Journal articles on the topic 'Prediction of binding affinity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Prediction of binding affinity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kondabala, Rajesh, Vijay Kumar, Amjad Ali, and Manjit Kaur. "A novel astrophysics-based framework for prediction of binding affinity of glucose binder." Modern Physics Letters B 34, no. 31 (2020): 2050346. http://dx.doi.org/10.1142/s0217984920503467.
Full textKwon, Yongbeom, Woong-Hee Shin, Junsu Ko, and Juyong Lee. "AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks." International Journal of Molecular Sciences 21, no. 22 (2020): 8424. http://dx.doi.org/10.3390/ijms21228424.
Full textAntunes, Dinler A., Jayvee R. Abella, Didier Devaurs, Maurício M. Rigo, and Lydia E. Kavraki. "Structure-based Methods for Binding Mode and Binding Affinity Prediction for Peptide-MHC Complexes." Current Topics in Medicinal Chemistry 18, no. 26 (2019): 2239–55. http://dx.doi.org/10.2174/1568026619666181224101744.
Full textWang, Debby D., Haoran Xie, and Hong Yan. "Proteo-chemometrics interaction fingerprints of protein–ligand complexes predict binding affinity." Bioinformatics 37, no. 17 (2021): 2570–79. http://dx.doi.org/10.1093/bioinformatics/btab132.
Full textHan, Rong, Xiaohong Liu, Tong Pan, et al. "CoPRA: Bridging Cross-domain Pretrained Sequence Models with Complex Structures for Protein-RNA Binding Affinity Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 1 (2025): 246–54. https://doi.org/10.1609/aaai.v39i1.32001.
Full textNguyen, Austin, Abhinav Nellore, and Reid F. Thompson. "Discordant results among major histocompatibility complex binding affinity prediction tools." F1000Research 12 (June 7, 2023): 617. http://dx.doi.org/10.12688/f1000research.132538.1.
Full textShar, Piar Ali, Weiyang Tao, Shuo Gao, et al. "Pred-binding: large-scale protein–ligand binding affinity prediction." Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. 6 (2016): 1443–50. http://dx.doi.org/10.3109/14756366.2016.1144594.
Full textHusnul, Khotimah, Jatmiko Widy, Nur Azizah Dita та ін. "Prediction of drug candidate from Rosmarinus officinalis L to inhibit IL-6R, IL-1R1, and TNF-α: In silico study". World Journal of Advanced Research and Reviews 21, № 2 (2024): 252–60. https://doi.org/10.5281/zenodo.13995362.
Full textWang, Xun, Dayan Liu, Jinfu Zhu, Alfonso Rodriguez-Paton, and Tao Song. "CSConv2d: A 2-D Structural Convolution Neural Network with a Channel and Spatial Attention Mechanism for Protein-Ligand Binding Affinity Prediction." Biomolecules 11, no. 5 (2021): 643. http://dx.doi.org/10.3390/biom11050643.
Full textLangham, James J., Ann E. Cleves, Russell Spitzer, Daniel Kirshner, and Ajay N. Jain. "Physical Binding Pocket Induction for Affinity Prediction." Journal of Medicinal Chemistry 52, no. 19 (2009): 6107–25. http://dx.doi.org/10.1021/jm901096y.
Full textÖztürk, Hakime, Arzucan Özgür, and Elif Ozkirimli. "DeepDTA: deep drug–target binding affinity prediction." Bioinformatics 34, no. 17 (2018): i821—i829. http://dx.doi.org/10.1093/bioinformatics/bty593.
Full textZhang, Diya, Qiaozhen Meng, and Fei Guo. "Incorporating Water Molecules into Highly Accurate Binding Affinity Prediction for Proteins and Ligands." International Journal of Molecular Sciences 25, no. 23 (2024): 12676. http://dx.doi.org/10.3390/ijms252312676.
Full textPantsar, Tatu, and Antti Poso. "Binding Affinity via Docking: Fact and Fiction." Molecules 23, no. 8 (2018): 1899. http://dx.doi.org/10.3390/molecules23081899.
