Dissertations / Theses on the topic 'Predictive maintenance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Predictive maintenance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Li, Jiawei M. Eng Massachusetts Institute of Technology. "A case model for predictive maintenance." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/43139.
Full textIncludes bibliographical references (leaves 59-60).
This project is to respond to a need by Varian Semiconductor Equipment Associates, Inc. (VSEA) to help predict failure of ion implanters. Predictive maintenance would help to reduce the unscheduled downtime of ion implanters, whose throughput and uptime is highly important to customers. Statistical analysis is performed on historical data to extract metadata that can reflect the machine health, and statistical process control (SPC) is applied to detect deviations from normal or in-control behavior. Methods for failure prevention are also investigated. Challenging points in this project are the noise in raw signal data and the difference in data signals of different robots. To address these challenges, we apply signal filtering to extract cycle motions from raw data, and develop different generic as well as specific metadata extraction techniques for different robots. We test the extraction approaches and results using healthy data of ten machines, and find that the metadata on which we chose to perform SPC is suitable and can serve as a consistent indicator of a machine's health. We further develop an application using Visual Basic based on our study, and provide a user guide on how to generate the analysis reports on new data using our application.
by Jiawei Li.
M.Eng.
Tyagi, Prakhar. "Chassis predictive maintenance and service solutions." Thesis, KTH, Fordonsdynamik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265587.
Full textPrediktivt Underhåll (PdM) är en statistisk modell som samlar data från flera olika sensorer och som identifierar fel innan de äger rum. Huvudfokus för detta examensarbete har varit förslaget till ett maskininlärningsbaserat system som är utformat för att förutsäga fel i mekaniska delar som kräver utbyte. Examensarbetet undersöker möjligheterna att implementera en maskininlärningsalgoritm för att förutsäga de mekaniska delar som kräver utbyte och som framgår av de elektroniska fel som fordonet uppvisar. En stark koppling mellan de delar som orsakar fel och elektroniska felkoder hjälper till att ge ett kraftfullt diagnostiskt verktyg. Studien har beaktat tre felkomponenter nämligen; trasig dämpare, missljud från hjulnav och referensvärdet för valideringsändamål. Modellfordonet som används för studien är Volvo V90. För att få varians i informationen för detta arbete användes olika provbanor med olika vägförhållanden med olika hastigheter. Maskininlärningsalgoritmen som utvecklades kan klassificera och upptäcka mekaniska fel med hjälp av en SVM-algoritm (Support Vector Machine) baserad på olika statistiska inlärningsmetoder. Studien genomförde en snabb Fourier-transform (FFT) analys i samband med de data som förvärvades från det främre vänstra hjulet. Huvudintresseområdet är FFT-domänen 5-20 Hz. Studiens resultat visade att den använda modellen kan: Identifiera och klassificera data som är förknippade med de felaktiga komponenterna som trasig dämpare och missljud i hjulnav. Modellen kan användas för vidare prediktera och ge förslag när ett mekaniskt fel på dämpare eller hjulnav håller på att ske. Det här examensarbetet täcker inte tidsbunden prediktion utan snarare identifierar när nedbrytningen av mekaniska komponenter har skett. Resultaten från detta examensarbete kan emellertid användas för att implementera en tidsbaserad prediktion för mekaniska komponentfel.
Korvesis, Panagiotis. "Machine Learning for Predictive Maintenance in Aviation." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX093/document.
Full textThe increase of available data in almost every domain raises the necessity of employing algorithms for automated data analysis. This necessity is highlighted in predictive maintenance, where the ultimate objective is to predict failures of hardware components by continuously observing their status, in order to plan maintenance actions well in advance. These observations are generated by monitoring systems usually in the form of time series and event logs and cover the lifespan of the corresponding components. Analyzing this history of observation in order to develop predictive models is the main challenge of data driven predictive maintenance.Towards this direction, Machine Learning has become ubiquitous since it provides the means of extracting knowledge from a variety of data sources with the minimum human intervention. The goal of this dissertation is to study and address challenging problems in aviation related to predicting failures of components on-board. The amount of data related to the operation of aircraft is enormous and therefore, scalability is a key requirement in every proposed approach.This dissertation is divided in three main parts that correspond to the different data sources that we encountered during our work. In the first part, we targeted the problem of predicting system failures, given the history of Post Flight Reports. We proposed a regression-based approach preceded by a meticulous formulation and data pre-processing/transformation. Our method approximates the risk of failure with a scalable solution, deployed in a cluster environment both in training and testing. To our knowledge, there is no available method for tackling this problem until the time this thesis was written.The second part consists analyzing logbook data, which consist of text describing aircraft issues and the corresponding maintenance actions and it is written by maintenance engineers. The logbook contains information that is not reflected in the post-flight reports and it is very essential in several applications, including failure prediction. However, since the logbook contains text written by humans, it contains a lot of noise that needs to be removed in order to extract useful information. We tackled this problem by proposing an approach based on vector representations of words (or word embeddings). Our approach exploits semantic similarities of words, learned by neural networks that generated the vector representations, in order to identify and correct spelling mistakes and abbreviations. Finally, important keywords are extracted using Part of Speech Tagging.In the third part, we tackled the problem of assessing the health of components on-board using sensor measurements. In the cases under consideration, the condition of the component is assessed by the magnitude of the sensor's fluctuation and a monotonically increasing trend. In our approach, we formulated a time series decomposition problem in order to separate the fluctuation from the trend by solving a convex program. To quantify the condition of the component, we compute a risk function which measures the sensor's deviation from it's normal behavior, which is learned using Gaussian Mixture Models
Karlsson, Lotta. "Predictive Maintenance for RM12 with Machine Learning." Thesis, Högskolan i Halmstad, Akademin för ekonomi, teknik och naturvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42283.
