Academic literature on the topic 'Predicción'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Predicción.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Predicción"
Barragán Espinosa, Jairo Alberto. "Instrumentos de predicción." Revista Colombiana de Obstetricia y Ginecología 38, no. 5 (October 30, 1987): 356–65. http://dx.doi.org/10.18597/rcog.2264.
Full textCobo, Erik. "Valorar la predicción." Medicina Clínica Práctica 4 (December 2021): 100296. http://dx.doi.org/10.1016/j.mcpsp.2021.100296.
Full textAnta, Juan Fernando. "Representación, Predicción y Música." Epistemus. Revista de Estudios en Música, Cognición y Cultura 2, no. 1 (December 29, 2013): 23. http://dx.doi.org/10.21932/epistemus.2.2712.0.
Full textRada García, Eloy. "Ciencia, predicción y profecía." ENDOXA 1, no. 2 (January 1, 1993): 177. http://dx.doi.org/10.5944/endoxa.2.1993.4792.
Full textConde, Camilo J. Cela, and Gisèle Marty. "Ley, voluntad y predicción." Estudios de Psicología 19, no. 59 (January 1998): 105–20. http://dx.doi.org/10.1174/02109399860400757.
Full textGonzales Medina, Carlos Alejandro, and Cesar Raúl Alegría Guerrero. "¿Es posible predecir la preeclampsia?" Revista Peruana de Ginecología y Obstetricia 60, no. 4 (January 28, 2015): 363–71. http://dx.doi.org/10.31403/rpgo.v60i160.
Full textTejeiro. "PREDICCIÓN DEL RENDIMIENTO EN MÚSICA." Revista de Musicología 12, no. 1 (1989): 95. http://dx.doi.org/10.2307/20795271.
Full textAragón-Vargas, Luis Fernando. "CIENCIA, VOLCANES, HURACANES Y PREDICCIÓN." Pensar en Movimiento: Revista de Ciencias del Ejercicio y la Salud 14, no. 2 (December 30, 2016): 1–3. http://dx.doi.org/10.15517/pensarmov.v14i2.27615.
Full textMòdol Deltell, Josep M., and Miquel Sabrià. "Modelos de predicción de bacteriemia." Medicina Clínica 123, no. 7 (September 2004): 255–56. http://dx.doi.org/10.1016/s0025-7753(04)74480-2.
Full textColonna, L., and M. Zann. "Predicción de la respuesta antidepresiva." European psychiatry (Ed. Española) 3, no. 3 (June 1996): 210. http://dx.doi.org/10.1017/s1134066500001004.
Full textDissertations / Theses on the topic "Predicción"
Normey-Rico, J. E. (Julio Elias). "Predicción para control /." Sevilla, 1999. http://repositorio.ufsc.br/xmlui/handle/123456789/81146.
Full textGonzález, Maeso Ana María. "Predicción de crecimiento de la tuberosidad maxilar." Doctoral thesis, Universitat de València, 2011. http://hdl.handle.net/10803/81335.
Full textThis longitudinal studywasdesignedto determine a realisticassessment of themaxillarytuberositygrowththroughany of thethreeclinical records mostwidelyusedto date in orthodonticclinics: studymodels (SM), lateral cephalometricradiographs (LCR) and panoramicradiographs (PR). Thesampleconsisted of 60 patients (26 boys and 34 girls) between 7 and 21 yearsold, evaluatedon 2 differentstages of theirtoothage: duringthefirstmeasurement, subjectshad 1st phasemixeddentition, and ten yearslater, in a secondmeasurement, samesubjectshadpermanentdentition. Wedividedthesampleinto 2 groups: group A includessubjectswith non erupted 3rd molars, while in group B (23.3% of thesample), 3rd molarshaveeruptedcorrectly. In bothgroupstheavailabletuberosityspacewasmeasuredusingallthreeclinical records: from distal of 1st permanentupper molar to distal of thetuberosity. Linear correlationwasfoundbetweenthe 2 radiographic records; PR and LCR, butnotbetween SM. Theadultlength of thetuberosityarea can be predictedwithinitialmeasurementswhenusing PR and LCR. Withtheexception of SM, allothertechniquesshowedsignificantcorrelationbetweeninitial and final measures. Theaveragerate of tuberositygrowthmeasuredwithourownmethodusing LCR is 59.7%; averagevariation similar toRickettsanalysis, and weobtained a regressionequationwhichconfirmsthe linear correlationbetweenbothtechniques. Neither sex northetype of archinfluencethegrowth of themaxillarytuberosity in any of themeasurementtechniques. Onlygrowthisgreater in SM witherupted 3rd molars. The sum of 2nd and 3rd molarscrownsdiametersmeasuredwith LCR reach a mean value of 21.01 mm.It´ssignificantlygreatertotheaveragetuberosityspace: 19.18 mm, whichimpliesspaceproblems in 73.3% of adults.
