Academic literature on the topic 'Precision livestock farming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Precision livestock farming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Precision livestock farming"
István Komlósi. "The precision livestock farming." Acta Agraria Debreceniensis, no. 49 (November 13, 2012): 201–2. http://dx.doi.org/10.34101/actaagrar/49/2525.
Full textBerckmans, Daniel. "Precision livestock farming (PLF)." Computers and Electronics in Agriculture 62, no. 1 (June 2008): 1. http://dx.doi.org/10.1016/j.compag.2007.09.002.
Full textNorton, T., and D. Berckmans. "Developing precision livestock farming tools for precision dairy farming." Animal Frontiers 7, no. 1 (January 1, 2017): 18–23. http://dx.doi.org/10.2527/af.2017.0104.
Full textVranken, Erik, and Dries Berckmans. "Precision livestock farming for pigs." Animal Frontiers 7, no. 1 (January 1, 2017): 32–37. http://dx.doi.org/10.2527/af.2017.0106.
Full textJuarez, Manuel M. "238 Linking livestock phenomics and precision livestock farming." Journal of Animal Science 98, Supplement_3 (November 2, 2020): 124. http://dx.doi.org/10.1093/jas/skaa054.212.
Full textWerkheiser, Ian. "Precision Livestock Farming and Farmers’ Duties to Livestock." Journal of Agricultural and Environmental Ethics 31, no. 2 (February 16, 2018): 181–95. http://dx.doi.org/10.1007/s10806-018-9720-0.
Full textBerckmans, D. "General introduction to precision livestock farming." Animal Frontiers 7, no. 1 (January 1, 2017): 6–11. http://dx.doi.org/10.2527/af.2017.0102.
Full textXin, Hongwei, and Kai Liu. "Precision livestock farming in egg production." Animal Frontiers 7, no. 1 (January 1, 2017): 24–31. http://dx.doi.org/10.2527/af.2017.0105.
Full textBerckmans, Daniel. "Bright Farm by Precision Livestock Farming." Impact 2017, no. 1 (January 9, 2017): 4–6. http://dx.doi.org/10.21820/23987073.2017.1.4.
Full textNorton, Tomas, and Daniel Berckmans. "Engineering advances in Precision Livestock Farming." Biosystems Engineering 173 (September 2018): 1–3. http://dx.doi.org/10.1016/j.biosystemseng.2018.09.008.
Full textDissertations / Theses on the topic "Precision livestock farming"
Bahlo, Christiane. "Open data and interoperability standards : opportunities for animal welfare in extensive livestock systems." Thesis, Federation University Australia, 2021. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/177520.
Full textDoctor of Philosophy
Johansson, Nicklas. "Effekter av kameraövervakning av boskap hos sex lantbrukare i Sverige." Thesis, Karlstads universitet, Handelshögskolan (from 2013), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-70935.
Full textCasten, Carlberg Carl Johan, and Elsa Jerhamre. "Artificial Intelligence in Agriculture : Opportunities and Challenges." Thesis, Uppsala universitet, Avdelningen för datorteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-443576.
Full textCondotta, Isabella Cardoso Ferreira da Silva. "Automatic assess of growing-finishing pigs\' weight through depth image analysis." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-03082017-093143/.
Full textUm método de monitoramento contínuo da massa corporal de suínos auxiliaria os produtores, assegurando que todos os animais estão ganhando massa e aumentando a sua precisão de comercialização, reduzindo-se perdas. Obter eletronicamente a massa corporal sem mover os animais para a balança eliminaria uma fonte geradora de estresse. Portanto, o desenvolvimento de métodos para monitorar as condições físicas dos animais à distância se mostra necessário para a obtenção de dados com maior qualidade. Na produção de suínos, a pesagem dos animais é uma prática que representa um papel importante no controle dos fatores que afetam o desempenho do rebanho e o monitoramento da produção. Portanto, esta pesquisa teve como objetivo extrair, automaticamente, dados de massa de suínos por meio de imagens em profundidade. Foi feita, primeiramente, uma validação de 5 sensores de profundidade Kinect ® para compreender seu comportamento. Além disso, foram geradas equações para corrigir os dados de dimensões (comprimento, área e volume) fornecidos por estes sensores para qualquer distância entre o sensor e os animais. Foram obtidas imagens de profundidade e massas corporais de suínos e crescimento e terminação (fêmeas e machos castrados) de três linhagens comerciais (Landrace, Duroc e Yorkshire). Em seguida, as imagens foram analisadas com o software MATLAB (2016a). Os animais nas imagens foram selecionados por diferenças de profundidade e seus volumes foram calculados e depois ajustados utilizando a equação de correção desenvolvida. Foram coletadas, ainda, dimensões dos animais para atualização de dados existentes. Curvas de massa versus volumes corrigidos e de dimensões corrigidas versus massa, foram ajustadas. Equações para predição de massa a partir do volume foram ajustadas para os dois sexos e para as três linhagens comerciais. Uma equação reduzida, sem considerar as diferenças entre sexos e linhagens, também foi ajustada e comparada com as equações individuais utilizando o algoritmo de Efroymson. O resultado mostrou que não houve diferença significativa entre a equação reduzida e as equações individuais tanto para sexo (p <0,05), quanto para linhagens (p <0,05). A equação global pode predizer massas a partir do volume obtido com o sensor, com um R2 de 0,9905. Portanto, os resultados deste estudo mostram que o sensor de profundidade é uma abordagem razoável para monitorar as massas dos animais.
