Academic literature on the topic 'Predicted Mean Vote (PMV)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Predicted Mean Vote (PMV).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Predicted Mean Vote (PMV)"
Liu, Jing, and Ting Cai. "Development Adaptive Predicted Mean Vote (aPMV) Model for Naturally Ventilated Buildings in Zunyi, China." E3S Web of Conferences 136 (2019): 03029. http://dx.doi.org/10.1051/e3sconf/201913603029.
Full textLee, Boram, Jeonghoon Kim, KyooSang Kim, Hyejin Kim, and Kiyoung Lee. "Assessment of Thermal Comfort in a General Hospital in Winter Using Predicted Mean Vote (PMV)." Korean Journal of Environmental Health Sciences 41, no. 6 (December 28, 2015): 389–96. http://dx.doi.org/10.5668/jehs.2015.41.6.389.
Full textSusanti, Lusi, and Nike Aulia. "Evaluasi Kenyamanan Termal Ruang Sekolah SMA Negeri di Kota Padang." Jurnal Optimasi Sistem Industri 12, no. 1 (April 26, 2016): 310. http://dx.doi.org/10.25077/josi.v12.n1.p310-316.2013.
Full textKajtar, Laszlo, Jozsef Nyers, Janos Szabo, Laszlo Ketskemety, Levente Herczeg, Anita Leitner, and Balazs Bokor. "Objective and subjective thermal comfort evaluation in Hungary." Thermal Science 21, no. 3 (2017): 1409–18. http://dx.doi.org/10.2298/tsci151005095k.
Full textUdrea, Ioana, Cristiana Croitoru, Ilinca Nastase, Angel Dogeanu, and Viorel Badescu. "Thermal Comfort Analyses in Naturally Ventilated Buildings." Mathematical Modelling in Civil Engineering 10, no. 3 (September 1, 2014): 60–66. http://dx.doi.org/10.2478/mmce-2014-0016.
Full textBroday, Evandro Eduardo, Jéferson Aparecido Moreto, Antonio Augusto de Paula Xavier, and Reginaldo de Oliveira. "The approximation between thermal sensation votes (TSV) and predicted mean vote (PMV): A comparative analysis." International Journal of Industrial Ergonomics 69 (January 2019): 1–8. http://dx.doi.org/10.1016/j.ergon.2018.09.007.
Full textAguilera, José Joaquín, Jørn Toftum, and Ongun Berk Kazanci. "Predicting personal thermal preferences based on data-driven methods." E3S Web of Conferences 111 (2019): 05015. http://dx.doi.org/10.1051/e3sconf/201911105015.
Full textYang, Xue Bin, De Fa Sun, Xiang Jiang Zhou, Ling Ling Cai, and Ying Ji. "Indoor Thermal Comfort and its Effect on Building Energy Consumption." Applied Mechanics and Materials 71-78 (July 2011): 3516–19. http://dx.doi.org/10.4028/www.scientific.net/amm.71-78.3516.
Full textGhaffari Jabbari, Shahla, Aida Maleki, Mohammad Ali Kaynezhad, and Bjarne W. Olesen. "Inter-personal factors affecting building occupants’ thermal tolerance at cold outdoor condition during an autumn–winter period." Indoor and Built Environment 29, no. 7 (August 5, 2019): 987–1005. http://dx.doi.org/10.1177/1420326x19867999.
Full textDyvia, H. A., and C. Arif. "Analysis of thermal comfort with predicted mean vote (PMV) index using artificial neural network." IOP Conference Series: Earth and Environmental Science 622 (January 8, 2021): 012019. http://dx.doi.org/10.1088/1755-1315/622/1/012019.
Full textDissertations / Theses on the topic "Predicted Mean Vote (PMV)"
Godbole, Swapnil. "Investigating The Relationship Between Mean Radiant Temperature (MRT) And Predicted Mean Vote (PMV) : A case study in a University building." Thesis, KTH, Installations- och energisystem, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235927.