Nogal, Macho María. "Métodos matemáticos para la predicción de tráfico." Doctoral thesis, Universidad de Cantabria, 2011. http://hdl.handle.net/10803/56317.
Full textIn this thesis we present the following mathematical models: - A conjugate Bayesian model for traffic flow reconstruction and estimation based on plate scanning, which permits us to identify the path, origin-destination and link flows. - A continuous dynamic traffic loading model. This FIFO rule consistent model evaluates the congestion effect taking into account the interaction of flows of all paths and their coincidence at different times and locations. It is assumed a non-linear link travel time function of the link volumes and considered the effect of a link congestion on the upstream route links. - A dynamic traffic model with stochastic demand for predicting some traffic variables such as link travel times, link flows or link densities and their time evolution in real networks. These three models have been tested with real traffic networks such as the Cuenca and Ciudad Real (Spain) networks and the Vermont-State (US) example, in order to analyze their characteristics and computational costs and validate results. Moreover, a literature revision about static and dynamic traffic models is included.
Becerra, Torres Bernardo Daniel. "Predicción del Ablandamiento del Kiwi en Postcosecha." Tesis, Universidad de Chile, 2008. http://www.repositorio.uchile.cl/handle/2250/101700.
Full textTorres, Lezcano Estanis. "Desarrollo de métodos de predicción de la incidencia de 'bitter pit' en plantaciones de manzanas ‘Golden Smoothee’ (Malus domestica, L. Borkh.)." Doctoral thesis, Universitat de Lleida, 2018. http://hdl.handle.net/10803/665244.
Full textEl bitter pit es la fisiopaía más importante en muchos cultivares de manzana. Sin embargo, no existe una estrategia de control completamente efectiva, por lo que un método de predicción que identifique años y plantaciones con alto potencial de desarrollar la fisiopatía permitirá evitar pérdidas económicas, especialmente durante la conservación y confección. El objetivo principal de la presente tesis doctoral fue la puesta a punto de un sistema de predicción de la incidencia de bitter pit en plantaciones de manzanas ‘Golden Smoothee’. Para ello, se investigaron diferentes métodos de predicción basados en tres tecnologías distintas: i) el análisis mineralógico de fruto (en estadios tempranos y en recolección), ii) la inducción de síntomas (infiltración de Mg, baños con etefón, embolsado de frutos y método pasivo) y iii) la espectroscopía VIS/NIR. Los distintos métodos se evaluaron en diferentes períodos de crecimiento del fruto. Paralelamente, se evaluó y cuantificó la eficacia de distintas estrategias para la mitigación del bitter pit basadas en aportaciones de CaCl2 en pre y poscosecha (aplicaciones radiculares, foliares y baños en poscosecha). El análisis temprano de Ca en fruto a 60 días después de plena floración (DDPF) mostró una precisión de predicción similar o mejor que el análisis de Ca en recolección. Se definió un umbral de referencia a 60 DDPF de 11 mg Ca 100 g-1 de peso fresco, por encima del cual se minimizó el riesgo de aparición del bitter pit. La mayoría de métodos basados en inducir síntomas, a excepción del embolsado de frutos, mostraron eficacia a partir de los 40 días antes de recolección (DAR), con una correlación con el bitter pit de poscosecha del 70-80%. La espectroscopía VIS/NIR mostró resultados poco satisfactorios para la predicción del bitter pit, sin embargo, sí fue capaz de discriminar frutos afectados cuando los síntomas eran visibles en poscosecha. Finalmente, se diseñó un modelo de predicción del bitter pit basado en el análisis de Ca en fruto a 60 DDPF y el método pasivo a partir de 40 DAR. Respecto la mitigación del bitter pit, los resultados obtenidos en años con alta incidencia mostraron una reducción de un 20% a un 12%, 8% o 3% mediante aplicaciones foliares, baños en poscosecha o la combinación de ambas, respectivamente, por lo que tanto las aplicaciones foliares de CaCl2 como los baños poscosecha serían prácticas a recomendar en el caso de riesgo de bitter pit.
