Journal articles on the topic 'Predictive uncertainty quantification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Predictive uncertainty quantification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Cacuci, Dan Gabriel. "Sensitivity Analysis, Uncertainty Quantification and Predictive Modeling of Nuclear Energy Systems." Energies 15, no. 17 (2022): 6379. http://dx.doi.org/10.3390/en15176379.
Full textCsillag, Daniel, Lucas Monteiro Paes, Thiago Ramos, et al. "AmnioML: Amniotic Fluid Segmentation and Volume Prediction with Uncertainty Quantification." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 15494–502. http://dx.doi.org/10.1609/aaai.v37i13.26837.
Full textLew, Jiann-Shiun, and Jer-Nan Juang. "Robust Generalized Predictive Control with Uncertainty Quantification." Journal of Guidance, Control, and Dynamics 35, no. 3 (2012): 930–37. http://dx.doi.org/10.2514/1.54510.
Full textKarimi, Hamed, and Reza Samavi. "Quantifying Deep Learning Model Uncertainty in Conformal Prediction." Proceedings of the AAAI Symposium Series 1, no. 1 (2023): 142–48. http://dx.doi.org/10.1609/aaaiss.v1i1.27492.
Full textSerenko, I. A., Y. V. Dorn, S. R. Singh, and A. V. Kornaev. "Room for Uncertainty in Remaining Useful Life Estimation for Turbofan Jet Engines." Nelineinaya Dinamika 20, no. 5 (2024): 933–43. https://doi.org/10.20537/nd241218.
Full textAkitaya, Kento, and Masaatsu Aichi. "Land Subsidence Model Inversion with the Estimation of Both Model Parameter Uncertainty and Predictive Uncertainty Using an Evolutionary-Based Data Assimilation (EDA) and Ensemble Model Output Statistics (EMOS)." Water 16, no. 3 (2024): 423. http://dx.doi.org/10.3390/w16030423.
Full textSriprasert, Soraida, and Patchanok Srisuradetchai. "Multi-K KNN regression with bootstrap aggregation: Accurate predictions and alternative prediction intervals." Edelweiss Applied Science and Technology 9, no. 5 (2025): 2750–64. https://doi.org/10.55214/25768484.v9i5.7589.
Full textChala, Ayele Tesema, and Richard Ray. "Uncertainty Quantification in Shear Wave Velocity Predictions: Integrating Explainable Machine Learning and Bayesian Inference." Applied Sciences 15, no. 3 (2025): 1409. https://doi.org/10.3390/app15031409.
Full textAyed, Safa Ben, Roozbeh Sadeghian Broujeny, and Rachid Tahar Hamza. "Remaining Useful Life Prediction with Uncertainty Quantification Using Evidential Deep Learning." Journal of Artificial Intelligence and Soft Computing Research 15, no. 1 (2024): 37–55. https://doi.org/10.2478/jaiscr-2025-0003.
Full textPlesner, Andreas, Allan P. Engsig-Karup, and Hans True. "Detecting Railway Track Irregularities with Data-driven Uncertainty Quantification." Highlights of Vehicles 3, no. 1 (2025): 1–14. https://doi.org/10.54175/hveh3010001.
Full textSingh, Rishabh, and Jose C. Principe. "Toward a Kernel-Based Uncertainty Decomposition Framework for Data and Models." Neural Computation 33, no. 5 (2021): 1164–98. http://dx.doi.org/10.1162/neco_a_01372.
Full textDoherty, Conor T., Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan. "A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature." Geoscientific Model Development 18, no. 10 (2025): 3003–16. https://doi.org/10.5194/gmd-18-3003-2025.
Full textChen, Peng, and Nicholas Zabaras. "Adaptive Locally Weighted Projection Regression Method for Uncertainty Quantification." Communications in Computational Physics 14, no. 4 (2013): 851–78. http://dx.doi.org/10.4208/cicp.060712.281212a.
Full textShi, Yuanjie. "Reliable Uncertainty Quantification in Machine Learning via Conformal Prediction." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29299–300. https://doi.org/10.1609/aaai.v39i28.35227.
Full textFarzana, Walia, Megan A. Witherow, Ahmed Temtam, et al. "24 Key brain region identification in obesity prediction with structural MRI and probabilistic uncertainty aware model." Journal of Clinical and Translational Science 9, s1 (2025): 9. https://doi.org/10.1017/cts.2024.715.
Full textOmagbon, Jericho, John Doherty, Angus Yeh, et al. "Case studies of predictive uncertainty quantification for geothermal models." Geothermics 97 (December 2021): 102263. http://dx.doi.org/10.1016/j.geothermics.2021.102263.
Full textNitschke, C. T., P. Cinnella, D. Lucor, and J. C. Chassaing. "Model-form and predictive uncertainty quantification in linear aeroelasticity." Journal of Fluids and Structures 73 (August 2017): 137–61. http://dx.doi.org/10.1016/j.jfluidstructs.2017.05.007.