Rico, José Carlos Silva. "Condicionamento ambiental em suínos na fase de crescimento e engorda." Master's thesis, Universidade de Évora, 2019. http://hdl.handle.net/10174/27904.
Full textAnguzza, Umberto. "A method to develop a computer-vision based system for the automaticac dairy cow identification and behaviour detection in free stall barns." Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1334.
Full textRosa, Filho Gilberto [UNESP]. "Produtividade da soja em função de atributos físicos de um latossolo vermelho distroférrico sob plantio direto." Universidade Estadual Paulista (UNESP), 2008. http://hdl.handle.net/11449/98897.
Full textAtualmente, no cenário nacional, a cultura da soja no sistema plantio direto é amplamente utilizada na integração agricultura-pecuária. No ano agrícola de 2006/07, no município de Selvíria (MS), foi analisada a produtividade da soja, em plantio direto, em função de alguns atributos físicos de um Latossolo Vermelho Distroférrico (Typic Acrustox) local. O objetivo foi selecionar entre os atributos pesquisados do solo aquele que melhor se apresentasse para explicar a variabilidade da produtividade agrícola. Para tanto, foi instalada a malha geoestatística para a coleta dos dados do solo e da planta, contendo 120 pontos amostrais, numa área de 4068 m2 e declive homogêneo de 0,025 m m-1. Do ponto de vista linear e espacial, a elevada produtividade de grãos de soja pôde ser explicada em função da densidade do solo e da umidade volumétrica. A baixa variabilidade obtida para a maioria dos atributos do solo denotou ser o plantio direto um sistema que proporciona a homogeneização do ambiente físico do solo.
Nowadays the soybean crop in no-tillage is widely used in the national crop-livestock integration. The soybean productivity in no-tillage was analysed in Selvíria County (Mato Grosso do Sul State – Brazil), during the 2006/07 agricultural year, in function of some physical attributes of a Typic Acrustox local. The objective was to select, among the soil attributes, the one that better could stand out in way to explain the variability of the agricultural productivity. Therefore, a geostatistical grid was installed for data collecting regarding the soil and the plant, with 120 sampling station, in an area of 4068 m2 and homogeneous slope of 0,025 m m-1. In the linear and spatial point of view, the high productivity of soybean grains could be explained by reason of both bulk density and volumetric moisture. The low variability of the majority soil attributes showed no-tillage as a system that causes the homogenization of the physical environment of soil.
Fischer, Amélie. "Etude de la variabilité interindividuelle de l'efficience alimentaire de la vache laitière." Thesis, Rennes, Agrocampus Ouest, 2017. http://www.theses.fr/2017NSARB296/document.
Full textAchieving higher feed efficiency of animals is expected to improve animal production sustainability through reduction of the used resources and of the associated emissions. The traits determining feed efficiency remain poorly understood. The present project aimed therefore at identifying the biological factors associated with feed efficiency differences in lactating dairy cows. Feed efficiency variation was estimated with the traditional residual intake, which was defined as the residual variability of net energy intake which is not explained by net energy required for lactation, maintenance and body reserves change. This residual intake includes by definition all measurement errors. To reduce these errors, body condition score, which is commonly measured visually, has been automated and several other candidate traits were measured frequently in a steady environment for almost whole lactation.Residual intake variability represented only 8% of intake variability in our study, among which only 58.9% were found to be associated with feed efficiency variability and not to errors. The repeatability analysis of the residual intake throughout the lactation suggested to avoid the 7 first lactation fortnights, and rather to focus on lactation middle. Among all measured traits, feeding behaviour, rumen temperature, body reserves change and activity explained 58.9% of residual intake variability. Many of these traits seemed confounded with others, which claimed for the need for further work to properly define their causal relationship with feed efficiency, especially focussing on di
Mostaço, Gustavo Marques. "Determinação da temperatura retal e frequência respiratória de suínos em fase de creche por meio da temperatura da superfície corporal em câmara climática." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-29052014-150905/.
