Journal articles on the topic 'Prediction of survival; Probability; Time models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Prediction of survival; Probability; Time models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lan, Yu, and Daniel F. Heitjan. "Adaptive parametric prediction of event times in clinical trials." Clinical Trials 15, no. 2 (2018): 159–68. http://dx.doi.org/10.1177/1740774517750633.
Full textGensheimer, Michael F., and Balasubramanian Narasimhan. "A scalable discrete-time survival model for neural networks." PeerJ 7 (January 25, 2019): e6257. http://dx.doi.org/10.7717/peerj.6257.
Full textRen, Kan, Jiarui Qin, Lei Zheng, et al. "Deep Recurrent Survival Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4798–805. http://dx.doi.org/10.1609/aaai.v33i01.33014798.
Full textLi, Kan, and Sheng Luo. "Dynamic predictions in Bayesian functional joint models for longitudinal and time-to-event data: An application to Alzheimer’s disease." Statistical Methods in Medical Research 28, no. 2 (2017): 327–42. http://dx.doi.org/10.1177/0962280217722177.
Full textAlemazkoor, Negin, Conrad J. Ruppert, and Hadi Meidani. "Survival analysis at multiple scales for the modeling of track geometry deterioration." Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 232, no. 3 (2017): 842–50. http://dx.doi.org/10.1177/0954409717695650.
Full textSun, Zhaohong, Wei Dong, Jinlong Shi, Kunlun He, and Zhengxing Huang. "Attention-Based Deep Recurrent Model for Survival Prediction." ACM Transactions on Computing for Healthcare 2, no. 4 (2021): 1–18. http://dx.doi.org/10.1145/3466782.
Full textTan, Ping, Lu Yang, Hang Xu, and Qiang Wei. "Novel perioperative parameters-based nomograms for survival outcomes in upper tract urothelial carcinoma after radical nephroureterectomy." Journal of Clinical Oncology 37, no. 7_suppl (2019): 414. http://dx.doi.org/10.1200/jco.2019.37.7_suppl.414.
Full textLiu, Xing-Rong, Yudi Pawitan, and Mark Clements. "Parametric and penalized generalized survival models." Statistical Methods in Medical Research 27, no. 5 (2016): 1531–46. http://dx.doi.org/10.1177/0962280216664760.
Full textAndrinopoulou, Eleni-Rosalina, D. Rizopoulos, Johanna JM Takkenberg, and E. Lesaffre. "Combined dynamic predictions using joint models of two longitudinal outcomes and competing risk data." Statistical Methods in Medical Research 26, no. 4 (2015): 1787–801. http://dx.doi.org/10.1177/0962280215588340.
Full textLiu, Chuchu, Anja J. Rueten-Budde, Andreas Ranft, Uta Dirksen, Hans Gelderblom, and Marta Fiocco. "Dynamic prediction of overall survival: a retrospective analysis on 979 patients with Ewing sarcoma from the German registry." BMJ Open 10, no. 10 (2020): e036376. http://dx.doi.org/10.1136/bmjopen-2019-036376.
Full textGarber, Sean M., John P. Brown, Duncan S. Wilson, Douglas A. Maguire, and Linda S. Heath. "Snag longevity under alternative silvicultural regimes in mixed-species forests of central Maine." Canadian Journal of Forest Research 35, no. 4 (2005): 787–96. http://dx.doi.org/10.1139/x05-021.
Full textChen, David, Gaurav Goyal, Ronald S. Go, Sameer A. Parikh, and Che G. Ngufor. "Improved Interpretability of Machine Learning Model Using Unsupervised Clustering: Predicting Time to First Treatment in Chronic Lymphocytic Leukemia." JCO Clinical Cancer Informatics, no. 3 (December 2019): 1–11. http://dx.doi.org/10.1200/cci.18.00137.
Full textMa, Junsheng, Brian P. Hobbs, and Francesco C. Stingo. "Integrating genomic signatures for treatment selection with Bayesian predictive failure time models." Statistical Methods in Medical Research 27, no. 7 (2016): 2093–113. http://dx.doi.org/10.1177/0962280216675373.