Full textMirzayeva, A., N. A. Slavinskaya, M. Abbasi, J. H. Starcke, W. Li, and M. Frenklach. "Uncertainty Quantification in Chemical Modeling." Eurasian Chemico-Technological Journal 20, no. 1 (2018): 33. http://dx.doi.org/10.18321/ectj706.
Full textAlbi, Giacomo, Lorenzo Pareschi, and Mattia Zanella. "Uncertainty Quantification in Control Problems for Flocking Models." Mathematical Problems in Engineering 2015 (2015): 1–14. http://dx.doi.org/10.1155/2015/850124.
Full textKumar, Bhargava, Tejaswini Kumar, Swapna Nadakuditi, Hitesh Patel, and Karan Gupta. "Comparing Conformal and Quantile Regression for Uncertainty Quantification: An Empirical Investigation." International Journal of Computing and Engineering 5, no. 5 (2024): 1–8. http://dx.doi.org/10.47941/ijce.1925.
Full textZhang, Haofeng. "Statistical Methodologies for Decision-Making and Uncertainty Reduction in Machine Learning." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29317–18. https://doi.org/10.1609/aaai.v39i28.35236.
Full textKayusi, Fredrick, Petros Chavula, Gilbert Lungu, and Hockings Mambwe. "AI-Driven Climate Modeling: Validation and Uncertainty Mapping – Methodologies and Challenges." LatIA 3 (March 25, 2025): 332. https://doi.org/10.62486/latia2025332.
Full textGorle, Catherine. "Improving the predictive capability of building simulations using uncertainty quantification." Science and Technology for the Built Environment 28, no. 5 (2022): 575–76. http://dx.doi.org/10.1080/23744731.2022.2079261.
Full textGerber, Eric A. E., and Bruce A. Craig. "A mixed effects multinomial logistic-normal model for forecasting baseball performance." Journal of Quantitative Analysis in Sports 17, no. 3 (2021): 221–39. http://dx.doi.org/10.1515/jqas-2020-0007.
Full textPortela, Alberto, Julio R. Banga, and Marcos Matabuena. "Conformal prediction for uncertainty quantification in dynamic biological systems." PLOS Computational Biology 21, no. 5 (2025): e1013098. https://doi.org/10.1371/journal.pcbi.1013098.
Full textMa, Junwei, Xiao Liu, Xiaoxu Niu, et al. "Forecasting of Landslide Displacement Using a Probability-Scheme Combination Ensemble Prediction Technique." International Journal of Environmental Research and Public Health 17, no. 13 (2020): 4788. http://dx.doi.org/10.3390/ijerph17134788.
Full textLidder, Divya, Kathryn Morse, Bridget Sullivan, Wei Qian, Chenglin Miao, and Mengdi Huai. "Neuron Explanations for Conformal Prediction (Student Abstract)." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 28 (2025): 29412–14. https://doi.org/10.1609/aaai.v39i28.35270.
Full textFeng, Jinchao, Joshua L. Lansford, Markos A. Katsoulakis, and Dionisios G. Vlachos. "Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences." Science Advances 6, no. 42 (2020): eabc3204. http://dx.doi.org/10.1126/sciadv.abc3204.
Full textZgraggen, Jannik, Gianmarco Pizza, and Lilach Goren Huber. "Uncertainty Informed Anomaly Scores with Deep Learning: Robust Fault Detection with Limited Data." PHM Society European Conference 7, no. 1 (2022): 530–40. http://dx.doi.org/10.36001/phme.2022.v7i1.3342.
Full textKefalas, Marios, Bas van Stein, Mitra Baratchi, Asteris Apostolidis, and Thomas Baeck. "End-to-End Pipeline for Uncertainty Quantification and Remaining Useful Life Estimation: An Application on Aircraft Engines." PHM Society European Conference 7, no. 1 (2022): 245–60. http://dx.doi.org/10.36001/phme.2022.v7i1.3317.
Full textBanerjee, Sourav. "Uncertainty Quantification Driven Predictive Multi-Scale Model for Synthesis of Mycotoxins." Computational Biology and Bioinformatics 2, no. 1 (2014): 7. http://dx.doi.org/10.11648/j.cbb.20140201.12.
Full textRiley, Matthew E., and Ramana V. Grandhi. "Quantification of model-form and predictive uncertainty for multi-physics simulation." Computers & Structures 89, no. 11-12 (2011): 1206–13. http://dx.doi.org/10.1016/j.compstruc.2010.10.004.
Full textOlalusi, Oladimeji B., and Panagiotis Spyridis. "Probabilistic Studies on the Shear Strength of Slender Steel Fiber Reinforced Concrete Structures." Applied Sciences 10, no. 19 (2020): 6955. http://dx.doi.org/10.3390/app10196955.
Full textFröhlich, Alek, Thiago Ramos, Gustavo Motta Cabello Dos Santos, Isabela Panzeri Carlotti Buzatto, Rafael Izbicki, and Daniel Guimarães Tiezzi. "PersonalizedUS: Interpretable Breast Cancer Risk Assessment with Local Coverage Uncertainty Quantification." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 27 (2025): 27998–8006. https://doi.org/10.1609/aaai.v39i27.35017.