Full textSedghi, Mahdieh. "Data-driven predictive maintenance planning and scheduling." Licentiate thesis, Luleå tekniska universitet, Industriell Ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80828.
Full textKilleen, Patrick. "Knowledge-Based Predictive Maintenance for Fleet Management." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/40086.
Full textWilliamsson, Ia. "Total Quality Maintenance (TQMain) A predictive and proactive maintenance concept for software." Thesis, Blekinge Tekniska Högskola, Avdelningen för för interaktion och systemdesign, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-2281.
Full textPryor, Jacqueline. "Earthwork maintenance : a geotechnical database and predictive model." Thesis, Cardiff University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266614.
Full textDe, Giorgi Marcello. "Tree ensemble methods for Predictive Maintenance: a case study." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22282/.
Full textFURTADO, FELIPE MIANA DE FARIA. "NEURAL NETWORKS FOR PREDICTIVE MAINTENANCE ON OFF-HIGWAY TRUCKS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=15673@1.
Full textCom o aumento da demanda por minério no mundo, a complexidade, o tamanho e o preço dos equipamentos de extração mineral aumentaram consideravelmente. Como estas máquinas possuem uma tecnologia de monitoramento embarcada no equipamento, a utilização desses dados para o aumento da confiabilidade e da disponibilidade do equipamento tornou-se fundamental, de modo a reduzir os custos de manutenção. O objetivo desta dissertação foi desenvolver um modelo de apoio à decisão de parada de equipamento, baseado na classificação por Redes Neurais Artificiais de padrões pré-falha de caminhões fora de estrada. O modelo proposto tem como objetivo identificar o estado de falha, ou padrão pré-falha de um equipamento, utilizando os dados armazenados nos equipamentos e seus respectivos registros de falha, para que seja possível avaliar o risco de falha deste equipamento e decidir se o mesmo deve ser parado ou aguardar uma nova parada programada. Essa dissertação foi desenvolvida em quatro partes: estudo dos principais modelos de manutenção atualmente utilizados; definição e desenvolvimento do modelo para abordar o problema, baseado em redes neurais artificiais; avaliação de desempenho do modelo proposto; e simulação do downtime da máquina utilizando o modelo de decisão proposto. No estudo dos principais modelos foi realizada uma pesquisa bibliográfica sobre a evolução da manutenção, passando por modelos de manutenção corretiva, manutenção preventiva e, por fim, chegando ao modelo de manutenção baseada no monitoramento de condições. Para os dois últimos tipos de manutenção, foram apresentados os principais modelos utilizados na abordagem do problema, seus benefícios e deficiências. O desenvolvimento do modelo foi segmentado em três etapas principais: tratamento das bases de dados, tanto de dados obtidos diretamente do equipamento quanto das bases de registro de falha dos equipamentos; seleção de variáveis, baseada no cálculo da influência de cada sensor do equipamento na determinação de seu estado de falha, assim como na definição do intervalo ideal para se agrupar os dados; e definição da topologia das redes. Na etapa de avaliação do desempenho do modelo proposto foram utilizados dados de falhas corretivas mais recorrentes para os dois componentes específicos de caminhões fora de estrada: motor e transmissão, sendo que o monitoramento eletrônico do motor é mais extenso do que o de transmissão, no que diz respeito ao número de sensores empregados no monitoramento. Para a comparação de desempenho entre os diferentes modelos avaliados, dois fatores tiveram maior relevância: melhor desempenho na classificação e maior intervalo entre a identificação do padrão pré-falha e a ocorrência da falha. Os resultados de classificação dos padrões pré-falha foram bastante satisfatórios para a maioria dos casos de estudos, com as taxas de acerto variando entre 85% e 95%. A partir do modelo de classificação determinado na etapa anterior, passou-se à simulação de diferentes cenários de falhas, calculando-se os tempos de máquina parada (downtimes) que teriam sido evitados se as intervenções definidas pelo modelo tivessem sido executadas, analisando-se, assim, o aumento de disponibilidade proporcionado pelo uso do modelo proposto.