Full textTermisk komfort inomhusmiljö är till stor del beroende av de fyra miljö och två personlig parametrar som oftast mäts av Predicted Mean Vote (PMV) modell som utvecklats av Fanger. Det har studerats att variationer i dessa parametrar utanför en limit kan leda till missnöjeklagomål. Däremot har lite forskning gjorts på effekten av mean radiant tempratur och dess inverkan på predicted mean vote och termisk komfort speciellt i en verklig byggnadsmiljö. Syftet med denna studie är att undersöka sambandet mellan mean radiant tempratur och predicted mean vote i inomhusmiljö. Användning mätmetoderna av inomhusmiljöparametrar och subjektiva röster av termisk komfort uppfattning i en byggnad för utbildning; det konstaterades att stiga i medel leda mean radiant tempratur att stiga i predicted mean vote värde och missnöje rösta bland byggnad brukarna sitter nära glasfasaden. En väldigt positiv korrelation mellan men radiant tempratur och predicted mean vote nära en fönstersida under varma och soliga väder var noterat. Genom att analysera data av inomhusmiljön från de multipla mätningssessionerna konkluderat att ökningen i mean radiant tempratur och predicted mean vote inte märktes tills det fanns en direkt soltransmission genom fönstret. Det är rekommenderar att använda solskydd på fönster, men med tanke på kompromisser mellan energiförbrukning (värme eller kyla) och ljussättning konsumtion. Inga slutsatser kan göras om luftdrag på fotled grund av experimentella begränsningar och mer forskning skulle krävas för att undersöka detta fenomen.
Abreu, Saraiva Freitas Iuri. "Indoor climate : A comparison of residential units in Tjärna Ängar, Borlänge before and after retrofitting." Thesis, Högskolan Dalarna, Energiteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:du-30466.
Full textDiatel, Jakub. "Vytápění bytových domů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2019. http://www.nusl.cz/ntk/nusl-392111.
Full textLee, Yu-Chung, and 李煜中. "An Implementation of Automobile’s Fan-Coil Controller Based on Predicted Mean Vote(PMV)." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/83925714448734120630.
Full text國立彰化師範大學
車輛科技研究所
96
The research develops an embedded system for automobile’s Fan-Coil controller. The traditional automobile’s air-conditioning system uses basic temperature-controlled system, it will change the setting when it senses different temperature, but these frequently adjusts can not only satisfy customer’s and driver’s demands but also the safety of the driver. For this reason, the research builds up a comfortable automobile’s Fan-Coil controlled system for embedded system, driver and customer can understand the environment for human’s comfortable feeling through PMV index, further really creates a safety and comfortable vehicle environment. The research uses the processor of Philips’ ARM7 structure as the system kernel. It collocated several temperature sensors, liquid crystal display and controlled circuits into the hardware system. The embedded system structure will be developed as the Fan-Coil Comfort controller. The diagnosis of comfort is adopted this standard of ISO. The research in accordance with inference of PMV formula and the difference of inside temperature and temperature setting to find the best point in the environment. It determine the output of Fan-Coil unit according to Fuzzy control theory. Finally, the system achieves the purpose of keeping comfortable in car.
Chen, Chu, and 陳褚. "A PERSONALIZED COMFORT SENSING SYSTEM BASED ON MODIFIED PREDICTED MEAN VOTE (PMV) MODEL." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/55611926882653772809.
Full text大同大學
通訊工程研究所
103
In smart building, thermal comfort and indoor air quality are important factors, and the real-time measurement of comfort is notoriously complicated. Indoor environment has become an important area of research because of its influence on human health and energy consumption. In this paper, the authors have proposed a personalized comfort sensing system and implement the system with the Intel Quark-based Gateway. The proposed personalized comfort sensing system would record personal comfort region based on modified Predicted Mean Vote (PMV) formula and automatically provide a personalized comfort environment for user. To record and adjust with the objective of PMV value, implement a subjective personalized comfort sensing system, to improve the shortcomings of PMV formula which is for most people, but ignore few people. This system is of great significance in automation comfort environment control for smart building, to implement a real smart building.