Bitter pit is the most important physiological disorder in many apple cultivars. However, there is no a completely effective control strategy, therefore, a prediction method that identifies years and orchards with high potential to develop bitter pit will allow reducing economic losses, especially during storage and fruit packing. The main objective of this PhD thesis was the development of a system to predict the incidence of bitter pit for ‘Golden Smoothee’ apple orchards. For this, different methods to predict bitter pit based on three different technologies were investigated: i) mineral analysis (at early stages and at harvest period, ii) induction of symptoms (Mg infiltration, dips with etephon solution, bagging of fruit and passive method) and iii) VIS/NIR spectrophotometry. The different methods were tested in different fruit growth stages. At the same time, the efficacy of different strategies based on CaCl2 applications at pre- and postharvest (fertigation, foliar and postharvest dips) to mitigate bitter pit incidence, were evaluated and quantified. The accuracy of mineral analysis at early development fruit after 60 days after full bloom (DAFB) was better or equal than Ca analysis at harvest. A reference threshold at 60 DAFB of 11 mg Ca 100 g-1 fresh weight was defined. Values equal or higher indicated a low risk of bitter pit. Most methods based on inducing symptoms, with the exception of bagging fruit, showed efficacy from 40 days before harvest (DBH), with a correlation with bitter pit at postharvest of 70-80%. VIS/NIR spectrophotometry showed unsatisfactory results for bitter pit prediction, however, it was able to discriminate affected apples when the symptoms were visible at postharvest. Finally, a bitter pit prediction model based on the analysis of Ca in fruitlet at 60 DAFB and the passive method from 40 DBH was designed. Regarding bitter pit mitigation, the results obtained in seasons with a high incidence showed a reduction from 20% to 12%, 8% or 3% using Ca sprays, postharvest dips or the combination of both, respectively. Therefore, Ca sprays and postharvest dips in CaCl2 solutions are recommended practices when there is a diagnostic of high risk of bitter pit.
Amrani, Naoufal. "Spectral decorrelation for coding remote sensing data." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/402237.