With the increasing demand for ore in the world, the complexity, size and price of mining equipment have increased considerably. As these machines have embedded monitoring technology, the use of such data to increase the reliability and availability of the equipment has become essential in order to reduce maintenance costs. The objective of this work is developing a model that supports the decision of stopping an equipment, based on its actual state, using pattern recognition by neural networks. The proposed model aims to identify the state of equipment failure or pre-failure based on the data stored in the equipment and on the records of failure, so as to assess the risk of failure of equipment and to decide whether it should be stopped or wait for a new programmed shutdown. This dissertation was developed in four parts: study of the main models currently used for maintenance; design and implementation of the model to address this problem, based on artificial neural networks; performance evaluation of the proposed model; and simulation of equipment downtime using the proposed model. In the study of the main models a research was made about the evolution of maintenance techniques, through models of corrective maintenance, preventive maintenance and, finally, reaching the maintenance model based on condition monitoring. For the last two types of maintenance, it is presented the main models used in addressing the problem, its benefits and shortcomings. The development of the model was segmented into three main stages: processing of databases, from the data obtained directly from the equipment to the base of record of equipment failure; variable selection, based on the calculation of the influence of each equipment sensor to determine its failure state, as well as the definition of the ideal range of group data, and definition of the topology of networks. In the stage of assessing the performance of the proposed model we used data from corrective failures more often of two specific components of off-highway trucks: engine and transmission. To compare the performance between the different models evaluated, two factors were more important: classification performance and the longest interval between the identification of a pre-failure pattern and the occurrence of the failure. The results of classification of pre-failure patterns were quite satisfactory for most case studies, with hit rates ranging between 85% and 96%. From the classification model given in the previous step, we moved on to simulate different failure scenarios, calculating the equipment downtime that would have been avoided if the interventions defined by the model had been implemented, thus analyzing the increased availability provided by the use of the proposed model.
Gorman, Joe, Glenn Takata, Subhash Patel, and Dan Grecu. "A Constraint-Based Approach to Predictive Maintenance Model Development." International Foundation for Telemetering, 2008. http://hdl.handle.net/10150/606187.
Full textPredictive maintenance is the combination of inspection and data analysis to perform maintenance when the need is indicated by unit performance. Significant cost savings are possible while preserving a high level of system performance and readiness. Identifying predictors of maintenance conditions requires expert knowledge and the ability to process large data sets. This paper describes a novel use of constraint-based data-mining to model exceedence conditions. The approach extends the extract, transformation, and load process with domain aggregate approximation to encode expert knowledge. A data-mining workbench enables an expert to pose hypotheses that constrain a multivariate data-mining process.
Odekvist, Joshua, and Robert Antar. "Predictive Maintenance and Data Analysis in Ellevio's Distribution Grid." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-398597.
Full textAHMED, Umair. "DECISION-MAKING MODELS FOR PREDICTIVE MAINTENANCE SERVICE SUPPORT SYSTEMS." Doctoral thesis, Università degli Studi di Palermo, 2023. https://hdl.handle.net/10447/579250.
Full textIn the digital era, technology is continually evolving, with enormous advancements in automation enabling more efficient and cost-effective maintenance management. Digital technologies are converging and advancing in tandem with industries, resulting in significant progress in maintenance management. The traditionally human-managed preventive maintenance strategy is outclassed with predictive maintenance, something that represents a wonderful opportunity to significantly improve system maintenance planning, particularly for more complex systems with a significant monetary value. However, predictive maintenance methods face numerous substantial challenges in terms of their application, as they necessitate the use of contemporary tracking technologies, the development of robust data-gathering systems, and the execution of a variety of intricate procedures. Considering the significance of maintenance management in industries, the primary motivation for this research work is to investigate existing practices and propose new methodologies capable of providing practical implications that may be useful in contributing to this field of study in terms of predicting failures, efficiency, and cost optimization. The present work is organized through three chapters, representing the main areas of study: 1) overview on maintenance management, 2) decision-making models supporting predictive maintenance, and 3) digital transformation in maintenance management. The objectives of research linked to the defined chapters are; 1) to study current practices of predictive maintenance and its applications in industry to identify its capability to predict and control equipment failures of complex systems; 2) to investigate various Multi-Criteria Decision-Making (MCDM) methods and their applications so as to develop an integrated predictive maintenance decision-making methodology for complex systems in industry 4.0; 3) to study the digital transformation of maintenance management and critical factors of digitalization, as well as uncertainty in the decision-making process for maintenance management in industry 4.0. In achieving the objectives of this research, a mixed methodology, i.e., qualitative and quantitative research, is carried out on the basis of an extensive literature study. A literature review of predictive maintenance, its industrial applications along with its limitations is developed to identify the shortcomings in existing approaches. Various MCDM methodologies have been studied as well to investigate their effects on maintenance management and a plethora of real-world cases have been developed to offer practical managerial insights.
Murphy, Killian. "Predictive maintenance of network equipment using machine learning methods." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAS013.
