Academic literature on the topic 'Predictive maintenance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Predictive maintenance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Predictive maintenance"
Ratul, MD Rakibul Islam. "MMS Predictive Maintenance Big Data Analytics." International Journal of Research Publication and Reviews 4, no. 4 (April 3, 2023): 279–83. http://dx.doi.org/10.55248/gengpi.2023.4.4.34665.
Full textWöstmann, R., P. Strauss, and J. Prof Deuse. "Predictive Maintenance in der Produktion*/Predictive Maintenance in production." wt Werkstattstechnik online 107, no. 07-08 (2017): 524–29. http://dx.doi.org/10.37544/1436-4980-2017-07-08-48.
Full textMohapatra, Alma. "Generative AI for Predictive Maintenance: Predicting Equipment Failures and Optimizing Maintenance Schedules Using AI." International Journal of Scientific Research and Management (IJSRM) 12, no. 11 (November 8, 2024): 1648–72. http://dx.doi.org/10.18535/ijsrm/v12i11.ec03.
Full textLu, Bin, David Durocher, and Peter Stemper. "Predictive maintenance techniques." IEEE Industry Applications Magazine 15, no. 6 (November 2009): 52–60. http://dx.doi.org/10.1109/mias.2009.934444.
Full textEntek Scientific Corporation. "Predictive maintenance system." NDT & E International 27, no. 3 (June 1994): 172. http://dx.doi.org/10.1016/0963-8695(94)90749-8.
Full textEmmanuel Augustine Etukudoh. "THEORETICAL FRAMEWORKS OF ECOPFM PREDICTIVE MAINTENANCE (ECOPFM) PREDICTIVE MAINTENANCE SYSTEM." Engineering Science & Technology Journal 5, no. 3 (March 24, 2024): 913–23. http://dx.doi.org/10.51594/estj.v5i3.946.
Full textKharchenko, K. V., A. Zh Zubets, E. I. Moskvitina, L. K. Babayan, and A. M. Laffah. "Analyzing the efficiency of implementing predictive maintenance of mining equipment based on Industry 4.0 technologies." Mining Industry Journal (Gornay Promishlennost), no. 4/2024 (August 23, 2024): 130–38. http://dx.doi.org/10.30686/1609-9192-2024-4-130-138.
Full textRyshkovskyi, Oleksandr, and Markiian Lukashiv. "INSTRUMENTAL PLATFORMS FOR VIBRATION ANALYSIS IN PREDICTIVE MAINTENANCE." Measuring Equipment and Metrology 85, no. 2 (2024): 21–28. http://dx.doi.org/10.23939/istcmtm2024.02.021.
Full textMOHD ALI, AHMAD ALI IMRAN, MD MAHADI HASAN IMRAN, SHAHRIZAN JAMALUDIN, AHMAD FAISAL MOHAMAD AYOB, MOHAMMED ISMAIL RUSSTAM SUHRAB, SYAMIMI MOHD NORZELI, SAIFUL BAHRI HASAN BASRI, and SAIFUL BAHRI MOHAMED. "A REVIEW OF PREDICTIVE MAINTENANCE APPROACHES FOR CORROSION DETECTION AND MAINTENANCE OF MARINE STRUCTURES." JOURNAL OF SUSTAINABILITY SCIENCE AND MANAGEMENT 19, no. 4 (April 30, 2024): 180–200. http://dx.doi.org/10.46754/jssm.2024.04.014.
Full textSegovia-Muñoz, D., X. Serrano-Guerrero, and A. Barragán-Escandon. "Predictive maintenance in LED street lighting controlled with telemanagement system to improve current fault detection procedures using software tools." Renewable Energy and Power Quality Journal 20 (September 2022): 379–86. http://dx.doi.org/10.24084/repqj20.318.
Full textDissertations / Theses on the topic "Predictive maintenance"
Li, Jiawei M. Eng Massachusetts Institute of Technology. "A case model for predictive maintenance." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/43139.
Full textIncludes bibliographical references (leaves 59-60).