Full textSætrom, Jon, Joakim Hove, Jan-Arild Skjervheim, and Jon Gustav Vabø. "Improved Uncertainty Quantification in the Ensemble Kalman Filter Using Statistical Model-Selection Techniques." SPE Journal 17, no. 01 (2012): 152–62. http://dx.doi.org/10.2118/145192-pa.
Full textCui, Xinye, Houpu Li, Yanting Yu, Shaofeng Bian, and Guojun Zhai. "A Hybrid Dropout Method for High-Precision Seafloor Topography Reconstruction and Uncertainty Quantification." Applied Sciences 15, no. 11 (2025): 6113. https://doi.org/10.3390/app15116113.
Full textDing, Jing, Yizhuang David Wang, Saqib Gulzar, Youngsoo Richard Kim, and B. Shane Underwood. "Uncertainty Quantification of Simplified Viscoelastic Continuum Damage Fatigue Model using the Bayesian Inference-Based Markov Chain Monte Carlo Method." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 4 (2020): 247–60. http://dx.doi.org/10.1177/0361198120910149.
Full textDogulu, N., P. López López, D. P. Solomatine, A. H. Weerts, and D. L. Shrestha. "Estimation of predictive hydrologic uncertainty using quantile regression and UNEEC methods and their comparison on contrasting catchments." Hydrology and Earth System Sciences Discussions 11, no. 9 (2014): 10179–233. http://dx.doi.org/10.5194/hessd-11-10179-2014.
Full textKarimanzira, Divas. "Probabilistic Uncertainty Consideration in Regionalization and Prediction of Groundwater Nitrate Concentration." Knowledge 4, no. 4 (2024): 462–80. http://dx.doi.org/10.3390/knowledge4040025.
Full textHeringhaus, Monika E., Yi Zhang, André Zimmermann, and Lars Mikelsons. "Towards Reliable Parameter Extraction in MEMS Final Module Testing Using Bayesian Inference." Sensors 22, no. 14 (2022): 5408. http://dx.doi.org/10.3390/s22145408.
Full textCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION." EPJ Web of Conferences 247 (2021): 00002. http://dx.doi.org/10.1051/epjconf/202124700002.
Full textCacuci, Dan G. "TOWARDS OVERCOMING THE CURSE OF DIMENSIONALITY IN PREDICTIVE MODELLING AND UNCERTAINTY QUANTIFICATION." EPJ Web of Conferences 247 (2021): 20005. http://dx.doi.org/10.1051/epjconf/202124720005.
Full textSlavinskaya, N. A., M. Abbasi, J. H. Starcke, et al. "Development of an Uncertainty Quantification Predictive Chemical Reaction Model for Syngas Combustion." Energy & Fuels 31, no. 3 (2017): 2274–97. http://dx.doi.org/10.1021/acs.energyfuels.6b02319.
Full textTran, Vinh Ngoc, and Jongho Kim. "Quantification of predictive uncertainty with a metamodel: toward more efficient hydrologic simulations." Stochastic Environmental Research and Risk Assessment 33, no. 7 (2019): 1453–76. http://dx.doi.org/10.1007/s00477-019-01703-0.
Full textWalz, Eva-Maria, Alexander Henzi, Johanna Ziegel, and Tilmann Gneiting. "Easy Uncertainty Quantification (EasyUQ): Generating Predictive Distributions from Single-Valued Model Output." SIAM Review 66, no. 1 (2024): 91–122. http://dx.doi.org/10.1137/22m1541915.
Full textDelottier, Hugo, John Doherty, and Philip Brunner. "Data space inversion for efficient uncertainty quantification using an integrated surface and sub-surface hydrologic model." Geoscientific Model Development 16, no. 14 (2023): 4213–31. http://dx.doi.org/10.5194/gmd-16-4213-2023.
Full textIncorvaia, Gabriele, Darryl Hond, and Hamid Asgari. "Uncertainty Quantification of Machine Learning Model Performance via Anomaly-Based Dataset Dissimilarity Measures." Electronics 13, no. 5 (2024): 939. http://dx.doi.org/10.3390/electronics13050939.
Full textWang, Ziqian. "Research on Stock Price Prediction Model Based on Sentiment Factor and Multi-Core Bagging Algorithm." Highlights in Business, Economics and Management 41 (October 15, 2024): 692–98. http://dx.doi.org/10.54097/hc042q45.
Full textLu, Houyu, Amin Farrokhabadi, Ali Rauf, Reza Talemi, Konstantinos Gryllias, and Dimitrios Chronopoulos. "Uncertainty quantification for damage detection in 3D printed auxetic structures based on ultrasonic guided-wave using Flipout probabilistic convolutional neural network." Journal of Physics: Conference Series 2909, no. 1 (2024): 012032. https://doi.org/10.1088/1742-6596/2909/1/012032.
Full textNgartera, Lebede, Mahamat Ali Issaka, and Saralees Nadarajah. "Application of Bayesian Neural Networks in Healthcare: Three Case Studies." Machine Learning and Knowledge Extraction 6, no. 4 (2024): 2639–58. http://dx.doi.org/10.3390/make6040127.
Full text