Full textWith the improvement of computation power necessary for advanced applications of Machine Learning (ML), Network Fault Prediction (NFP) experiences a renewed scientific interest. The ability to predict network equipment failure is increasingly identified as an effective means to improve network reliability. This predictive capability can be used, to mitigate or to enact predictive maintenance on incoming network failures. This could contribute to establishing zero-failure networks and allow safety-critical applications to run over higher dimension and heterogeneous networks.In this PhD thesis, we propose to contribute to the NFP field by focusing on network alarm prediction. First, we present a comprehensive survey on NFP using Machine Learning (ML) methods entirely dedicated to telecommunication networks, and determine new directions for research in the field. Second, we propose and study a set of Machine Learning performance metrics (maintenance cost reduction and Quality of Service improvement) adapted to NFP in the context of network maintenance. Third, we describe the complete data processing architecture, including the network and software infrastructure, and the necessary data preprocessing pipeline that was implemented at SPIE ICS, Networks and Systems Integrator. We also describe the alarm or failure prediction problem model precisely. Fourth, we establish a benchmark of the different ML solutions applied to our dataset. We consider Decision Tree-based methods, Multi-Layer Perceptron and Support Vector Machines. We test the generalization of performance prediction across equipment types as well as normal ML generalization of the proposed models and parameters.Then, we apply sequential - Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) - ML architectures with success on our sequential SNMP dataset. Finally, we study the impact of the definition of the prediction horizon (and associated arbitrary timeframes) on the ML model prediction performance
Kumbala, Bharadwaj Reddy. "Predictive Maintenance of NOx Sensor using Deep Learning : Time series prediction with encoder-decoder LSTM." Thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18668.
Full textDella, Penna Roberto. "Edge Cloud Computing Middleware per Predictive Maintenance in Industria 4.0." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20065/.
Full textLee, Hock Guan. "A study on predictive analytics application to ship machinery maintenance." Thesis, Monterey California. Naval Postgraduate School, 2013. http://hdl.handle.net/10945/37659.
Full textEngine failures on ships are expensive, and affect operational readiness critically due to long turn-around times for maintenance. Prior to the engine failures, there are signs of engine characteristic changes, for example, exhaust gas temperature (EGT), to indicate that the engine is acting abnormally. This is used as a precursor towards the modeling of failures. There is a threshold limit of 520 degree Celsius for the EGT prior to the need for human intervention. With this knowledge, the use of time series forecasting technique, to predict the crossing over of threshold, is appropriate to model the EGT as a function of its operating running hours and load. This allows maintenance to be scheduled just in time. When there is a departure of result from the predictive model, Cumulative Sum (CUSUM) Control charts can then be used to monitor the change early before an actual problem arises. This paper discusses and demonstrates the proof of principle for one engine and a particular operating profile of a commercial vessel with the use of predictive analytics. The realization with time series forecasting coupled with CUSUM control chart allows this approach to be extended to other attributes beyond EGT.
Lindström, Johan. "Predictive maintenance for a wood chipper using supervised machine learning." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149304.
Full textWang, Katherine(Katherine Yuchen). "A machine learning framework for predictive maintenance of wind turbines." Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129927.
Full textCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 73-75).
Wind energy is one of the fastest growing energy sources in the world. However, the failure to detect the breakdown of turbine parts can be very costly. Wind energy companies have increasingly turned to machine learning to improve wind turbine reliability. Thus, the goal of this thesis is to create a flexible and extensible machine learning framework that enables wind energy experts to define and build models for the predictive maintenance of wind turbines. We contribute two libraries that provide experts with the necessary tools to solve prediction problems in the wind energy industry. The first is GPE, which translates and uses the desired prediction problem to generate machine learning training examples from turbine operations data. The other library, CMS-ML, provides the architecture for building machine learning models using vibration data generated by turbine sensors within the Condition Monitoring System (CMS). With this architecture, we can easily create modular feature engineering and machine learning pipelines for the CMS signal data. Finally, we demonstrate the application of these two libraries on proprietary wind turbine data and analyze the effects of their parameters.
by Katherine Wang.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Shahi, Durlabh, and Ankit Gupta. "Forecasting Components Failure Using Ant Colony Optimization For Predictive Maintenance." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-42457.
Full textDinh, Duc-Hanh. "Opportunistic Predictive Maintenance for Multi-Component Systems with Multiple Dependences." Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0171.