Full textToday remote sensing is essential for many applications addressed to Earth Observation. The potential capability of remote sensing in providing valuable information enables a better understanding of Earth characteristics and human activities. Recent advances in satellite sensors allow recovering large areas, producing images with unprecedented spatial, spectral and temporal resolution. This amount of data implies a need for efficient compression techniques to improve the capabilities of storage and transmissions. Most of these techniques are dominated by transforms or prediction methods. This thesis aims at deeply analyzing the state-of-the-art techniques and at providing efficient solutions that improve the compression of remote sensing data. In order to understand the non-linear independence and data compaction of hyperspectral images, we investigate the improvement of Principal Component Analysis (PCA) that provides optimal independence for Gaussian sources. We analyse the lossless coding efficiency of Principal Polynomial Analysis (PPA), which generalizes PCA by removing non-linear relations among components using polynomial regression. We show that principal components are not able to predict each other through polynomial regression, resulting in no improvement of PCA at the cost of higher complexity and larger amount of side information. This analysis allows us to understand better the concept of prediction in the transform domain for compression purposes. Therefore, rather than using expensive sophisticated transforms like PCA, we focus on theoretically suboptimal but simpler transforms like Discrete Wavelet Transform (DWT). Meanwhile, we adopt predictive techniques to exploit any remaining statistical dependence. Thus, we introduce a novel scheme, called Regression Wavelet Analysis (RWA), to increase the coefficient independence in remote sensing images. The algorithm employs multivariate regression to exploit the relationships among wavelet-transformed components. The proposed RWA has many important advantages, like the low complexity and no dynamic range expansion. Nevertheless, the most important advantage consists of its performance for lossless coding. Extensive experimental results over a wide range of sensors, such as AVIRIS, IASI and Hyperion, indicate that RWA outperforms the most prominent transforms like PCA and wavelets, and also the best recent coding standard, CCSDS-123. We extend the benefits of RWA to progressive lossy-to-lossless. We show that RWA can attain a rate-distortion performance superior to those obtained with the state-of-the-art techniques. To this end, we propose a Prediction Weighting Scheme that captures the prediction significance of each transformed components. The reason of using a weighting strategy is that coefficients with similar magnitude can have extremely different impact on the reconstruction quality. For a deeper analysis, we also investigate the bias in the least squares parameters, when coding with low bitrates. We show that the RWA parameters are unbiased for lossy coding, where the regression models are used not with the original transformed components, but with the recovered ones, which lack some information due to the lossy reconstruction. We show that hyperspectral images with large size in the spectral dimension can be coded via RWA without side information and at a lower computational cost. Finally, we introduce a very low-complexity version of RWA algorithm. Here, the prediction is based on only some few components, while the performance is maintained. When the complexity of RWA is taken to an extremely low level, a careful model selection is necessary. Contrary to expensive selection procedures, we propose a simple and efficient strategy called \textit{neighbor selection} for using small regression models. On a set of well-known and representative hyperspectral images, these small models maintain the excellent coding performance of RWA, while reducing the computational cost by about 90\%.
Francia, Santamaria Esther. "Predicción de la mortalidad intrahospitalaria en medicina interna." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/108094.
Full textPrognosis, along with diagnosis and treatment, is one of the primary functions of medicine. One of the objectives of the prognosis is to know which patients may die, and establish the prediction of mortality. This prediction is difficult in most of the usual clinical circumstances, but it is more difficult in populations with very different patients, with few common characteristics, as occurs in patients admitted in general internal medicine wards. Prediction of mortality is based on experience and may be supported by the scientific method, using probabilistic statistical models. Many probabilistic models have been developed and applied in different hospitalization areas, to different developmental stages of disease and for different diseases. In general, these models include either the prior comorbidities to acute illness and are considered “clinical models” or are based on the vital signs and other parameters obtained in the first contact with the patient, constituting the “physiological models”. To our knowledge, no model has been designed specifically for prediction of in-hospital mortality at the moment of admission for patients admitted to a general internal medicine ward. The hypothesis of this thesis is that two mortality predictive models designed in other areas are useful for this purpose. These two models are the Rue´s clinical model, designed in hospitalization wards of diverse specialities at Hospital Parc Taulí (Sabadell, Spain), and the Olsson´s physiological model, developed for medical patients in an emergency department. In order to test this hypothesis, a prospective observational cohort study was undertaken in patients admitted to an acute internal medicine ward in a tertiary, urban and university teaching hospital in Spain (Hospital de la Santa Creu i Sant Pau, Barcelona). The results of this study gave rise to the first article of this thesis. Both models were applied in this population and confirmed their accurate ability in the prediction of the overall in-hospital mortality. They were satisfactory for management purposes. Although the physiological model was slightly better than the clinical model, the difference was not statistically significant. However, the two models didn´t proved to be a reliable tool for individual predictions. Possible explanations for the unsatisfactory ability shown in individual prediction include, among other factors, the application of the models in a very heterogeneous population. One of the main factors that contribute to this heterogeneity is age. Therefore the age and its evolution over the past 20 years in this population were analysed. As we described in the second publication of this thesis, we confirmed that patients admitted to internal medicine in our hospital and in Spanish hospitals in general, are significantly older than some years ago and steadily increasing. The advanced age can be a decisive factor in unsatisfactory ability of individual mortality prediction of the models. To test this hypothesis, we extended the first study and divided the population in two age groups. Eighty-five years was the point. The Olsson´s physiological model was applied in both groups because it demonstrated to be the best predictor in the first study. The results are described in the third publication of this thesis and showed that age interferes in the model and significantly decreases its prognosis ability. There may be important variables in advanced age not taken into account in the predictive models. It would be of great interest to design predictive models of in-hospital mortality in general internal medicine for patients of advanced age.