Rodrigues, Nelson José Oliveira. "Modelação computacional e avaliação experimental do conforto térmico ocupacional em salas de operação." Doctoral thesis, 2017. http://hdl.handle.net/1822/48669.
Full textO presente estudo aborda o conforto térmico vivenciado pelos profissionais de saúde quando desempenham as suas atividades em salas de operações. No desenvolvimento do estudo foi selecionada uma sala exemplo, localizada num hospital da Região Norte de Portugal. Efetuada uma análise inicial, procedeu-se à caraterização do ambiente térmico da sala de operações, tendo em conta as atividades desempenhadas, assim como os sistemas de ventilação existentes e temperaturas praticadas. A análise do conforto térmico da sala de operações foi baseada em diferentes metodologias. Na primeira metodologia foi avaliada a sensação térmica efetiva, através de um questionário de ambiente térmico, aplicado aos profissionais de saúde. Na segunda metodologia foi aplicado o índice de Fanger, calculando o voto médio previsível. O isolamento do vestuário, necessário à realização do cálculo, foi também obtido através do questionário aplicado. Por sua vez, as variáveis ambientais foram recolhidas por medição no local, durante a execução das cirurgias. Relativamente à taxa metabólica, esta foi determinada por observação dos investigadores, recorrendo aos valores tabelados na norma ISO 8996:2004. O valor obtido para este parâmetro foi comparado com uma metodologia experimental, contudo, a última apresentou uma grande discrepância com a literatura. A terceira abordagem consistiu na construção de um modelo numérico para a previsão do ambiente térmico da sala e na utilização destes dados simulados para a avaliação do conforto térmico. Os resultados das diferentes metodologias foram analisados, tendo sido identificado que a sensação térmica apresentava o maior nível de dispersão na sala de operações. Por sua vez, o índice de Fanger calculado utilizando os dados ambientais medidos, apresentou um desvio da sensação térmica média para um valor mais elevado, sendo este, em valor absoluto, de 0,74, mas com uma dispersão mais reduzida. Apesar disso, foi verificada uma correlação entre as distribuições resultantes das duas abordagens. Quanto aos dados ambientais simulados numericamente, estes apresentam uma boa aproximação aos dados medidos em campo, permitindo, por um lado, validar a precisão dos resultados obtidos através da utilização destes métodos na avaliação do conforto térmico e, por outro, conseguir um maior detalhe das variáveis, assim como a verificação de assimetrias.
The present study addresses the thermal comfort experienced by the health professionals when performing their activities, in operating rooms. In the development of the study, an example room was selected, from a hospital located in the Northern Region of Portugal. After an initial analysis, the thermal environment of the operating room was characterised, taking into account the activities performed, as well as the existing ventilation systems and the temperatures. The thermal comfort analysis of the operating room was based on different methodologies. In the first methodology was assessed the effective thermal sensation, through a questionnaire for the thermal environment, applied to the health professionals. On the second methodology, Fanger’s index was used to calculate the predicted mean vote. The clothing insulation, necessary for the calculation, was also obtained through the questionnaire applied. In turn, the environmental variables were collected through field measurements during the execution of the surgeries. Regarding the metabolic rate, this parameter was determined through observation, by the researchers, and using the tabled values on ISO 8996:2004. The obtained value was compared with an experimental methodology, however, the latter result presented great discrepancy with the literature. The third methodology consisted in the construction of a numerical model to the prediction of the thermal environment in the operating room and using the obtained data for the evaluation of the thermal comfort. The results of the different methodologies were analysed and it was identified that the thermal sensation presented a higher level of dispersion in the operating room. However, when using the measured data to calculate Fanger's index, the results presented a deviation on the thermal sensation towards a hotter sensation, with an absolute value of 0.74, though, with a lower dispersion. Despite the observed, a good correlation was obtained between the two resulting distributions. Regarding the simulated environmental data, it was verified a good approximation to the measured field data, which allowed, on one side, to validate the precision of the data obtained through simulation, and on another side, that this method presented a greater detail, allowing to verify the existence of asymmetries.