Full textHuman constant influence in handling activities, besides raising production costs, becomes another stress source for the animals. In this sense, it becomes necessary the development of alternative methods, that can remotely monitor, in real time, animal\'s physical conditions, together with remote facilities control. In terms of identifying comfort or stressful thermal situations for animals, some indicators can be handy, such as rectal temperature (RT), which is a good indicator of the core body temperature, as well as, the respiratory rate (RR). Although, with the raising concerns about animal welfare, several questions are raised against invasive methods, encouraging the search for alternatives to RT measuring. The determination of body surface temperature values, trying to correlate them to RT and RR, emerges as an alternative. Thus, it\'s aimed, with this research, to identify the most adequate swine body surface region, in nursery phase, which presents better correlation with RT and RR. For that, an experiment was conducted, divided in two stages: stage 1) pre-experiment, being conducted with two animals in a climate chamber, varying temperature conditions and testing sensor fixation and data collection methods previously proposed; and stage 2) main experiment. The last one was conducted in a climate chamber, with five Landrace x Large White piglets, 30 days aged, from the same litter and of the same sex (female). Temperature conditions inside the chamber were varied from 14°C to 35.5°C, attaining stressful situations both for cold and heat, being calculated the enthalpy for this study purposes. The statistical design used was the completely randomized, with one factor only, the ambient enthalpy, in seven levels (31.26; 39.56; 51.12; 59.24; 74.82; 82.96; 94.26 kJ.kg of dry air-1). Repeated measures were taken in 30 minutes intervals, in six different body regions: head (A), shoulder (B), loin (C), ham (D), ear (E) and tympanic (F). For regions from A to E, two different methods were used: temperature datalogger Thermochron iButton® - DS1921G and infrared thermometer Fluke® 566. For region F, a forehead and ear infrared thermometer G-Tech - T1000 was used. All of them had five replicates of measures for each variable, in each environment situation. With the obtained data, it was possible to propound multiple regression equations for RT and RR, the last one being shown by principal components analysis as a better candidate to correlate to body surface temperatures and because it\'s a good indicator of the animal\'s thermal stress situation. By means of these results it was possible to observe that the tympanic region arises as the better option for monitoring RT and RR through infrared thermometer (TiF), while when using body surface temperature sensors, the best option was the ear (TbE) for predicting RT, and the loin region (TbC) for predicting RR.
Ornelas, Mário André Santos de. "Electronic sow feeding : making sense of feeding data to support sow management." Master's thesis, Universidade de Lisboa, Faculdade de Medicina Veterinária, 2021. http://hdl.handle.net/10400.5/21184.
Full textThis study aimed to address the knowledge gaps concerning how group-housed gestating sows interact with modern electronic sow feeding (ESF) stations and to explore the potential of data recorded by these systems to enhance farm management. ESF records of 276 sow-gestations, from a dynamic group of c. 120 individuals were investigated. Data was analysed to identify patterns in the use of feeding stations by animals, and associations between feeding patterns and reproductive performance. Throughout the approximate 15 weeks that each sow spent on the dry sow house during a gestation, the total number of visits to the feeding stations varied greatly among individuals (367.7 ± 282.8) most of which were non-feeding visits (60.01 ± 19.8%). Feeding activity was highly concentrated within the first 12 h of feeding cycles (23 h) and sows ate their daily rations predominantly on a single feeding station visit (98.3 ± 1.7%). A mixed effects model revealed a weak effect of time on the number of feeding station visits, and a negative relationship between parity and total number of visits (b = - 0.230, SE = 0.022, p < 0.001). Sows kept feeding order relatively stable across gestation, especially among those who fed first. Additionally, results suggested that with every additional parity, the odds of a sow being among the first 15% group members to feed increased by a factor of 2.16 [OR: 2.16, p<0.010]. Statistically significant associations were found between feeding patterns and pre weaning piglet mortality, but not with number of piglets born alive nor average birth weight. Median piglet mortality was lower for sows feeding last compared to those feeding first (4.5% vs 14.3%, p = 0.025) and with a middle position in the feeding order (4.5% vs 11.8%, p = 0.045). Individuals with a regular feeding time showed higher piglet mortality rates than those with moderately regular (14.3% vs 10.6%, p = 0.029) and irregular (14.3% vs 9.5%, p = 0.047) feeding times. Median piglet mortality was superior in fast feeding sows compared to those feeding slower (13.3% vs 9.1%, p = 0.053). This work enhances current understanding of how gestating sows interact with ESF stations and highlights the potential of ESF data to support sow management.
