Academic literature on the topic 'Prenatal testosterone'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prenatal testosterone.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prenatal testosterone"
Bormann, Charles L., Gary D. Smith, Vasantha Padmanabhan, and Theresa M. Lee. "Prenatal testosterone and dihydrotestosterone exposure disrupts ovine testicular development." REPRODUCTION 142, no. 1 (July 2011): 167–73. http://dx.doi.org/10.1530/rep-10-0210.
Full textMontag, Christian, Benjamin Bleek, Svenja Breuer, Holger Prüss, Kirsten Richardt, Susanne Cook, J. Scott Yaruss, and Martin Reuter. "Prenatal testosterone and stuttering." Early Human Development 91, no. 1 (January 2015): 43–46. http://dx.doi.org/10.1016/j.earlhumdev.2014.11.003.
Full textGuibert, Floriane, Sophie Lumineau, Kurt Kotrschal, Erich Möstl, Marie-Annick Richard-Yris, and Cécilia Houdelier. "Trans-generational effects of prenatal stress in quail." Proceedings of the Royal Society B: Biological Sciences 280, no. 1753 (February 22, 2013): 20122368. http://dx.doi.org/10.1098/rspb.2012.2368.
Full textZhou, Yu, Min Gong, Yingfei Lu, Jianquan Chen, and Rong Ju. "Prenatal androgen excess impairs beta-cell function by decreased sirtuin 3 expression." Journal of Endocrinology 251, no. 1 (October 1, 2021): 69–81. http://dx.doi.org/10.1530/joe-21-0129.
Full textHines, Melissa. "Prenatal testosterone and gender-related behaviour." European Journal of Endocrinology 155, suppl_1 (November 2006): S115—S121. http://dx.doi.org/10.1530/eje.1.02236.
Full textCulbert, K. M., S. A. Burt, C. L. Sisk, J. T. Nigg, and K. L. Klump. "The effects of circulating testosterone and pubertal maturation on risk for disordered eating symptoms in adolescent males." Psychological Medicine 44, no. 11 (January 9, 2014): 2271–86. http://dx.doi.org/10.1017/s0033291713003073.
Full textRecabarren, Mónica P., Pedro P. Rojas-Garcia, Ralf Einspanier, Vasantha Padmanabhan, Teresa Sir-Petermann, and Sergio E. Recabarren. "Pituitary and testis responsiveness of young male sheep exposed to testosterone excess during fetal development." REPRODUCTION 145, no. 6 (June 2013): 567–76. http://dx.doi.org/10.1530/rep-13-0006.
Full textEme, Robert. "Greater Male Exposure to Prenatal Testosterone." Violence and Gender 2, no. 1 (March 2015): 19–23. http://dx.doi.org/10.1089/vio.2014.0024.
Full textTruzzi, Anna, Vincenzo Paolo Senese, Peipei Setoh, Cristian Ripoli, and Gianluca Esposito. "In utero testosterone exposure influences physiological responses to dyadic interactions in neurotypical adults." Acta Neuropsychiatrica 28, no. 5 (April 8, 2016): 304–9. http://dx.doi.org/10.1017/neu.2016.15.
Full textCardoso, Rodolfo C., Almudena Veiga-Lopez, Jacob Moeller, Evan Beckett, Anthony Pease, Erica Keller, Vanessa Madrigal, Gregorio Chazenbalk, Daniel Dumesic, and Vasantha Padmanabhan. "Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep." Endocrinology 157, no. 2 (December 9, 2015): 522–35. http://dx.doi.org/10.1210/en.2015-1565.
Full textDissertations / Theses on the topic "Prenatal testosterone"
Brookes, Helen. "Prenatal testosterone exposure and numerical competence in children and adults." Thesis, Northumbria University, 2011. http://nrl.northumbria.ac.uk/4425/.
Full textWebber, Troy A. "Fetal Testosterone: Developmental Effects on Externalizing Behavior." Scholar Commons, 2015. https://scholarcommons.usf.edu/etd/7376.
Full textLan, Ni. "Role of testosterone in mediating prenatel ethanol effects on hypothalamic-pituitary-adrenal activity in male rats." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/772.