Costa, Luís Manuel Teixeira Matos da. "Custo do conforto térmico em edifícios localizados em Portugal." Master's thesis, 2018. http://hdl.handle.net/10316/86078.
Full textEste trabalho foi realizado com o objetivo de possibilitar a simulação da climatização de um espaço através de pontos de referência (Set-Points) de conforto térmico do ser humano, pelo voto médio previsto (PMV). Este tipo de climatização vem por oposição aos tradicionais sistemas de definição de temperatura. Este estudo foi elaborado com base numa premissa de poupança de recursos energéticos e económicos. O objetivo passa por uma tentativa de adaptar a temperatura no interior de um espaço à atividade metabólica correspondente aos indivíduos que nele se encontram, assim como o tipo de vestuário que os mesmos possam estar a utilizar. Foi empregue o software SEnergEd, que utiliza os conceitos de climatização por simulação dinâmica, horária de um espaço monozona, presentes na norma ISO 13790 (2006). A este programa foram adicionadas funções que permitem a aplicação da norma ISO 7730 (2005), de modo a atingir o objetivo descrito no primeiro parágrafo.As consequências deste método de climatização resultam numa melhor adaptação às necessidades de quem habita o espaço, ajustando assim as cargas térmicas aos valores necessários para o conforto do ser humano, que podem diferenciar bastante daqueles obtidos através de Set-Points de temperatura. Este aspeto revela a incapacidade de um sistema de climatização por Set-Points de temperatura em contabilizar parâmetros relativos ao ser humano como os supramencionados (isolamento do vestuário e taxa de atividade metabólica).Em simultâneo, é realizado um estudo adaptado ao edificado e clima português, com o objetivo de perceber os custos associados à manutenção de vários níveis de conforto térmico, de acordo com os vários fatores humanos, climatéricos, construtivos e energéticos em análise. O Custo Anual Equivalente (CAE) é o parâmetro utilizado para permitir uma comparação adequada entre as várias classes de conforto. A variação do CAE em função da variação do PMV e da percentagem de pessoas insatisfeitas (PPD) com o ambiente térmico permite a obtenção da classe de conforto ideal para encontrar um meio-termo satisfatório entre redução de custos e manutenção de um determinado nível de conforto.
The work here presented has its main goal centred on the possibility to allow the user to simulate the climatization of a room through the usage of human thermal comfort Set-Points, determined using the predicted mean vote (PMV). This kind of climatization is meant to be an upgrade towards the more traditional systems relying on fixed temperature Set-Points.This study is established on the premise of saving resources, energetic and economic. The goal is to try and adapt the interior temperature of a room to its usage, the metabolic rate and the clothing relative to the people in it.The utilized software, SEnergEd, employs the theoretical concepts for a dynamic, hourly, single-zone space found in the ISO 13790 (2006). To the initial version of this program, various functions have been added to allow it to merge in the thermal comfort factors present in the ISO 7730 (2005) to attain the goal set in the first paragraph.A direct consequence of this climatization method should be an optimal adjustment to the needs of the people who will be using the space. The thermal loads employed will be adjusted to the necessary values needed to maintain human thermal comfort. These values more likely than not, will differ from the ones obtained from using temperature Set-Points. This exposes a limitation on the temperature Set-Point systems to consider important factors like the human metabolic rate and clothing insulation.The second part of this thesis is a study set on the most common Portuguese buildings and the various climate zones found in the country, which goal is set on determining the costs related to maintaining a certain level of comfort, dependant on various human, climate, constructive and energetic factors.The Equivalent Annual Cost (EAC) is the parameter used to allow a good comparison between various comfort classes. The varying of the EAC in result of the varying predicted percentage dissatisfied (PPD) with the thermal environment in the room is key to find a satisfying middle-ground between cost reduction and keeping people comfortable.
Book chapters on the topic "Predicted Mean Vote (PMV)"
Parsons, Ken. "The Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD)." In Human Thermal Comfort, 23–28. Boca Raton, FL: CRC Press/Taylor & Francis Group 2020.: CRC Press, 2019. http://dx.doi.org/10.1201/9780429294983-3.