Full textOUYANG, XUCHANG, STEPHANUS DANIEL HANDOKO, and CHEE KEONG KWOH. "CSCORE: A SIMPLE YET EFFECTIVE SCORING FUNCTION FOR PROTEIN–LIGAND BINDING AFFINITY PREDICTION USING MODIFIED CMAC LEARNING ARCHITECTURE." Journal of Bioinformatics and Computational Biology 09, supp01 (2011): 1–14. http://dx.doi.org/10.1142/s021972001100577x.
Full textKappel, Kalli, Inga Jarmoskaite, Pavanapuresan P. Vaidyanathan, William J. Greenleaf, Daniel Herschlag, and Rhiju Das. "Blind tests of RNA–protein binding affinity prediction." Proceedings of the National Academy of Sciences 116, no. 17 (2019): 8336–41. http://dx.doi.org/10.1073/pnas.1819047116.
Full textKim, Ryangguk, and Jeffrey Skolnick. "Assessment of programs for ligand binding affinity prediction." Journal of Computational Chemistry 29, no. 8 (2008): 1316–31. http://dx.doi.org/10.1002/jcc.20893.
Full textHenrich, Stefan, Isabella Feierberg, Ting Wang, Niklas Blomberg, and Rebecca C. Wade. "Comparative binding energy analysis for binding affinity and target selectivity prediction." Proteins: Structure, Function, and Bioinformatics 78, no. 1 (2009): 135–53. http://dx.doi.org/10.1002/prot.22579.
Full textKalemati, Mahmood, Mojtaba Zamani Emani, and Somayyeh Koohi. "BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach." PLOS Computational Biology 19, no. 3 (2023): e1011036. http://dx.doi.org/10.1371/journal.pcbi.1011036.
Full textZeng, Haoyang, and David K. Gifford. "DeepLigand: accurate prediction of MHC class I ligands using peptide embedding." Bioinformatics 35, no. 14 (2019): i278—i283. http://dx.doi.org/10.1093/bioinformatics/btz330.
Full textMarshall, K. W., K. J. Wilson, J. Liang, A. Woods, D. Zaller, and J. B. Rothbard. "Prediction of peptide affinity to HLA DRB1*0401." Journal of Immunology 154, no. 11 (1995): 5927–33. http://dx.doi.org/10.4049/jimmunol.154.11.5927.
Full textLi, Min, Zhangli Lu, Yifan Wu, and YaoHang Li. "BACPI: a bi-directional attention neural network for compound–protein interaction and binding affinity prediction." Bioinformatics 38, no. 7 (2022): 1995–2002. http://dx.doi.org/10.1093/bioinformatics/btac035.
Full textDandibhotla, Somanath, Madhav Samudrala, Arjun Kaneriya, and Sivanesan Dakshanamurthy. "GNNSeq: A Sequence-Based Graph Neural Network for Predicting Protein–Ligand Binding Affinity." Pharmaceuticals 18, no. 3 (2025): 329. https://doi.org/10.3390/ph18030329.
Full textBae, Haelee, and Hojung Nam. "GraphATT-DTA: Attention-Based Novel Representation of Interaction to Predict Drug-Target Binding Affinity." Biomedicines 11, no. 1 (2022): 67. http://dx.doi.org/10.3390/biomedicines11010067.
Full textChen, Zihao, Long Hu, Bao-Ting Zhang, et al. "Artificial Intelligence in Aptamer–Target Binding Prediction." International Journal of Molecular Sciences 22, no. 7 (2021): 3605. http://dx.doi.org/10.3390/ijms22073605.
Full textFan, Cong, Ping-pui Wong, and Huiying Zhao. "DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction." Journal of Chemical Information and Modeling 60, no. 1 (2019): 400–409. http://dx.doi.org/10.1021/acs.jcim.9b00717.