This project is to respond to a need by Varian Semiconductor Equipment Associates, Inc. (VSEA) to help predict failure of ion implanters. Predictive maintenance would help to reduce the unscheduled downtime of ion implanters, whose throughput and uptime is highly important to customers. Statistical analysis is performed on historical data to extract metadata that can reflect the machine health, and statistical process control (SPC) is applied to detect deviations from normal or in-control behavior. Methods for failure prevention are also investigated. Challenging points in this project are the noise in raw signal data and the difference in data signals of different robots. To address these challenges, we apply signal filtering to extract cycle motions from raw data, and develop different generic as well as specific metadata extraction techniques for different robots. We test the extraction approaches and results using healthy data of ten machines, and find that the metadata on which we chose to perform SPC is suitable and can serve as a consistent indicator of a machine's health. We further develop an application using Visual Basic based on our study, and provide a user guide on how to generate the analysis reports on new data using our application.
by Jiawei Li.
M.Eng.
Tyagi, Prakhar. "Chassis predictive maintenance and service solutions." Thesis, KTH, Fordonsdynamik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265587.
Full textPrediktivt Underhåll (PdM) är en statistisk modell som samlar data från flera olika sensorer och som identifierar fel innan de äger rum. Huvudfokus för detta examensarbete har varit förslaget till ett maskininlärningsbaserat system som är utformat för att förutsäga fel i mekaniska delar som kräver utbyte. Examensarbetet undersöker möjligheterna att implementera en maskininlärningsalgoritm för att förutsäga de mekaniska delar som kräver utbyte och som framgår av de elektroniska fel som fordonet uppvisar. En stark koppling mellan de delar som orsakar fel och elektroniska felkoder hjälper till att ge ett kraftfullt diagnostiskt verktyg. Studien har beaktat tre felkomponenter nämligen; trasig dämpare, missljud från hjulnav och referensvärdet för valideringsändamål. Modellfordonet som används för studien är Volvo V90. För att få varians i informationen för detta arbete användes olika provbanor med olika vägförhållanden med olika hastigheter. Maskininlärningsalgoritmen som utvecklades kan klassificera och upptäcka mekaniska fel med hjälp av en SVM-algoritm (Support Vector Machine) baserad på olika statistiska inlärningsmetoder. Studien genomförde en snabb Fourier-transform (FFT) analys i samband med de data som förvärvades från det främre vänstra hjulet. Huvudintresseområdet är FFT-domänen 5-20 Hz. Studiens resultat visade att den använda modellen kan: Identifiera och klassificera data som är förknippade med de felaktiga komponenterna som trasig dämpare och missljud i hjulnav. Modellen kan användas för vidare prediktera och ge förslag när ett mekaniskt fel på dämpare eller hjulnav håller på att ske. Det här examensarbetet täcker inte tidsbunden prediktion utan snarare identifierar när nedbrytningen av mekaniska komponenter har skett. Resultaten från detta examensarbete kan emellertid användas för att implementera en tidsbaserad prediktion för mekaniska komponentfel.
Korvesis, Panagiotis. "Machine Learning for Predictive Maintenance in Aviation." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX093/document.