Full textFabbri, Kristian. "The Indices of Feeling—Predicted Mean Vote PMV and Percentage People Dissatisfied PPD." In Indoor Thermal Comfort Perception, 75–125. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18651-1_4.
Full textSheng, Jinying, and Nianping Li. "The Applicable Research of Predicted Mean Vote Evaluation Index in Ceiling Radiant Cooling Panels." In Lecture Notes in Electrical Engineering, 315–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39584-0_35.
Full textLi, Yu, Yacine Rezgui, Annie Guerriero, Xingxing Zhang, Mengjie Han, Sylvain Kubicki, and Yan Da. "Development of an Adaptation Table to Enhance the Accuracy of the Predicted Mean Vote Model." In Data-driven Analytics for Sustainable Buildings and Cities, 227–47. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2778-1_11.
Full textBroday, E. E., and A. A. de P. Xavier. "A systematic literature review on Thermal Response Votes (TSV) and Predicted Mean Vote (PMV)." In Occupational Safety and Hygiene VI, 13–17. CRC Press, 2018. http://dx.doi.org/10.1201/9781351008884-3.
Full textCruse, Andrew. "Improving the Weather." In Examining the Environmental Impacts of Materials and Buildings, 251–81. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2426-8.ch009.
Full textConference papers on the topic "Predicted Mean Vote (PMV)"
Chen, Xiao, and Qian Wang. "A Data-Driven Thermal Sensation Model Based Predictive Controller for Indoor Thermal Comfort and Energy Optimization." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6131.
Full textBing, Wei, Li Li, Jiang Lu, and Zhang Wei. "Numerical Simulation of Indoor Air Flow in Capillary Plane HVAC Terminal System." In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/es2008-54081.
Full textKolková, Zuzana, Peter Hrabovský, and Jozef Matušov. "Analysis of Thermal Comfort and Microclimatic Conditions in Special Workplaces." In 2nd International Conference on Research in Science, Engineering and Technology. Acavent, 2019. http://dx.doi.org/10.33422/2nd.icrset.2019.11.789.
Full textAl Qubaisi, Ayesha, and Ali Al Alili. "Toward Efficient Residential Buildings in Hot and Humid Climates." In ASME 2015 9th International Conference on Energy Sustainability collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/es2015-49255.
Full textHasan, Alaa, Tarek ElGammal, Ryoichi S. Amano, and Essam E. Khalil. "Flow Patterns and Temperature Distribution in an Underground Metro Station." In ASME 2018 12th International Conference on Energy Sustainability collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/es2018-7413.
Full textArezes, P., C. P. Lea˜o, M. L. Ferreira, and S. F. Teixeira. "Teaching Human Termal Comfort Through a Software Graphic Interface." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-14873.
Full textFarooq, Sobia, and Fredericka Brown. "Evaluation of Thermal Comfort and Energy Demands in University Classrooms." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88326.
Full textAl-Rawahi, Ahmed Khalfan, and Ali Al-Alili. "Indoor Air Quality of an Educational Building and its Effects on Occupants’ Comfort and Performance." In ASME 2017 11th International Conference on Energy Sustainability collocated with the ASME 2017 Power Conference Joint With ICOPE-17, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/es2017-3601.
Full textXu Wei, Chen Xiangguang, and Zhao Jun. "An adaptive Predicted Mean Vote (aPMV) model in office." In 2010 International Conference on Mechanic Automation and Control Engineering (MACE). IEEE, 2010. http://dx.doi.org/10.1109/mace.2010.5536861.
Full textCigler, Jiri, Samuel Privara, Zdenek Vana, Eva Zacekova, and Lukas Ferkl. "On predicted mean vote optimization in building climate control." In 2012 20th Mediterranean Conference on Control & Automation (MED 2012). IEEE, 2012. http://dx.doi.org/10.1109/med.2012.6265854.
Full text