects. A total of four configurations of the triangulation system are implemented in this thesis to exploit fluorescence produced by the UV laser scanning of the second approach. Experimental investigations aimed at characterizing the fluorescence are done. A specific fluorescence tracking method is carried out to deal with the inherent noise in the acquisitions. The uniqueness of the method relies on the criteria that are derived from the analysis of spectroscopic results. A validation method is made to optimize the configuration system while reducing the accuracy of reconstruction error. The results of some object digitization are presented with accuracies better than previously reported works
Demigha, Oualid. "Energy Conservation for Collaborative Applications in Wireless Sensor Networks." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0058/document.
Full textWireless Sensor Networks is an emerging technology enabled by the recent advances in Micro-Electro-Mechanical Systems, that led to design tiny wireless sensor nodes characterized by small capacities of sensing, data processing and communication. To accomplish complex tasks such as target tracking, data collection and zone surveillance, these nodes need to collaborate between each others to overcome the lack of battery capacity. Since the development of the batteries hardware is very slow, the optimization effort should be inevitably focused on the software layers of the protocol stack of the nodes and their operating systems. In this thesis, we investigated the energy problem in the context of collaborative applications and proposed an approach based on node selection using predictions and data correlations, to meet the application requirements in terms of energy-efficiency and quality of data. First, we surveyed almost all the recent approaches proposed in the literature that treat the problem of energy-efficiency of prediction-based target tracking schemes, in order to extract the relevant recommendations. Next, we proposed a dynamic clustering protocol based on an enhanced version of the Distributed Kalman Filter used as a prediction algorithm, to design an energy-efficient target tracking scheme. Our proposed scheme use these predictions to anticipate the actions of the nodes and their roles to minimize their number in the tasks. Based on our findings issued from the simulation data, we generalized our approach to any data collection scheme that uses a geographic-based clustering algorithm. We formulated the problem of energy minimization under data precision constraints using a binary integer linear program to find its exact solution in the general context. We validated the model and proved some of its fundamental properties. Finally and given the complexity of the problem, we proposed and evaluated a heuristic solution consisting of a correlation-based adaptive clustering algorithm for data collection. We showed that, by relaxing some constraints of the problem, our heuristic solution achieves an acceptable level of energy-efficiency while preserving the quality of data