Full textThe increase of available data in almost every domain raises the necessity of employing algorithms for automated data analysis. This necessity is highlighted in predictive maintenance, where the ultimate objective is to predict failures of hardware components by continuously observing their status, in order to plan maintenance actions well in advance. These observations are generated by monitoring systems usually in the form of time series and event logs and cover the lifespan of the corresponding components. Analyzing this history of observation in order to develop predictive models is the main challenge of data driven predictive maintenance.Towards this direction, Machine Learning has become ubiquitous since it provides the means of extracting knowledge from a variety of data sources with the minimum human intervention. The goal of this dissertation is to study and address challenging problems in aviation related to predicting failures of components on-board. The amount of data related to the operation of aircraft is enormous and therefore, scalability is a key requirement in every proposed approach.This dissertation is divided in three main parts that correspond to the different data sources that we encountered during our work. In the first part, we targeted the problem of predicting system failures, given the history of Post Flight Reports. We proposed a regression-based approach preceded by a meticulous formulation and data pre-processing/transformation. Our method approximates the risk of failure with a scalable solution, deployed in a cluster environment both in training and testing. To our knowledge, there is no available method for tackling this problem until the time this thesis was written.The second part consists analyzing logbook data, which consist of text describing aircraft issues and the corresponding maintenance actions and it is written by maintenance engineers. The logbook contains information that is not reflected in the post-flight reports and it is very essential in several applications, including failure prediction. However, since the logbook contains text written by humans, it contains a lot of noise that needs to be removed in order to extract useful information. We tackled this problem by proposing an approach based on vector representations of words (or word embeddings). Our approach exploits semantic similarities of words, learned by neural networks that generated the vector representations, in order to identify and correct spelling mistakes and abbreviations. Finally, important keywords are extracted using Part of Speech Tagging.In the third part, we tackled the problem of assessing the health of components on-board using sensor measurements. In the cases under consideration, the condition of the component is assessed by the magnitude of the sensor's fluctuation and a monotonically increasing trend. In our approach, we formulated a time series decomposition problem in order to separate the fluctuation from the trend by solving a convex program. To quantify the condition of the component, we compute a risk function which measures the sensor's deviation from it's normal behavior, which is learned using Gaussian Mixture Models
Karlsson, Lotta. "Predictive Maintenance for RM12 with Machine Learning." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42283.
Full textSedghi, Mahdieh. "Data-driven predictive maintenance planning and scheduling." Licentiate thesis, Luleå tekniska universitet, Industriell Ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80828.
Full textKilleen, Patrick. "Knowledge-Based Predictive Maintenance for Fleet Management." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40086.
Full textWilliamsson, Ia. "Total Quality Maintenance (TQMain) A predictive and proactive maintenance concept for software." Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2281.
Full textPryor, Jacqueline. "Earthwork maintenance : a geotechnical database and predictive model." Thesis, Cardiff University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266614.
Full textDe, Giorgi Marcello. "Tree ensemble methods for Predictive Maintenance: a case study." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22282/.
Full textFURTADO, FELIPE MIANA DE FARIA. "NEURAL NETWORKS FOR PREDICTIVE MAINTENANCE ON OFF-HIGWAY TRUCKS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15673@1.
Full textCom o aumento da demanda por minério no mundo, a complexidade, o tamanho e o preço dos equipamentos de extração mineral aumentaram consideravelmente. Como estas máquinas possuem uma tecnologia de monitoramento embarcada no equipamento, a utilização desses dados para o aumento da confiabilidade e da disponibilidade do equipamento tornou-se fundamental, de modo a reduzir os custos de manutenção. O objetivo desta dissertação foi desenvolver um modelo de apoio à decisão de parada de equipamento, baseado na classificação por Redes Neurais Artificiais de padrões pré-falha de caminhões fora de estrada. O modelo proposto tem como objetivo identificar o estado de falha, ou padrão pré-falha de um equipamento, utilizando os dados armazenados nos equipamentos e seus respectivos registros de falha, para que seja possível avaliar o risco de falha deste equipamento e decidir se o mesmo deve ser parado ou aguardar uma nova parada programada. Essa dissertação foi desenvolvida em quatro partes: estudo dos principais modelos de manutenção atualmente utilizados; definição e desenvolvimento do modelo para abordar o problema, baseado em redes neurais artificiais; avaliação de desempenho do modelo proposto; e simulação do downtime da