Full textRecently, maintenance modeling for multi-component systems with dependences (economic, stochastic, and/or structural dependences) has been extensively studied. However, most of the existing studies only consider one type of dependence since combining more than one makes the models too complicated to analyze and solve. However, in practice, several types of dependences, especially, the economic and structural dependences, may exist together in the system. To face this issue, the main objective of this thesis is to consider both economic and structural dependences in maintenance modeling and optimization for multi-component systems in framework of predictive maintenance. For this purpose, the impacts of economic and structural dependences on the maintenance cost, duration and the degradation process of the components are firstly investigated. Mathematical models for quantifying the impacts of the economic and structural dependences are then developed. Finally, a multi-level opportunistic maintenance policy is proposed to consider the impacts of these dependences between components.Due to the structural dependence between components, when a maintenance (preventive or corrective action) occurs, only few components need to be disassembled. The disassembled components are subjected to both economic and structural dependences while the non-disassembled components are subjected to only economic dependence. In that way, the proposed maintenance policy is characterized by one preventive threshold, that is used to select survival components for preventive maintenance, and two opportunistic maintenance thresholds, that are used for opportunistic maintenance. When a maintenance occurs, the first opportunistic threshold is defined to select the non-disassembled components (with only economic dependence) while the second opportunistic threshold is then developed to consider the disassembled components for opportunistic maintenance (with both economic and structural dependences). To evaluate the performance of the proposed opportunistic maintenance policy, a cost model is developed. Particle swarm optimization algorithm is then implemented to find the optimal decision variables. Finally, the proposed opportunistic maintenance policy is illustrated through a conveyor system to show its feasibility and added value in maintenance optimization framework
Le, Nguyen Minh Huong. "Online machine learning-based predictive maintenance for the railway industry." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT027.
Full textBeing an effective long-distance mass transit, the railway will continue to flourish for its limited carbon footprint in the environment. Ensuring the equipment's reliability and passenger safety brings forth the need for efficient maintenance. Apart from the prevalence of corrective and periodic maintenance, predictive maintenance has come into prominence lately. Recent advances in machine learning and the abundance of data drive practitioners to data-driven predictive maintenance. The common practice is to collect data to train a machine learning model, then deploy the model for production and keep it unchanged afterward. We argue that such practice is suboptimal on a data stream. The unboundedness of the stream makes the model prone to incomplete learning. Dynamic changes on the stream introduce novel concepts unseen by the model and decrease its accuracy. The velocity of the stream makes manual labeling infeasible and disables supervised learning algorithms. Therefore, switching from a static, offline learning paradigm to an adaptive, online one is necessary, especially when new generations of connected trains continuously generating sensor data have already been a reality. We investigate the applicability of online machine learning for predictive maintenance on typical complex systems in the railway. First, we develop InterCE as an active learning-based framework that extracts cycles from an unlabeled stream by interacting with a human expert. Then, we implement a long short-term memory autoencoder to transform the extracted cycles into feature vectors that are more compact yet remain representative. Finally, we design CheMoc as a framework that continuously monitors the condition of the systems using online adaptive clustering. Our methods are evaluated on the passenger access systems on two fleets of passenger trains managed by the national railway company SNCF of France
Koeneman, Peter William. "An analysis of sensor effectiveness to inform a predictive maintenance policy." Thesis, Monterey, Calif. : Naval Postgraduate School, 2009. http://handle.dtic.mil/100.2/ADA502234.
Full textThesis Advisor(s): Jacobs, P. A. ; Gaver, D. P. "June 2009." Description based on title screen as viewed on Ju;ly 10, 2009. DTIC Identifiers: CBM (Condition Based Maintenance), warning time of impending failure, renewal reward process, failure time, maintenance models, predictive maintenance. Author(s) subject terms: Condition Based Maintenance ; CBM+; renewal reward process; correlated failure time and warning time of impending failure. Includes bibliographical references (p. 77-78). Also available in print.
Burrows, John H. (John Henry). "Predictive and preventive maintenance of mobile mining equipment using vibration data." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=24052.
Full textThe thesis work is a sub-component of a larger project at IOCC, to implement a mine-wide predictive/preventative maintenance program for pumps, locomotives, trucks, shovels and drills at their open-pit mine in Labrador City, Newfoundland. This system will use intermittent on- and off-line, condition monitoring based on ANNs and expert systems (ES). A functional overview is discussed. The data would identify where and what is the particular machine alarm condition. Such an approach would allow improved fault detection of machine components, especially in mines where trained personnel are not readily available. (Abstract shortened by UMI.)
Ruiz, Cárcel Cristóbal. "Predictive condition monitoring of industrial systems for improved maintenance and operation." Thesis, Cranfield University, 2014. http://dspace.lib.cranfield.ac.uk/handle/1826/9305.
Full textMarie Curie
Akindele, Babatunde Babajide. "Model-based fault diagnosis framework for effective predictive maintenance / B.B. Akindele." Thesis, North-West University, 2010. http://hdl.handle.net/10394/4435.
Full textThesis (M.Ing. (Development and Management))--North-West University, Potchefstroom Campus, 2011.
Flint, Anthony David. "The development of predictive maintenance systems based on the Hough transform." Thesis, University of Huddersfield, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307836.
Full textYe, Chen S. M. Massachusetts Institute of Technology. "A system approach to implementation of predictive maintenance with machine learning." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118502.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 87-91).