Full textBodramoni Balu, Malreddy Vijay Kumar Reddy, Pramod Saini, and Mr. Kadirvelu G. "GNN-Based Drug–Target Binding Affinity Prediction Using Molecular Graphs and Protein Sequences." International Research Journal on Advanced Engineering Hub (IRJAEH) 3, no. 05 (2025): 2221–25. https://doi.org/10.47392/irjaeh.2025.0326.
Full textUsha, Singaravelu, and Samuel Selvaraj. "Prediction of kinase-inhibitor binding affinity using energetic parameters." Bioinformation 12, no. 3 (2016): 172–81. http://dx.doi.org/10.6026/97320630012172.
Full textDas, Sourav, Michael P. Krein, and Curt M. Breneman. "Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures." Journal of Chemical Information and Modeling 50, no. 2 (2010): 298–308. http://dx.doi.org/10.1021/ci9004139.
Full textYugandhar, K., and M. Michael Gromiha. "Protein–protein binding affinity prediction from amino acid sequence." Bioinformatics 30, no. 24 (2014): 3583–89. http://dx.doi.org/10.1093/bioinformatics/btu580.
Full textO'Donnell, Timothy J., Alex Rubinsteyn, Maria Bonsack, Angelika B. Riemer, Uri Laserson, and Jeff Hammerbacher. "MHCflurry: Open-Source Class I MHC Binding Affinity Prediction." Cell Systems 7, no. 1 (2018): 129–32. http://dx.doi.org/10.1016/j.cels.2018.05.014.
Full textWang, Yuxiao, Qihong Jiao, Jingxuan Wang, Xiaojun Cai, Wei Zhao, and Xuefeng Cui. "Prediction of protein-ligand binding affinity with deep learning." Computational and Structural Biotechnology Journal 21 (2023): 5796–806. http://dx.doi.org/10.1016/j.csbj.2023.11.009.
Full textLee, Seungyong, and Sanghyun Park. "Protein-Ligand Binding Affinity Prediction Using Protein Modality Alignment." Journal of KIISE 52, no. 5 (2025): 415–23. https://doi.org/10.5626/jok.2025.52.5.415.
Full textKaneriya, Arjun, Madhav Samudrala, Harrish Ganesh, James Moran, Somanath Dandibhotla, and Sivanesan Dakshanamurthy. "StructureNet: Physics-Informed Hybridized Deep Learning Framework for Protein–Ligand Binding Affinity Prediction." Bioengineering 12, no. 5 (2025): 505. https://doi.org/10.3390/bioengineering12050505.
Full textSuri, Sadhana, and Sivanesan Dakshanamurthy. "IntegralVac: A Machine Learning-Based Comprehensive Multivalent Epitope Vaccine Design Method." Vaccines 10, no. 10 (2022): 1678. http://dx.doi.org/10.3390/vaccines10101678.
Full textLimbu, Sarita, and Sivanesan Dakshanamurthy. "A New Hybrid Neural Network Deep Learning Method for Protein–Ligand Binding Affinity Prediction and De Novo Drug Design." International Journal of Molecular Sciences 23, no. 22 (2022): 13912. http://dx.doi.org/10.3390/ijms232213912.
Full textAkshara, Vinayakrishnan* Malavika K. Aneesha Thomas Aswagosh K. "The Study of Insilco Design and Biological Evaluation of Naphthalene Derivatives." International Journal of Pharmaceutical Sciences 3, no. 1 (2025): 1964–69. https://doi.org/10.5281/zenodo.14724043.
Full textGim, Mogan, Junseok Choe, Seungheun Baek, et al. "ArkDTA: attention regularization guided by non-covalent interactions for explainable drug–target binding affinity prediction." Bioinformatics 39, Supplement_1 (2023): i448—i457. http://dx.doi.org/10.1093/bioinformatics/btad207.
Full textSharabi, Oz, Jason Shirian, and Julia M. Shifman. "Predicting affinity- and specificity-enhancing mutations at protein–protein interfaces." Biochemical Society Transactions 41, no. 5 (2013): 1166–69. http://dx.doi.org/10.1042/bst20130121.