máquina utilizando o modelo de decisão proposto. No estudo dos principais modelos foi realizada uma pesquisa bibliográfica sobre a evolução da manutenção, passando por modelos de manutenção corretiva, manutenção preventiva e, por fim, chegando ao modelo de manutenção baseada no monitoramento de condições. Para os dois últimos tipos de manutenção, foram apresentados os principais modelos utilizados na abordagem do problema, seus benefícios e deficiências. O desenvolvimento do modelo foi segmentado em três etapas principais: tratamento das bases de dados, tanto de dados obtidos diretamente do equipamento quanto das bases de registro de falha dos equipamentos; seleção de variáveis, baseada no cálculo da influência de cada sensor do equipamento na determinação de seu estado de falha, assim como na definição do intervalo ideal para se agrupar os dados; e definição da topologia das redes. Na etapa de avaliação do desempenho do modelo proposto foram utilizados dados de falhas corretivas mais recorrentes para os dois componentes específicos de caminhões fora de estrada: motor e transmissão, sendo que o monitoramento eletrônico do motor é mais extenso do que o de transmissão, no que diz respeito ao número de sensores empregados no monitoramento. Para a comparação de desempenho entre os diferentes modelos avaliados, dois fatores tiveram maior relevância: melhor desempenho na classificação e maior intervalo entre a identificação do padrão pré-falha e a ocorrência da falha. Os resultados de classificação dos padrões pré-falha foram bastante satisfatórios para a maioria dos casos de estudos, com as taxas de acerto variando entre 85% e 95%. A partir do modelo de classificação determinado na etapa anterior, passou-se à simulação de diferentes cenários de falhas, calculando-se os tempos de máquina parada (downtimes) que teriam sido evitados se as intervenções definidas pelo modelo tivessem sido executadas, analisando-se, assim, o aumento de disponibilidade proporcionado pelo uso do modelo proposto.
With the increasing demand for ore in the world, the complexity, size and price of mining equipment have increased considerably. As these machines have embedded monitoring technology, the use of such data to increase the reliability and availability of the equipment has become essential in order to reduce maintenance costs. The objective of this work is developing a model that supports the decision of stopping an equipment, based on its actual state, using pattern recognition by neural networks. The proposed model aims to identify the state of equipment failure or pre-failure based on the data stored in the equipment and on the records of failure, so as to assess the risk of failure of equipment and to decide whether it should be stopped or wait for a new programmed shutdown. This dissertation was developed in four parts: study of the main models currently used for maintenance; design and implementation of the model to address this problem, based on artificial neural networks; performance evaluation of the proposed model; and simulation of equipment downtime using the proposed model. In the study of the main models a research was made about the evolution of maintenance techniques, through models of corrective maintenance, preventive maintenance and, finally, reaching the maintenance model based on condition monitoring. For the last two types of maintenance, it is presented the main models used in addressing the problem, its benefits and shortcomings. The development of the model was segmented into three main stages: processing of databases, from the data obtained directly from the equipment to the base of record of equipment failure; variable selection, based on the calculation of the influence of each equipment sensor to determine its failure state, as well as the definition of the ideal range of group data, and definition of the topology of networks. In the stage of assessing the performance of the proposed model we used data from corrective failures more often of two specific components of off-highway trucks: engine and transmission. To compare the performance between the different models evaluated, two factors were more important: classification performance and the longest interval between the identification of a pre-failure pattern and the occurrence of the failure. The results of classification of pre-failure patterns were quite satisfactory for most case studies, with hit rates ranging between 85% and 96%. From the classification model given in the previous step, we moved on to simulate different failure scenarios, calculating the equipment downtime that would have been avoided if the interventions defined by the model had been implemented, thus analyzing the increased availability provided by the use of the proposed model.
Books on the topic "Predictive maintenance"
Liu, Min, Ling Li, and Feng Yan. Intelligent Predictive Maintenance. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6.
Full textSalter, Richard G. Predictive maintenance and logistics: (PML). Santa Monica, CA: Rand, 1985.
Find full textLughofer, Edwin, and Moamar Sayed-Mouchaweh, eds. Predictive Maintenance in Dynamic Systems. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05645-2.
Full textMobley, R. Keith. An introduction to predictive maintenance. 2nd ed. Amsterdam: Butterworth-Heinemann, 2002.
Find full textC, Scheffer, ed. Practical machinery vibration analysis and predictive maintenance. Amsterdam: Elsevier, 2004.
Find full textGupta, Shweta. Cognitive Predictive Maintenance Tools for Brain Diseases. Boca Raton: Chapman and Hall/CRC, 2023. http://dx.doi.org/10.1201/9781003245346.