Digital technology is changing the industrial sector, yet how to make rational use of some technologies and create considerable value in a variety of industrial scenarios is an issue. Many digital industrial companies have stated that they have helped clients with their digital transformation, create much value, but the real effects have not been shown in public. Venture capitals firms have made huge investment in potential digital industrial startups. Numerous industrial IoT platforms are emerging in the market, but a number of them fade soon after. Many people have heard about industrial maintenance technology, but they have difficulty in differentiate concepts such as reactive maintenance, planned maintenance, proactive maintenance, and predictive maintenance. Many people know that big data and Al are essential in industrial sector, but they do not know how to process, analyze, and extract value from industrial data and how to use Al algorithms and tools to implement a research project. This thesis analyzes the entire digital industrial ecosystem in various dimensions such as initiatives, technologies in related domains, stakeholders, markets, and strategies. This work also analyzes of the predictive maintenance solution in various dimensions such as background, importance, suitable scenarios, market, business model, and technology. The author plans an experiment for the predictive maintenance solution, including goal, data source and description, methods and steps, and flow and tools. Then author uses a baseline approach and an optimal approach to implement the experiment, including data preparation, selection and evaluation of both regression and classification models, and deep learning practice through neural network building and optimization. Finally, contributions and expectations, and limitations and future research are discussed. This work uses a system approach, including system architecting, system engineering, and project management, to complete the process of analysis, design, and implementation.
by Chen Ye.
S.M. in Engineering and Management
Numanovic, Kerim. "Advanced Clinical Data Processing: A Predictive Maintenance Model for Anesthesia Machines." Thesis, KTH, Tillämpad fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-283323.
Full textUnderhållet av medicintekniska produkter är mycket viktigt för att säkerställa att enheterna är stabila, välfungerande och säkra att använda. Den nuvarande underhållsmetoden, som kallas förebyggande underhåll, har sina fördelar men kan vara problematisk både från operatörens och tillverkarsidan. Att utveckla en modell som förutsäger fel i anestesimaskiner kan vara till stor nytta för tillverkaren, kunderna och patienterna. Denna avhandling syftar till att undersöka möjligheten att skapa en förutsägbar underhållsmodell för anestesimaskiner genom att använda enhetsdata och maskininlärning. Denna avhandling undersöker också påverkan av data på modellprestanda och jämför olika fördröjningsstorlekar och framtida horisonter med modellprestanda. Tidsseriedata som samlats in kom från 87 unika enheter och ett specifikt test valdes för att vara modellens outputvariabel. En hel pipeline skapades, som inkluderade förbehandling av data, funktionsteknik och modellutveckling. Funktionsextraktion gjordes på tidsseriedata med hjälp av ett bibliotek som heter tsfresh, som förvandlade tidsserieegenskaper till funktioner som skulle möjliggöra övervakat lärande. Två modeller utvecklades: logistisk regression och XGBoost. Den logistiska regressionsmodellen fungerade som en basmodell och resultatet av dess prestanda var som förväntat ganska dåligt. XGBoost gav en AUCPR-poäng på 0,21 på hela datamängden och 0,32 på en nedmonterad datamängd. Även om det var en ganska låg poäng, var det överraskande högt med tanke på den extrema klassobalansen som fanns i datasetet. Inget tydligt mönster hittades mellan fördröjningsstorlekarna och framtida horisonter med modellprestanda. Något som kunde ses var att dataobalansen hade stor inverkan på modellens prestanda, vilket upptäcktes när den nedprovade datamängden med mindre obalans i klassen gav en högre AUCPR-poäng.
Bergström, Joakim. "Transfer Learning on Ultrasound Spectrograms of Weld Joints for Predictive Maintenance." Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424726.
Full textNordberg, Andreas. "Evaluation of Neural Networks for Predictive Maintenance : A Volvo Penta Study." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176390.
Full textHedkvist, Adam. "Predictive maintenance with machine learning on weld joint analysed by ultrasound." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-396059.
Full textLAKSHMANAN, KAYALVIZHI. "Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms." Doctoral thesis, Università degli studi di Pavia, 2021. http://hdl.handle.net/11571/1447613.
Full textCONSILVIO, ALICE. "Risk-Based Optimal Scheduling for the Predictive Maintenance of Railway Infrastructure." Doctoral thesis, Università degli studi di Genova, 2018. http://hdl.handle.net/11567/929594.
Full textOliveira, Rafael José Gomes de [UNESP]. "Implementação de técnicas de processamento de sinais para o monitoramento da condição de mancais de rolamento." Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/97131.