Full textWalpoth, Belinda Nazan, and Burak Erman. "Regulation of ryanodine receptor RyR2 by protein-protein interactions: prediction of a PKA binding site on the N-terminal domain of RyR2 and its relation to disease causing mutations." F1000Research 4 (January 28, 2015): 29. http://dx.doi.org/10.12688/f1000research.5858.1.
Full textGhimire, Ashutosh, Hilal Tayara, Zhenyu Xuan, and Kil To Chong. "CSatDTA: Prediction of Drug–Target Binding Affinity Using Convolution Model with Self-Attention." International Journal of Molecular Sciences 23, no. 15 (2022): 8453. http://dx.doi.org/10.3390/ijms23158453.
Full textYuan, Zhen, Xingyu Chen, Sisi Fan, et al. "Binding Free Energy Calculation Based on the Fragment Molecular Orbital Method and Its Application in Designing Novel SHP-2 Allosteric Inhibitors." International Journal of Molecular Sciences 25, no. 1 (2024): 671. http://dx.doi.org/10.3390/ijms25010671.
Full textLiang, Yigao, Shaohua Jiang, Min Gao, Fengjiao Jia, Zaoyang Wu, and Zhijian Lyu. "GLSTM-DTA: Application of Prediction Improvement Model Based on GNN and LSTM." Journal of Physics: Conference Series 2219, no. 1 (2022): 012008. http://dx.doi.org/10.1088/1742-6596/2219/1/012008.
Full textAnnala, Matti, Kirsti Laurila, Harri Lähdesmäki, and Matti Nykter. "A Linear Model for Transcription Factor Binding Affinity Prediction in Protein Binding Microarrays." PLoS ONE 6, no. 5 (2011): e20059. http://dx.doi.org/10.1371/journal.pone.0020059.
Full textMorehead, Alex, Jian Liu, Pawan Neupane, Nabin Giri, and Jianlin Cheng. "Protein‐Ligand Structure and Affinity Prediction in CASP16 Using a Geometric Deep Learning Ensemble and Flow Matching." Proteins: Structure, Function, and Bioinformatics, April 8, 2025. https://doi.org/10.1002/prot.26827.
Full textTao, Fangting, Jinyuan Sun, Pengyue Gao, George Fu Gao, and Bian Wu. "Reliable prediction of protein-protein binding affinity changes upon mutations with Pythia-PPI." National Science Review, June 10, 2025. https://doi.org/10.1093/nsr/nwaf231.
Full textRahman, Julia, M. A. Hakim Newton, Mohammed Eunus Ali, and Abdul Sattar. "Distance plus attention for binding affinity prediction." Journal of Cheminformatics 16, no. 1 (2024). http://dx.doi.org/10.1186/s13321-024-00844-x.
Full textSeo, Sangmin, Jonghwan Choi, Sanghyun Park, and Jaegyoon Ahn. "Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions." BMC Bioinformatics 22, no. 1 (2021). http://dx.doi.org/10.1186/s12859-021-04466-0.
Full textWu, Jialin, Zhe Liu, Xiaofeng Yang, and Zhanglin Lin. "Improved compound–protein interaction site and binding affinity prediction using self-supervised protein embeddings." BMC Bioinformatics 23, no. 1 (2022). http://dx.doi.org/10.1186/s12859-022-05107-w.
Full textShim, Jooyong, Zhen-Yu Hong, Insuk Sohn, and Changha Hwang. "Prediction of drug–target binding affinity using similarity-based convolutional neural network." Scientific Reports 11, no. 1 (2021). http://dx.doi.org/10.1038/s41598-021-83679-y.
Full textOršolić, Davor, and Tomislav Šmuc. "Dynamic applicability domain (dAD): compound-target binding affinity estimates with local conformal prediction." Bioinformatics, August 18, 2023. http://dx.doi.org/10.1093/bioinformatics/btad465.
Full text