Full textMaisonet, Mildred, Antonia M. Calafat, Michele Marcus, Jouni J. K. Jaakkola, and Hany Lashen. "Prenatal Exposure to Perfluoroalkyl Acids and Serum Testosterone Concentrations at 15 Years of Age in Female ALSPAC Study Participants." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/1.
Full textŠvehla, Jakub. "Poměr druhého a čtvrtého prstu a jeho vztah ke sportovní výkonnosti u rekreačních a vrcholových snowboardistů." Master's thesis, 2012. http://www.nusl.cz/ntk/nusl-327020.
Full textUtsch, Richard Friedrich Wilhelm. "Effekte pränataler Dexamethasonapplikation auf ausgewählte Parameter der männlichen Reproduktion in nachfolgenden Generationen beim Weißbüschelaffen (Callithrix jacchus)." 2021. https://ul.qucosa.de/id/qucosa%3A75422.
Full textIntroduction: The impact of prenatal stress can also be detected in the grown-up offspring and partly even in following generations. There are many interfering variables that make it nearly impossible to establish precise correlations in humans. However, the common marmoset is a model organism very similar to humans with respect to the physiology of pregnancy as well as to male reproduction. In addition to that, the possibility of a high-grade standardisation is extremely advantageous. Objective: The first part of this work aimed at detecting selected factors of the reproductive system in testes of adult common marmosets by qPCR and immunohistochemistry, and localising them at the cellular level; both were directed at clarifying whether or not the target proteins respond to prenatal stress. The second part aimed at determining in which form and to what extent standardised prenatal stress affects selected parameters of male reproduction up to the F3-generation in the common marmoset. Animals, materials and methods: Pregnant common marmosets were treated daily with a dose of 5 mg dexamethasone (DEX) per kg body weight per os on gestational days 42 to 48 (EDEX) and gestational days 90 to 96 (LDEX). A control group (C) received no glucocorticoid treatment during pregnancy at all. By qPCR, 12 transcripts from the groups of steroidogenic enzymes, steroid receptors, the relaxin system and the proliferation markers were quantitatively analysed in 9 (C), 8 (EDEX) und 9 (LDEX) frozen testes of F1 generation adult male offspring. Respective contralateral testes had been fixed in paraformaldehyde and were analysed on protein level by immunohistochemistry (IHC). In the second part of this work, males of DEX F2 (n = 2) and DEX F3 (n = 3), each bred in the maternal line, were analysed for relevant parameters of reproduction ability: testes were measured in spring, summer, and winter; blood plasma samples were taken on one day in summer at 8 a.m., 12 noon and 4 p.m. as well as on a day in winter at 8 a.m. and subsequently analysed by ELISA for testosterone and partly 17β oestradiol; ejaculates have been gathered by penile vibrostimulation (PVS) and were tested by computer-assisted sperm analysis. All results were compared with those on at least 11 untreated male common marmosets of the same colony. Results: Each of the targeted proteins relevant for male reproduction was detected in testes of F1. At the protein level only steroid 5α-reductase 1 (SRD5A1) was enhanced expressed in testes of EDEX F1, and LDEX F1 compared to C. At the gene level, SRD5A1, SRD5A2 and Ki 67 were each enhanced expressed compared to C, but in testes of EDEX F1 only. Testis size did not vary significantly during the course of the year. During the course of the day there was a significant rise of the testosterone concentration in blood plasma between 8 a.m. and 12 noon. However, there was no significant difference in the testosterone concentration during other times of the day, nor between summer and winter or in relation