RESUMO - ALIMENTAÇÃO ELETRÓNICA DE PORCAS: UTILIZAÇÃO DOS SEUS REGISTOS COMO SUPORTE AO MANEIO DA PORCA REPRODUTORA - Em suinicultura, o sucesso dos sistemas produtivos é influenciado em larga escala pelo desempenho do efetivo reprodutor. O maneio alimentar assume, a esse respeito, um papel decisivo na performance reprodutiva a médio e longo prazos e deve ter presentes as diferentes necessidades de cada animal. A alimentação eletrónica permite que porcas gestantes sejam alimentadas de forma individual estando alojadas em grupos, conforme previsto na legislação europeia. Ao passo que a adoção deste sistema tem vindo a crescer ao longo dos anos, a valorização dos seus registos tem recebido pouca atenção. Não obstante, alguns estudos sugerem que a informação recolhida automaticamente pelas estações de alimentação eletrónica (EAE) pode constituir uma ferramenta de monitorização, capaz de fomentar o maneio individual da porca gestante. Este trabalho visa enriquecer a compreensão do modo como as porcas em gestação em grupo interagem com EAE e avaliar a utilidade dos registos gerados por este sistema para apoiar o maneio da porca reprodutora. Para o efeito, analisaram-se registos de 276 gestações pertencentes a um grupo dinâmico de cerca de 120 porcas com acesso a duas EAE. A análise focou-se na identificação de padrões de utilização das EAE e no estudo de relações entre padrões de alimentação e performance reprodutiva. ...
N/A
Books on the topic "Precision livestock farming"
Cox, S., ed. Precision Livestock Farming. The Netherlands: Wageningen Academic Publishers, 2003. http://dx.doi.org/10.3920/978-90-8686-515-4.
Full textCox, S., ed. Precision Livestock Farming '05. The Netherlands: Wageningen Academic Publishers, 2005. http://dx.doi.org/10.3920/978-90-8686-548-2.
Full textCox, S., ed. Precision livestock farming '07. The Netherlands: Wageningen Academic Publishers, 2007. http://dx.doi.org/10.3920/978-90-8686-604-5.
Full textLokhorst, C., and P. W. G. Groot Koerkamp, eds. Precision livestock farming '09. The Netherlands: Wageningen Academic Publishers, 2009. http://dx.doi.org/10.3920/978-90-8686-663-2.
Full textHalachmi, Ilan, ed. Precision livestock farming applications. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5.
Full textBanhazi, T., V. Halas, and F. Maroto-Molina, eds. Practical Precision Livestock Farming. The Netherlands: Wageningen Academic Publishers, 2022. http://dx.doi.org/10.3920/978-90-8686-934-3.
Full textCox, S. W. R. (Sidney Walter Reginald), Institutet för jordbruks- och miljöteknik, and Sveriges lantbruksuniversitet, eds. Precision livestock farming '05. Wageningen [Netherlands]: Wageningen Academic Publishers, 2005.
Find full textVan Erp-Van der Kooij, E., ed. Precision technology and sensor applications for livestock farming and companion animals. The Netherlands: Wageningen Academic Publishers, 2021. http://dx.doi.org/10.3920/978-90-8686-917-6.
Full textGrandin, Temple, ed. Improving animal welfare: a practical approach. 3rd ed. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789245219.0000.
Full textBook chapters on the topic "Precision livestock farming"
Ozguven, Mehmet Metin. "Precision Livestock Farming." In The Digital Age in Agriculture, 29–58. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/b23229-2.
Full textBerckmans, D. "1.2. Smart farming for Europe: value creation through precision livestock farming." In Precision livestock farming applications, 25–36. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_1.2.
Full textBerckmans, D. "1.2. Smart farming for Europe: value creation through precision livestock farming." In Precision livestock farming applications, 25–36. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_2.
Full textBewley, J. M., R. A. Russell, K. A. Dolecheck, and M. R. Borchers. "1.1. Precision dairy monitoring: what have we learned?" In Precision livestock farming applications, 13–24. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_1.
Full textBewley, J. M., R. A. Russell, K. A. Dolecheck, and M. R. Borchers. "1.1. Precision dairy monitoring: what have we learned?" In Precision livestock farming applications, 13–24. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_1.1.