Full textZheng, Panpan, Shuhan Yuan, and Xintao Wu. "SAFE: A Neural Survival Analysis Model for Fraud Early Detection." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 1278–85. http://dx.doi.org/10.1609/aaai.v33i01.33011278.
Full textShafipour, Gholamreza, and Abdolvahhab Fetanat. "Survival analysis in supply chains using statistical flowgraph models: Predicting time to supply chain disruption." Communications in Statistics - Theory and Methods 45, no. 21 (2016): 6183–208. http://dx.doi.org/10.1080/03610926.2014.957856.
Full textYamaguchi, S., C. Lee, O. Karaer, S. Ban, A. Mine, and S. Imazato. "Predicting the Debonding of CAD/CAM Composite Resin Crowns with AI." Journal of Dental Research 98, no. 11 (2019): 1234–38. http://dx.doi.org/10.1177/0022034519867641.
Full textAgrawal, Smita, Vivek Vaidya, Prajwal Chandrashekaraiah, et al. "Development of an artificial intelligence model to predict survival at specific time intervals for lung cancer patients." Journal of Clinical Oncology 37, no. 15_suppl (2019): 6556. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.6556.
Full textStanojevic, Sanja, Jenna Sykes, Anne L. Stephenson, Shawn D. Aaron, and George A. Whitmore. "Development and external validation of 1- and 2-year mortality prediction models in cystic fibrosis." European Respiratory Journal 54, no. 3 (2019): 1900224. http://dx.doi.org/10.1183/13993003.00224-2019.
Full textBarbieri, Antoine, and Catherine Legrand. "Joint longitudinal and time-to-event cure models for the assessment of being cured." Statistical Methods in Medical Research 29, no. 4 (2019): 1256–70. http://dx.doi.org/10.1177/0962280219853599.
Full textJoffe, Erel, Kevin R. Coombes, Yi Hua Qiu, et al. "Survival Prediction In High Dimensional Datasets – Comparative Evaluation Of Lasso Regularization and Random Survival Forests." Blood 122, no. 21 (2013): 1728. http://dx.doi.org/10.1182/blood.v122.21.1728.1728.
Full textHong, Fangxin, Brad S. Kahl, and Robert Gray. "Incremental Value in Outcome Prediction with Molecular Signatures in Diffuse Large B-Cell Lymphoma,." Blood 118, no. 21 (2011): 3687. http://dx.doi.org/10.1182/blood.v118.21.3687.3687.
Full textRizopoulos, Dimitris, Jeremy M. G. Taylor, Joost Van Rosmalen, Ewout W. Steyerberg, and Johanna J. M. Takkenberg. "Personalized screening intervals for biomarkers using joint models for longitudinal and survival data." Biostatistics 17, no. 1 (2015): 149–64. http://dx.doi.org/10.1093/biostatistics/kxv031.
Full textChen, Bo-Huan, Hsiao-Jung Tseng, Wei-Ting Chen, et al. "Comparing Eight Prognostic Scores in Predicting Mortality of Patients with Acute-On-Chronic Liver Failure Who Were Admitted to an ICU: A Single-Center Experience." Journal of Clinical Medicine 9, no. 5 (2020): 1540. http://dx.doi.org/10.3390/jcm9051540.
Full textTorkey, Hanaa, Mostafa Atlam, Nawal El-Fishawy, and Hanaa Salem. "A novel deep autoencoder based survival analysis approach for microarray dataset." PeerJ Computer Science 7 (April 21, 2021): e492. http://dx.doi.org/10.7717/peerj-cs.492.
Full textClaret, L., J. Lu, Y. Sun, D. Stepan, and R. Bruno. "A modeling framework to simulate motesanib efficacy in thyroid cancer." Journal of Clinical Oncology 27, no. 15_suppl (2009): e14553-e14553. http://dx.doi.org/10.1200/jco.2009.27.15_suppl.e14553.