Fantini, Pérez-Villamil Juan Eduardo. "Autómatas celulares en la predicción de ADR'S Latinoamericanos." Tesis, Universidad de Chile, 2006. http://repositorio.uchile.cl/handle/2250/108375.
Full textApolaya, Torres Carlos Humberto, and Diaz Adolfo Espinosa. "Técnicas de inferencias, predicción y minería de datos." Bachelor's thesis, Universidad Peruana de Ciencias Aplicadas (UPC), 2018. http://hdl.handle.net/10757/624497.
Full textIn the first chapter, it describes the problem to be solved and it details the specific objectives that contribute to the fulfillment of the general objective and the scope of the project. In the second chapter, the most important basic concepts like Data Mining and Machine Learning are defined, which are related to the subject of research study. In the third chapter, there is the State of Art, in which the previous research related to the project will be reviewed indicating the area in which it was implemented. This allows us to understand how the subject is currently investigated and to have a clearer vision of what can be developed. In the fourth chapter, we describe the development of the project, the methodology to be used, details the phases of the methodology and the process to be followed for the correct implementation of the model using decision trees and the Knowledge Discovery in Databases (KDD) methodology. The fifth chapter details how we obtained a prediction error rate of approximately 9.13%, the tests performed and recommendations. As well as proposals for project continuity focused on improving the prediction model. Finally in the sixth chapter, the final results are described in the project's own management, in the aspects of Final Result and the Outreach, Time, Communication, Human Resources and Risk Management.
Tesis
Obrecht, Ihl Paz. "Predicción de crimen usando modelos de markov ocultos." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/117357.
Full textIngeniera Civil Industrial
La prevención del crimen ha ganado cada vez más espacio e importancia entre las políticas públicas en seguridad ciudadana, tanto en Chile como en el mundo. Durante la investigación realizada en este trabajo, se desarrolla un modelo para predecir los crímenes sobre una ciudad, que incluye el efecto de intervenciones preventivas y que permite además estudiar el fenómeno de desplazamiento que se le atribuye a este tipo de medidas. Ambos aspectos incluidos rara vez en los modelos de predicción revisados en la literatura. La estructura utilizada corresponde a un modelo de Markov oculto, donde el atractivo de un lugar para cometer un tipo específico de crimen se considera oculto y se estudia a través de el registro de crímenes observados en dicho lugar, considerando el efecto que intervenciones policiales podrían tener. De manera de demostrar el tipo de información y uso que se puede hacer del modelo desarrollado, se aplicó éste en un caso de estudio. Los datos de los crímenes y vigilancia policial utilizados se obtuvieron mediante un simulador del crimen sobre una ciudad ficticia. El modelo estimado, permitió comparar el efecto de la vigilancia en el lugar donde es ubicada, así como en las áreas aledañas, según el atractivo de cada lugar. Encontrándose que las celdas más atractivas son más susceptibles a esta vigilancia, tanto en la reducción de crímenes esperados al posicionarse un vigilante en un lugar, como en el aumento de la tasa de crímenes cuando un policía es ubicado en lugares aledaños. A partir de las matrices de transición se clasificaron las unidades de estudio, que componen la ciudad virtual, según