Full textUniversidade Estadual Paulista (UNESP)
Na indústria moderna o monitoramento da condição de operação de máquinas rotativas é essencial para se determinar o surgimento de falhas em mancais de rolamentos. Este trabalho apresenta uma técnica de análise adotada para a identificação de falhas em mancais de rolamento em seus estágios iniciais, utilizando procedimentos de análise de sinais no domínio do tempo e da freqüência, com especial atenção para a técnica do HFRT (High Frequency Resonance Technique), também conhecida como Técnica do Envelope. Este método de análise de sinais foi escolhido em razão de ser uma ferramenta apropriada para identificar falhas em mancais de rolamentos na sua fase inicial. A teoria das técnicas foi discutida e os passos para a implementação computacional foram apresentados. As rotinas foram implementadas através da linguagem de programação MATLAB e um sinal simulado representativo de um sinal coletado de um mancal de rolamento com defeito pontual na pista externa foi desenvolvido para verificar a eficácia dos métodos implementados. Os experimentos foram desenvolvidos utilizando-se uma bancada de testes aplicada para testar mancais de rolamento com defeitos pontuais produzidos em laboratório. A aquisição dos dados foi desenvolvida com instrumentação comercial. Os resultados obtidos mostraram ser efetivos para identificar falhas em rolamentos para os dados simulados e dados experimentais.
In the modern industries, the condition monitoring of the rotational machinery operation is important to evidence the beginning of the fails in bearings. This work presents a technique of analysis applied to identify fails in bearing during the initial phases, using techniques of signal analysis in time and frequency domain with special attention for the High Frequency Resonance Technique, also called envelope technique. This method for signal analysis was chosen because is an appropriated tool to identify fails in bearings during initial phases. The theory for the techniques was discussed and the steps for the computational implementation were showed. The routines were implemented through MATLAB programming language and it was prepared a representative signal of a bearing with a single point defect in the outer race in order to verify the capability of the method implemented in the routine. The experiments were performed using a experimental test rig applied to test bearings with single point defects performed in laboratory. The data acquisition were performed with commercial instrumentation. The results obtained shown to be effective to identify fails in bearings for both numerically simulated data and experimental data.
Ayandokun, O. K. "The incremental motion encoder : a sensor for the integrated condition monitoring of rotating machinery." Thesis, Nottingham Trent University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245075.
Full textRossi, Tisbeni Simone. "Big data analytics towards predictive maintenance at the INFN-CNAF computing centre." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18430/.
Full textFaraj, Dina. "Using Machine Learning for Predictive Maintenance in Modern Ground-Based Radar Systems." Thesis, KTH, Matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-299634.
Full textMilitära system är ofta en del av kritiska operationer där oplanerade driftstopp bör undvikas till varje pris. Med hjälp av moderna maskininlärningsalgoritmer kan det vara möjligt att förutsäga när och var ett fel kommer att inträffa. Detta möjliggör tid för beställning av reservdelar och schemaläggning av underhåll. Denna uppsats är en konceptstudie för detektion av anomalier i övervakningsdata från ett markbaserat radarsystem som ett initialt experiment för att studera prediktivt underhåll. Datat som används i detta arbete kommer från en Saab Giraffe 4A radar under normal operativ drift, dvs. ingen avvikande data med kända brister tillhandahölls. Problemställningen är ursprungligen ett oövervakat maskininlärningsproblem eftersom datat saknar etiketter. Spekulativa binära etiketter introduceras (uppstart och stabil fas) för att uppskatta klassificeringsnoggrannhet. Systemet fungerar korrekt i båda faserna men övervakningsdatat ser annorlunda ut. Genom att visa att de två faserna kan urskiljas, kan man anta att avvikande data också går att detektera när fel uppstår. Tre olika klassificeringsmetoder dvs. två oövervakade maskininlärningmodeller, K-means klustring och isolation forest samt en övervakad modell, logistisk regression utvärderas utifrån deras förmåga att upptäcka uppstartfasen varje gång systemet slås på. Metoderna utvärderas grafiskt och baserat på deras träffsäkerhet. Alla tre metoderna känner igen en startfas för minst fyra av sju delsystem. Genom att endast analysera deras noggrannhetspoäng, överträffar logistisk regression de andra modellerna. De insamlade resultaten demonstrerar möjligheten att skilja mellan uppstartfas och stabil fas, både i en övervakad och oövervakad miljö. För att välja den bästa metoden är det nödvändigt med ytterligare experiment på större datamängder.
Bansal, Dheeraj. "An advanced real-time predictive maintenance framework for large scale machine systems." Thesis, Aston University, 2005. http://publications.aston.ac.uk/12235/.
Full textJorge, Inès. "Machine-learning-based predictive maintenance for lithium-ion batteries in electric vehicles." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAD056.
Full textThe battery is a central component of electric vehicles, and is subject to numerous challenges in terms of performance, safety and cost. The life of batteries in particular is the subject of a great deal of attention, as it needs to be aligned with the life of a vehicle. In this context, predictive maintenance aims to reliably predict the remaining useful life (RUL) and the evolution of the state of health (SOH) of a Lithium-Ion (Li-Ion) battery using past and present operating data, so as to anticipate maintenance operations. The objective of this thesis is to take advantage of the information contained in the time series of current, voltage and temperature via machine learning algorithms. Several predictive models have been developed from public datasets, in order to predict the RUL of a battery or the evolution of its SOH in the more or less long term
Berg, Martin, and Albin Eriksson. "Toward predictive maintenance in surface treatment processes : A DMAIC case study at Seco Tools." Thesis, Luleå tekniska universitet, Institutionen för ekonomi, teknik, konst och samhälle, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-84923.