Full textVeerkamp, R. F., S. Brotherstone, B. Engel, and T. H. E. Meuwissen. "Analysis of censored survival data using random regression models." Animal Science 72, no. 1 (2001): 1–10. http://dx.doi.org/10.1017/s1357729800055491.
Full textBiglarian, Akbar, Enayatollah Bakhshi, Ahmad Reza Baghestani, Mahmood Reza Gohari, Mehdi Rahgozar, and Masoud Karimloo. "Nonlinear Survival Regression Using Artificial Neural Network." Journal of Probability and Statistics 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/753930.
Full textChoi, Jiin, Stewart J. Anderson, Thomas J. Richards, and Wesley K. Thompson. "Prediction of transplant-free survival in idiopathic pulmonary fibrosis patients using joint models for event times and mixed multivariate longitudinal data." Journal of Applied Statistics 41, no. 10 (2014): 2192–205. http://dx.doi.org/10.1080/02664763.2014.909784.
Full textSparapani, Rodney, Brent R. Logan, Robert E. McCulloch, and Purushottam W. Laud. "Nonparametric competing risks analysis using Bayesian Additive Regression Trees." Statistical Methods in Medical Research 29, no. 1 (2019): 57–77. http://dx.doi.org/10.1177/0962280218822140.
Full textSeibold, Heidi, Achim Zeileis, and Torsten Hothorn. "Individual treatment effect prediction for amyotrophic lateral sclerosis patients." Statistical Methods in Medical Research 27, no. 10 (2017): 3104–25. http://dx.doi.org/10.1177/0962280217693034.
Full textYang, Ming, Sheng Luo, and Stacia DeSantis. "Bayesian quantile regression joint models: Inference and dynamic predictions." Statistical Methods in Medical Research 28, no. 8 (2018): 2524–37. http://dx.doi.org/10.1177/0962280218784757.
Full textKorepanova, Natalia, Heidi Seibold, Verena Steffen, and Torsten Hothorn. "Survival forests under test: Impact of the proportional hazards assumption on prognostic and predictive forests for amyotrophic lateral sclerosis survival." Statistical Methods in Medical Research 29, no. 5 (2019): 1403–19. http://dx.doi.org/10.1177/0962280219862586.
Full textRui Lam, Amanda Yun, Min Min Chan, David Carmody, et al. "Predicting Major Adverse Cardiovascular Events in Asian Type 2 Diabetes Patients With Lasso-Cox Regression." Journal of the Endocrine Society 5, Supplement_1 (2021): A417—A418. http://dx.doi.org/10.1210/jendso/bvab048.852.
Full textFang, Hong-Bin, Tong Tong Wu, Aaron P. Rapoport, and Ming Tan. "Survival analysis with functional covariates for partial follow-up studies." Statistical Methods in Medical Research 25, no. 6 (2016): 2405–19. http://dx.doi.org/10.1177/0962280214523586.
Full textDurand, J., S. Pourchet, and F. Goldwasser. "Prediction of short-term outcome in terminally ill cancer patients." Journal of Clinical Oncology 25, no. 18_suppl (2007): 19572. http://dx.doi.org/10.1200/jco.2007.25.18_suppl.19572.
Full textWu, Lunpo, Hongjuan Zheng, Jianfei Fu, Jinlin Du, Shu Zheng, and Liangjing Wang. "The “effect” of T classification on colorectal liver metastasis." Journal of Clinical Oncology 37, no. 15_suppl (2019): e15049-e15049. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.e15049.
Full textMorin, Amy A., Alisha Albert-Green, Douglas G. Woolford, and David L. Martell. "The use of survival analysis methods to model the control time of forest fires in Ontario, Canada." International Journal of Wildland Fire 24, no. 7 (2015): 964. http://dx.doi.org/10.1071/wf14158.
Full textWijenayake, Pavithra Rangani, and Takuya Hiroshima. "Prediction of Tree Age Distribution Based on Survival Analysis in Natural Forests: A Case Study of Preserved Permanent Plots in the University of Tokyo Hokkaido Forest, Northern Japan." Environmental Sciences Proceedings 3, no. 1 (2020): 50. http://dx.doi.org/10.3390/iecf2020-08077.