su potencial para pasar a un estado de alta atractividad. Donde le grupo más numeroso corresponde al de celdas, de Bajo y Mediano Potencial, que permanecen en el mínimo estado de atractividad, reportando pocos crímenes en el lugar. Por el contrario, aquellas celdas, de Alto Potencial, que tienen probabilidades significativas de llegar y permanecer en estados de alta atractividad es el grupo menos numeroso, y el que además suele concentrar los crímenes. Esto se alinea con lo que sugiere la literatura respecto a unos pocos lugares concentrado la mayoría de los crímenes. Para validar el modelo se comparó su ajuste y predicciones con los obtenidos de otros cuatro modelos con diferentes especificaciones y estructuras (HMM Homogéneo, Clases Latentes, Regresión de Poisson y Persistencia), obteniendo mejores tasas de aciertos en la predicción de los crímenes futuros, de alrededor del 97%. Además el modelo destaca prediciendo los crímenes de las celdas de Alto Potencial, respecto a los modelos alternativos, alcanzando tasas de aciertos de 97% en comparación con las obtenidas por los otros cuatro modelos: 78%, 92%, 48% y 34% respectivamente. Se concluye además, en el experimento, que la inclusión del efecto de la policía permite capturar mejor el fenómeno delictivo, mejorando el desempeño al predecir el número de crímenes. Finalmente, en relación a los objetivos planteados en este trabajo, se puede concluir que el modelo HMM desarrollado logra incorporar de forma efectiva los dos atributos que se deseaban estudiar en el fenómeno delictivo: considerar la atractividad de forma dinámica,actualizándose período a período, e incluir el efecto de la vigilancia en la predicción.
Books on the topic "Predicción"
González, Wenceslao J. Las ciencias de diseño: Racionalidad limitada, predicción y prescripción. (La Coruña), Spain: Netbiblo, 2007.
Find full textCarriello, Bernardo Bernardi. Crisis cambiarias en países emergentes: Modelos empíricos de explicación y predicción. Barranquilla, Colombia: Ediciones Uninorte, 2010.
Find full textValderrama, Mariano J. Predicción dinámica mediante análisis de datos funcionles: Introducción a los modelos PCP. Madrid: La Muralla, 2000.
Find full textBarber, James David. The presidential character: Predicting performance in the White House. 4th ed. Englewood Cliffs, N.J: Prentice Hall, 1992.
Find full textThe presidential character: Predicting performance in the White House. 3rd ed. Englewood Cliffs, N.J: Prentice-Hall, 1985.
Find full textPrograma de Investigación Estratégica en Bolivia and Agroecología Universidad Cochabamba, eds. Indicadores del tiempo y la predicción climática: Estrategias agroecológicas campesinas para la adaptación al cambio climático en la puna cochabambina. La Paz, Bolivia: PIEB Programa de Investigación Estratégica en Bolivia, 2012.
Find full textGrasa, Antonio Aznar. Métodos de predicción en economía. Barcelona: Editorial Ariel, 1993.
Find full textSerrano, Nicolás Madé. El terremoto: Etiología y predicción científica. Santo Domingo, República Dominicana: Editora Universitaria UASD, 1985.
Find full textEstebaranz, Juan José Ayuso. Predicción estadística operativa en el INM. [Madrid]: MOPT, Instituto Nacional de Meteorología, 1994.
Find full textBook chapters on the topic "Predicción"
"PREDICCIÓN." In La evolución del encarcelamiento en España (1971-2020), 107–22. J.M Bosch, 2021. http://dx.doi.org/10.2307/j.ctv253f6sp.8.
Full text"PREDICCIÓN." In Modelación financiera : conceptos y aplicaciones, 87–111. Universidad Piloto de Colombia, 2019. http://dx.doi.org/10.2307/j.ctv2cw0t93.7.