Full textCash, Carl G. Predictive service life tests for roofing membranes. Champaign, Ill: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1994.
Find full textRalph, Moshage, and Construction Engineering Research Laboratories (U.S.), eds. Vibration monitoring for predictive maintenance in central energy plants. [Champaign, IL]: US Army Corps of Engineers, Construction Engineering Research Laboratories, 1993.
Find full textGouriveau, Rafael, Kamal Medjaher, and Noureddine Zerhouni. From Prognostics and Health Systems Management to Predictive Maintenance 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119371052.
Full textChebel-Morello, Brigitte, Jean-Marc Nicod, and Christophe Varnier. From Prognostics and Health Systems Management to Predictive Maintenance 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119436805.
Full textBook chapters on the topic "Predictive maintenance"
Sharanya, S., Revathi Venkataraman, and G. Murali. "Predictive Maintenance." In Introduction to AI Techniques for Renewable Energy Systems, 155–70. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003104445-10.
Full textMahalle, Parikshit N., Pravin P. Hujare, and Gitanjali Rahul Shinde. "Predictive Maintenance." In Predictive Analytics for Mechanical Engineering: A Beginners Guide, 51–60. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4850-5_4.
Full textSierra, Carlos, and Emilio Andrea. "Predictive Maintenance Techniques." In Mining Maintenance, 257–78. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59450-2_9.
Full textLiu, Min, Ling Li, and Feng Yan. "Data-Driven Fault Diagnosis Methods." In Intelligent Predictive Maintenance, 203–31. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6_7.
Full textLiu, Min, Ling Li, and Feng Yan. "Protocol Integration and Design Case of Data Collection." In Intelligent Predictive Maintenance, 177–201. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6_6.
Full textLiu, Min, Ling Li, and Feng Yan. "Large-Scale Maintenance Service Forecasting and Optimization Configuration." In Intelligent Predictive Maintenance, 325–421. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6_10.
Full textLiu, Min, Ling Li, and Feng Yan. "Wireless Routing Model and Algorithm for Complex Manufacturing Environment." In Intelligent Predictive Maintenance, 153–76. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6_5.
Full textLiu, Min, Ling Li, and Feng Yan. "Operation Process Control Based on Cyber-Physical Systems." In Intelligent Predictive Maintenance, 423–68. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6_11.
Full textLiu, Min, Ling Li, and Feng Yan. "Maintenance Optimization Scheduling and Decision Making in Intelligent Factories." In Intelligent Predictive Maintenance, 281–323. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6_9.
Full textLiu, Min, Ling Li, and Feng Yan. "Introduction." In Intelligent Predictive Maintenance, 1–45. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2677-6_1.
Full textConference papers on the topic "Predictive maintenance"
Benešová, Andrea, Martin Hirman, František Steiner, and Jiří Tupa. "Digital Predictive Maintenance: Case Study." In 2024 International Conference on Diagnostics in Electrical Engineering (Diagnostika), 01–06. IEEE, 2024. http://dx.doi.org/10.1109/diagnostika61830.2024.10693912.
Full textSunetcioglu, Selin, and Taner Arsan. "Predictive Maintenance Analysis for Industries." In 2024 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), 344–47. IEEE, 2024. http://dx.doi.org/10.1109/blackseacom61746.2024.10646292.
Full textSupramaniam, Aravind, Sharifah Sakinah Syed Ahmad, and Zeratul Izzah Mohd Yusoh. "Predictive Maintenance using Deep Reinforcement Learning." In 2024 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET), 671–76. IEEE, 2024. http://dx.doi.org/10.1109/iicaiet62352.2024.10730350.
Full textRayhana, Rakiba, Hongguang Yun, Teng Wang, Johnson Chen, Yanshuo Fan, Zheng Liu, and Wendy Gao. "Distributed Predictive Maintenance through Edge Computing." In 2024 IEEE 22nd International Conference on Industrial Informatics (INDIN), 1–13. IEEE, 2024. https://doi.org/10.1109/indin58382.2024.10774467.