Full textLehr, H., J. van den Bossche, M. Mergeay, and D. Rosés. "3.3. Developing SmartFarming entrepreneurship – II preparing precision lifestock farming spin-offs." In Precision livestock farming applications, 95–104. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_10.
Full textBanhazi, T., E. Vranken, D. Berckmans, L. Rooijakkers, and D. Berckmans. "3.4. Word of caution for technology providers: practical problems associated with large scale deployment of PLF technologies on commercial farms." In Precision livestock farming applications, 105–12. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_11.
Full textJohnston, D., D. A. Kenny, S. M. Waters, M. McCabe, A. K. Kelly, M. McGee, and B. Earley. "4.1. The effect of gradual weaning on haematological profiles and leukocyte relative gene expression levels of Holstein-Friesian and Jersey bull calves." In Precision livestock farming applications, 119–34. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_13.
Full textLiboreiro, D. N., K. S. Machado, M. I. Endres, and R. C. Chebel. "4.3. Investigating the use of rumination sensors during the peripartum period in dairy cows." In Precision livestock farming applications, 143–48. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_15.
Full textScheel, C., I. Traulsen, and J. Krieter. "2.1. Detecting lameness in sows using acceleration data from ear tags." In Precision livestock farming applications, 37–44. The Netherlands: Wageningen Academic Publishers, 2015. http://dx.doi.org/10.3920/978-90-8686-815-5_2.1.
Full textConference papers on the topic "Precision livestock farming"
Andonovic, Ivan, Craig Michie, Philippe Cousin, Ahmed Janati, Congduc Pham, and Mamour Diop. "Precision Livestock Farming Technologies." In 2018 Global Internet of Things Summit (GIoTS). IEEE, 2018. http://dx.doi.org/10.1109/giots.2018.8534572.
Full textGomes, Jonas S., José Maria N. David, Regina Braga, Victor Ströele, Wagner Arbex, Bryan Barbosa, Wneiton Luiz Gomes, and Leonardo M. Gravina Fonseca. "Architecture for Decision Support in Precision Livestock Farming." In Brazilian e-Science Workshop. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/bresci.2021.15787.
Full textMilan, Hugo FM, Kristen M. Perano, and Kifle G. Gebremedhin. "Survey and future prospects in precision dairy farming." In 10th International Livestock Environment Symposium (ILES X). St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2018. http://dx.doi.org/10.13031/iles.18-053.
Full textLopes, S. I., R. Bexiga, J. P. Araújo, J. L. Cerqueira, C. Abreu, C. Paredes, and J. M. Alonso. "90. Precision livestock farming for reproductive performance optimization: a survey." In 13th Congress of the European Society for Agricultural and Food Ethics. The Netherlands: Wageningen Academic Publishers, 2016. http://dx.doi.org/10.3920/978-90-8686-834-6_90.
Full textNiloofar, Parisa, Sanja Lazarova-Molnar, Deena P. Francis, Alexandru Vulpe, George Suciu, and Mihaela Balanescu. "Modeling and Simulation for Decision Support in Precision Livestock Farming." In 2020 Winter Simulation Conference (WSC). IEEE, 2020. http://dx.doi.org/10.1109/wsc48552.2020.9383975.
Full textQiao, Yongliang, Daobilige Su, He Kong, Salah Sukkarieh, Sabrina Lomax, and Cameron Clark. "BiLSTM-based Individual Cattle Identification for Automated Precision Livestock Farming." In 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020. http://dx.doi.org/10.1109/case48305.2020.9217026.
Full textVaughan, John, Peter M. Green, Michael Salter, Bruce Grieve, and Krikor B. Ozanyan. "Floor sensors of animal weight and gait for precision livestock farming." In 2017 IEEE SENSORS. IEEE, 2017. http://dx.doi.org/10.1109/icsens.2017.8234202.
Full textCsiba, Anita, and Arpad Ferencz. "THE EFFECT OF CIRCULAR FARMING APPLICATION IN LIVESTOCK FARMING FOR THE REDUCTION OF HARMFUL EMISSION." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022/4.1/s18.31.
Full textQiao, Yongliang, Daobilige Su, He Kong, Salah Sukkarieh, Sabrina Lomax, and Cameron Clark. "Data Augmentation for Deep Learning based Cattle Segmentation in Precision Livestock Farming." In 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE). IEEE, 2020. http://dx.doi.org/10.1109/case48305.2020.9216758.
Full textAlexy, Merta, and Tames Haidegger. "Precision Solutions in Livestock Farming – feasibility and applicability of digital data collection." In 2022 IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC 2022). IEEE, 2022. http://dx.doi.org/10.1109/iccc202255925.2022.9922883.
Full text