Full textSantos Burguete, Carlos, Sergi González Herrero, Álvaro Subías Díaz-Blanco, and Alejandro Roa Alonso. "Predicción probabilista." In Física del caos en la predicción meteorológica, 401–45. Agencia Estatal de Meteorología, 2018. http://dx.doi.org/10.31978/014-18-009-x.27.
Full textPicornell Alou, Maria Angeles, and Joan Campins Pons. "Predicción de medicanes." In Física del caos en la predicción meteorológica, 551–61. Agencia Estatal de Meteorología, 2018. http://dx.doi.org/10.31978/014-18-009-x.33.
Full text"LA CAPACIDAD DE PREDICCIÓN." In Los economistas y la crisis financiera (2007-2008), 65–120. Marcial Pons Ediciones Jurídicas y Sociales, 2018. http://dx.doi.org/10.2307/j.ctv10sm8j9.8.
Full textWerner Hidalgo, Ernest. "Aplicaciones en predicción aeronáutica." In Física del caos en la predicción meteorológica, 523–29. Agencia Estatal de Meteorología, 2018. http://dx.doi.org/10.31978/014-18-009-x.31.
Full textCatalina, Alejandro, and José R. Dorronsoro. "Predicción por conjuntos y estimaciones de incertidumbre en predicción de energía eólica." In Física del caos en la predicción meteorológica, 607–11. Agencia Estatal de Meteorología, 2018. http://dx.doi.org/10.31978/014-18-009-x.39.
Full textPalomo Segovia, María, Juan Antonio Fernández-Cañadas, Juan José Rodríguez Velasco, and Alberto Fernández Matía. "Predicción de aludes (3 casos)." In Física del caos en la predicción meteorológica, 689–715. Agencia Estatal de Meteorología, 2018. http://dx.doi.org/10.31978/014-18-009-x.45.
Full textWerner, Ernest, Enric Terradellas, Sara Basart, and Gerardo García-Castrillo. "Predicción de polvo mineral atmosférico." In Sexto Simposio Nacional de Predicción "Memorial Antonio Mestre", 377–84. Agencia Estatal de Meteorología, 2019. http://dx.doi.org/10.31978/639-19-010-0.377.
Full textSantos Burguete, Carlos. "Sistemas de predicción por conjuntos (SPC)." In Física del caos en la predicción meteorológica, 165–92. Agencia Estatal de Meteorología, 2018. http://dx.doi.org/10.31978/014-18-009-x.13.
Full textConference papers on the topic "Predicción"
Torres, Jesús, Rosa M. Aguilar, Juan A. Méndez, and K. V. Zúñiga-Meneses. "Deep learning en la predicción de generación de un parque eólico." In Actas de las XXXVII Jornadas de Automática 7, 8 y 9 de septiembre de 2016, Madrid. Universidade da Coruña, Servizo de Publicacións, 2022. http://dx.doi.org/10.17979/spudc.9788497498081.0869.
Full textAbderrahim, Mohamed, Luis Condezo-Hoyos, Noemí León Roque, and Silvia M. Arribas. "Predicción del índice de fermentación de cacao (Theobroma cacao L.) mediante análisis de imagen y redes neuronales." In Actas de las XXXVII Jornadas de Automática 7, 8 y 9 de septiembre de 2016, Madrid. Universidade da Coruña, Servizo de Publicacións, 2022. http://dx.doi.org/10.17979/spudc.9788497498081.1156.
Full textLopez de Luise, Daniela, Walter Bel, Diego Mansilla, Alberto Lobatos, Lucia Blanc, and Rigoberto Malca la Rosa. "Predicción de Riesgo basado en tiempo y patrones GPS." In 2016 IEEE Biennial Congress of Argentina (ARGENCON). IEEE, 2016. http://dx.doi.org/10.1109/argencon.2016.7585256.