Full textMishra, KamalaKanta, and Sachin Kumar Manjhi. "Failure Prediction Model for Predictive Maintenance." In 2018 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). IEEE, 2018. http://dx.doi.org/10.1109/ccem.2018.00019.
Full textMotaghare, Omkar, Anju S. Pillai, and K. I. Ramachandran. "Predictive Maintenance Architecture." In 2018 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2018. http://dx.doi.org/10.1109/iccic.2018.8782406.
Full textLiu, Zheng, Erik Blasch, Min Liao, Chunsheng Yang, Kazuhiko Tsukada, and Norbert Meyendorf. "Digital twin for predictive maintenance." In NDE 4.0, Predictive Maintenance, Communication, and Energy Systems: The Digital Transformation of NDE, edited by Norbert G. Meyendorf, Ripi Singh, and Christopher Niezrecki. SPIE, 2023. http://dx.doi.org/10.1117/12.2660270.
Full textEdouard, Thomas,. "Opportune Maintenance and Predictive Maintenance Decision Support." In Information Control Problems in Manufacturing, edited by Bakhtadze, Natalia, chair Dolgui, Alexandre and Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00266.
Full textSipos, Ruben, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. "Log-based predictive maintenance." In KDD '14: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2623330.2623340.
Full textGama, Joao, Slawomir Nowaczyk, Sepideh Pashami, Rita P. Ribeiro, Grzegorz J. Nalepa, and Bruno Veloso. "XAI for Predictive Maintenance." In KDD '23: The 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3580305.3599578.
Full textReports on the topic "Predictive maintenance"
Church, Joshua, LaKenya Walker, and Amy Bednar. JAIC Predictive Maintenance Dashboard user manual. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41823.
Full textRamasahayam, Uditsena Reddy. Revolutionizing aircraft maintenance: The role of predictive maintenance in aviation. Ames (Iowa): Iowa State University, December 2023. http://dx.doi.org/10.31274/cc-20240624-1236.
Full textWalker, Cody, Vivek Agarwal, Linyu Lin, Anna Hall, Rachael Hill, Ronald Boring PhD, Torrey Mortenson, and Nancy Lybeck. Explainable Artificial Intelligence Technology for Predictive Maintenance. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1998555.
Full textFoster, Michelle. Vibration Analysis - Presented to the MMWG Predictive Maintenance User’s Group. Office of Scientific and Technical Information (OSTI), August 2023. http://dx.doi.org/10.2172/1996132.
Full textTsunokai, Manabu. Quantification of Forecasting and Change-Point Detection Methods for Predictive Maintenance. Fort Belvoir, VA: Defense Technical Information Center, August 2015. http://dx.doi.org/10.21236/ada627305.
Full textFoster, Michelle. Infrared Thermography Applications Presented to the MMWG Predictive Maintenance User’s Group. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1890960.
Full textAgarwal, Vivek. Identification of Balance of Plant Asset and Wireless Instrumentation to Enable Predictive Maintenance. Office of Scientific and Technical Information (OSTI), July 2019. http://dx.doi.org/10.2172/2448467.
Full textWalker, Cody, Linyu Lin, Vivek Agarwal, Nancy Lybeck, Anna Hall, Rachael Hill, and Ronald Boring PhD. Demonstration and Evaluation of Explainable and Trustworthy Predictive Technology for Condition-based Maintenance. Office of Scientific and Technical Information (OSTI), September 2024. http://dx.doi.org/10.2172/2474859.
Full textHamilton, Jason. Early-Stage Transition to Predictive Maintenance: Using CMMS, IR Scans, and Vibration Analysis to Improve Uptime and Lower Maintenance Costs. Portland State University Library, January 2015. http://dx.doi.org/10.15760/honors.188.
Full textAgarwal, Vivek, and Andrei Gribok. Markov Process to Evaluate the Value Proposition of a Risk-Informed Predictive Maintenance Strategy. Office of Scientific and Technical Information (OSTI), July 2020. http://dx.doi.org/10.2172/2448464.
Full text