Full textSjöström, William. "Comparing SKF and Erbessd sensor integration for predictivemaintenance." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176718.
Full textButylin, Sergei. "Predictive Maintenance Framework for a Vehicular IoT Gateway Node Using Active Database Rules." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38568.
Full textMarastoni, Gabriele. "Towards predictive maintenance at LHC computing centers: exploration of monitoring data at CNAF." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16923/.
Full textMinarini, Francesco. "Anomaly detection prototype for log-based predictive maintenance at INFN-CNAF tier-1." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19304/.
Full textKaiser, Kevin Michael. "A simulation study of predictive maintenance policies and how they impact manufacturing systems." Thesis, University of Iowa, 2007. http://ir.uiowa.edu/etd/152.
Full textGauchel, Wolfgang, Thilo Streichert, and Yannick Wilhelm. "Predictive maintenance with a minimum of sensors using pneumatic clamps as an example." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71204.
Full textGuillen, Rosaperez Diego Alonso. "Self-Learning Methodology for Failure Detection in an Oil- Hydraulic Press : Predictive maintenance." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289371.
Full textDeep Learning-metoder har dramatiskt förbättrat det senaste inom flera fält, såsom taligenkänning, objektdetektering, bland andra. Ändå har dess tillämpning på signalbehandling, där data ofta är omärkt, fått relativt lite uppmärksamhet. I detta fält används numera ofta en uppsättning suboptimala tekniker. De kräver vanligtvis en expert för att manuellt extrahera funktioner för att analysera, vilket är en kunskaps och arbetsintensiv process. Således kan en självlärande teknik förbättra nuvarande metoder. Dessutom är vissa maskiner i en fabrik särskilt komplexa, såsom en oljehydraulisk press. Här kan dess sensorer bara identifiera några fel genom att ställa in vissa trösklar, men de kan vanligtvis inte upptäcka slitage på dess interna komponenter. Så, en självlärande teknik skulle krävas för att upptäcka avvikelser relaterade till försämring. Konceptet är att bestämma maskinens tillstånd och att förutsäga haverier genom att analysera mönster i mätningarna från deras sensorer. Detta dokument föreslår en självlärningsmetodik som använder en djupinlärningsmodell för att förutsäga fel i en sådan maskin. Kärnidén är att träna en algoritm som i sig kan identifiera de relevanta funktionerna som ska extraheras i en arbetscykel och att relatera dem till en del som kommer att bryta ner. Den genomförda utvärderingen fokuserar på ett exempel på fall där en hydraulisk ackumulator misslyckas. Som ett resultat var det möjligt att förutse dess fördelning två veckor i förväg. Slutligen ger den föreslagna metoden förklaringar i varje steg, efter att ha erkänt deras betydelse i industriella applikationer. Några överväganden och begränsningar av denna teknik anges också som stöd för att vägleda förväntningarna hos vissa intressenter i en fabrik, dvs. en (global) processägare.
Calabrese, Francesca <1992>. "Integrating Machine Learning Paradigms for Predictive Maintenance in the Fourth Industrial Revolution era." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10133/1/Tesi_CalabreseFrancesca.pdf.
Full textFalcomer, Carlo <1993>. "Big data analytics for proactive and predictive maintenance in electric car battery packs." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10183/1/TesiDottorato.pdf.
Full textL'idea alla base del progetto è stata quella di sviluppare una metodologia di analisi e di sviluppo di tecniche per la diagnosi e la previsione dello stato di carica e di salute delle batterie agli ioni di litio per applicazioni automobilistiche. Per le batterie agli ioni di litio, la funzionalità residua è misurata in termini di stato di salute, tuttavia questo valore non può essere direttamente associato ad un valore misurabile, di conseguenza è necessario stimarlo. Lo sviluppo degli algoritmi è basato sull'identificazione delle cause di degrado delle batterie, al fine di modellarne e prevederne il comportamento. Sono stati dunque sviluppati modelli in grado di prevedere il comportamento elettrico e termico, e di invecchiamento della batteria. Oltre al modello, è stato necessario sviluppare algoritmi in grado di monitorare lo stato della batteria, online e offline, questo è stato possibile con l'utilizzo di algoritmi basati su filtri di Kalman, che permettono la stima dello stato del sistema in tempo reale. Attraverso algoritmi di machine learning, che consentono di analizzare offline il deterioramento della batteria con un approccio statistico, è possibile analizzare le informazioni dell'intera flotta di veicoli. Entrambi i sistemi lavorano in sinergia al fine di ottenere le migliori prestazioni. La validazione è stata eseguita con test di laboratorio su diverse batterie e in diverse condizioni. Lo sviluppo del modello ha permesso di ridurre il tempo delle prove sperimentali. Alcuni fenomeni specifici sono stati testati in laboratorio, e gli altri casi sono stati generati artificialmente.