Full textHuarote Zegarra, Raúl Eduardo, Yensi Vega Lujan, Mónica Patricia Romero Valencia, Aradiel Castañeda Hilario, Edward José Flores Masías, Alfredo Cesar Larios Franco, and Jhonatan Isaac Vargas Huaman. "Modelo De Predicción De Decesos Basado En Aprendizaje Artificial Supervisado." In The 19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable social development” “Leveraging emerging technologies to construct the future”. Latin American and Caribbean Consortium of Engineering Institutions, 2021. http://dx.doi.org/10.18687/laccei2021.1.1.358.
Full textLazaro Camasca, Edson, and Yuri Nuñez Medrano. "Predicción De Estudiantes Universitarios En Riesgo Académico Usando Algoritmos Supervisados." In The 19th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Prospective and trends in technology and skills for sustainable social development” “Leveraging emerging technologies to construct the future”. Latin American and Caribbean Consortium of Engineering Institutions, 2021. http://dx.doi.org/10.18687/laccei2021.1.1.363.
Full textHuamani-Avendaño, Rodrigo, Jose Sulla-Torres, Alba Yauri-Ituccayasi, and Sandra Zapata-Quentasi. "Predicción para el Negocio de Alquiler de Automóviles con Técnicas Supervisadas." In The 17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, and Infrastructure for Sustainable Cities and Communities”. Latin American and Caribbean Consortium of Engineering Institutions, 2019. http://dx.doi.org/10.18687/laccei2019.1.1.371.
Full textCalluchi-Arocutipa, Britsel, Doris Ccama-Yana, Christian Incalla-Nina, Renzo Portilla-Arias, and Jose Sulla-Torres. "Predicción de riesgo de osteoporosis en escolares utilizando minería de datos." In The 17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, and Infrastructure for Sustainable Cities and Communities”. Latin American and Caribbean Consortium of Engineering Institutions, 2019. http://dx.doi.org/10.18687/laccei2019.1.1.408.
Full textGutiérrez Quintanilla, Andrea, Nicole Mancilla Medina, and Jose Sulla-Torres. "Predicción de cáncer de mama a través de biomarcadores mediante aprendizaje automático." In The 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: Engineering, Integration, And Alliances for A Sustainable Development” “Hemispheric Cooperation for Competitiveness and Prosperity on A Knowledge-Based Economy”. Latin American and Caribbean Consortium of Engineering Institutions, 2020. http://dx.doi.org/10.18687/laccei2020.1.1.514.
Full textQuintana-Zaez, Julio, Guillermo E. Calderón-Ruiz, Cosme E. Santisteban-Toca, and Hector R. Velarde-Bedregal. "Minería de Patrones Secuenciales aplicada a la Predicción del Plegamiento de Proteínas." In The 17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, and Infrastructure for Sustainable Cities and Communities”. Latin American and Caribbean Consortium of Engineering Institutions, 2019. http://dx.doi.org/10.18687/laccei2019.1.1.37.
Full textBenavides, Llinet, and Miguel Ángel Manso. "ARQUITECTURA NEURONAL PARA PREDICCIÓN DE RADIACIÓN SOLAR EN BASE A VARIABLES METEOROLÓGICAS." In 3rd Congress in Geomatics Engineering. Valencia: Universitat Politècnica de València, 2021. http://dx.doi.org/10.4995/cigeo2021.2021.12735.
Full textReports on the topic "Predicción"
Shennan, Andrew H., Alexandra Ridout, and Georgia Ross. Instrumentos para la Predicción y Prevención del Parto Pretérmino. Buenos Aires: siicsalud.com, March 2017. http://dx.doi.org/10.21840/siic/149973.
Full textGiordano, Paolo, Jesica De Angelis, Nahuel Guaitá, Kathia Michalczewsky, Juan Rodríguez Gaudin, Gabriel Michelena, and Ayelén Vanegas. Metodología de las estimaciones de las tendencias comerciales de América Latina. Inter-American Development Bank, July 2021. http://dx.doi.org/10.18235/0003373.
Full text