Full textWierda, William G., S. OBrien, X. Wang, et al. "Weighted Prognostic Models for Survival in Untreated and Previously Treated Patients with CLL." Blood 106, no. 11 (2005): 5012. http://dx.doi.org/10.1182/blood.v106.11.5012.5012.
Full textDueñas-Jurado, J. M., P. A. Gutiérrez, A. Casado-Adam, et al. "New models for donor-recipient matching in lung transplantations." PLOS ONE 16, no. 6 (2021): e0252148. http://dx.doi.org/10.1371/journal.pone.0252148.
Full textPetros, Firas G., Aradhana M. Venkatesan, Diana Kaya, et al. "Conditional survival and landmark analysis for patients with small renal masses undergoing active surveillance at a tertiary care center." Journal of Clinical Oncology 36, no. 6_suppl (2018): 609. http://dx.doi.org/10.1200/jco.2018.36.6_suppl.609.
Full textAmbrose, Paul G., Alan Forrest, William A. Craig, et al. "Pharmacokinetics-Pharmacodynamics of Gatifloxacin in a Lethal Murine Bacillus anthracis Inhalation Infection Model." Antimicrobial Agents and Chemotherapy 51, no. 12 (2007): 4351–55. http://dx.doi.org/10.1128/aac.00251-07.
Full textKovtun, N. V., I. M. Motuziuk, and R. O. Ganzha. "Using Cox Regression to Forecast of Survival of Women with Multiple Malignant Neoplasms." Statistics of Ukraine 83, no. 4 (2018): 65–71. http://dx.doi.org/10.31767/su.4(83)2018.04.08.
Full textSchluchter, Mark D., and Annalisa V. Piccorelli. "Shared parameter models for joint analysis of longitudinal and survival data with left truncation due to delayed entry – Applications to cystic fibrosis." Statistical Methods in Medical Research 28, no. 5 (2018): 1489–507. http://dx.doi.org/10.1177/0962280218764193.
Full textAvila, Olga B., and Harold E. Burkhart. "Modeling survival of loblolly pine trees in thinned and unthinned plantations." Canadian Journal of Forest Research 22, no. 12 (1992): 1878–82. http://dx.doi.org/10.1139/x92-245.
Full textHummel, Manuela, Thomas Hielscher, Hans Jürgen Salwender, et al. "Quantitative Integrative Prediction of Survival Probability in Multiple Myeloma Using Molecular and Clinical Prognostic Factors in 657 Patients Treated with Bortezomib-Based Induction, High-Dose Therapy and Autologous Stem Cell Transplantation." Blood 132, Supplement 1 (2018): 403. http://dx.doi.org/10.1182/blood-2018-99-113307.
Full textSimoes, J. P. C., P. Schoning, and M. Butine. "Prognosis of Canine Mast Cell Tumors: A Comparison of Three Methods." Veterinary Pathology 31, no. 6 (1994): 637–47. http://dx.doi.org/10.1177/030098589403100602.
Full textElsensohn, MH, E. Dantony, J. Iwaz, E. Villar, C. Couchoud, and R. Ecochard. "Improving survival in end-stage renal disease: A case study." Statistical Methods in Medical Research 28, no. 12 (2018): 3579–90. http://dx.doi.org/10.1177/0962280218811357.
Full textShouval, Roni, Joshua A. Fein, Myriam Labopin, et al. "Prediction of Leukemia-Free Survival Following Haploidentical Stem Cell Transplantation in Acute Myeloid Leukemia: A Study from the Acute Leukemia Working Party of the EBMT." Blood 132, Supplement 1 (2018): 485. http://dx.doi.org/10.1182/blood-2018-99-111822.
Full textKawakami, Takeshi, Yukiya Narita, Isao Oze, et al. "Establishment and validation of prognostic nomograms including HER2 status in metastatic gastric cancer." Journal of Clinical Oncology 34, no. 4_suppl (2016): 24. http://dx.doi.org/10.1200/jco.2016.34.4_suppl.24.
Full text