to the age of the monkeys. Furthermore there was no correlation between the testosterone and the 17β oestradiol concentrations in the same blood samples. Comparisons of all measured PVS parameters between DEX F2/F3 and C gave a lower success rate of PVS in DEX F2/F3 as the only difference. Comparisons of the ejaculates between age groups irrespective of the DEX classification revealed that young adult common marmosets possess a significantly higher percentage of motile sperms as well as a significantly lower success rate of PVS compared to adult monkeys. Conclusions: The results of this study suggest how stress during pregnancy could influence subsequent generations in the common marmoset: in DEX F1, important requirements of active testosterone biosynthesis as well as of mediation of testosterone and oestrogen signals in testis are met, possibly even enhanced. In addition, these results confirm the relevance of the common marmoset as a model organism for human male reproduction. In DEX F2/F3, the low success rate of PVS might indicate a reduced capability to concentrate in generations following intrauterine stress on F1. Yet, most of the tested parameters pertinent to reproduction physiology do not differ between DEX F2/F3 and C.:1 EINLEITUNG 2 LITERATURÜBERSICHT 2.1 Glucocorticoide und Stress während der Trächtigkeit 2.2 Relevante Hormone der Reproduktion und ihre Biosynthese 2.2.1 3β-Hydroxysteroid-Dehydrogenase 2 2.2.2 Testosteron und Androgenrezeptor 2.2.3 Steroid-5α-Reduktasen 2.2.4 Aromatase 2.2.5 17β-Hydroxysteroid-Dehydrogenase 7 2.2.6 Östradiol und Östrogenrezeptoren 2.2.7 Relaxinsystem 2.2.8 Proliferationsfaktoren 2.3 Weißbüschelaffen 2.3.1 Allgemeines zu Weißbüschelaffen 2.3.2 Reproduktionsbiologie der männlichen Weißbüschelaffen 3 TIERE, MATERIAL UND METHODEN 3.1 Versuchsteil I – ex vivo Hoden DEX F1 3.1.1 Versuchsaufbau (DEX) im DPZ 3.1.2 qPCR an DEX F1 Hoden 3.1.3 Immunhistochemie an Hoden der DEX F1 3.2 Versuchsteil II – in vivo DEX F2/DEX F3 3.2.1 Herkunft der Weißbüschelaffen 3.2.2 Haltung der Weißbüschelaffen 3.2.3 Bestimmung der Hodengrößen und des Körpergewichtes 3.2.4 Blutentnahmen und Hormonbestimmungen mittels ELISA 3.2.5 Penile Vibrostimulation 3.3 Statistische Auswertung 4 ERGEBNISSE 4.1 Versuchsteil I – ex vivo Hoden DEX F1 4.1.1 qPCR der Hoden der F1 4.1.2 Immunhistochemie der Hoden der DEX F1 4.1.2.1 Enzyme der Steroidbiosynthese 4.1.2.2 Steroidrezeptoren 4.1.2.3 Relaxinsystem 4.1.2.4 Proliferationsmarker 4.1.3 Zusammenfassung der Ergebnisse des Versuchsteils I – ex vivo DEX F1 4.2 Versuchsteil II – in vivo DEX F2/F3 4.2.1 Hodengrößen 4.2.2 Testosteron 4.2.3 Ejakulatanalyse 4.2.4 Zusammenfassung der Ergebnisse des Versuchsteils II – in vivo DEX F2/F3 5 DISKUSSION 5.1 Versuchsteil I – ex vivo Hoden DEX F1 5.1.1 Vergleichende Diskussion der Ergebnisse auf Gen- und Proteinebene in den Hoden der F1 5.1.1.1 Relevante Enzyme der Testosteronbiosynthese 5.1.1.2 Steroidrezeptoren 5.1.1.3 Das Relaxinsystem 5.1.1.4 Proliferationsfaktoren 5.2 Versuchsteil II – in vivo DEX F2/F3 5.2.1 Hodengrößen 5.2.2 Testosteron 5.2.3 Ejakulatanalyse 5.3 Schlussbetrachtung 6 ZUSAMMENFASSUNG 7 SUMMARY 8 Literaturverzeichnis 9 ANHANG 10 DANKSAGUNG
Cruz, Alexandra Filipa Figueiredo. "Microglia Morphology and Behavior upon Testosterone Administration of Females Prenatally Exposed to Dexamethasone." Master's thesis, 2020. http://hdl.handle.net/10316/94293.
Full textNeuropsychiatric disorders are the most common mental illnesses in the world and present a sex dimorphism in prevalence, symptoms and treatment. Sex differences arise since neurodevelopment in which males experience a peak in testosterone that is responsible for brain masculinization, meaning there is an organization in density, connectivity and morphology of cells, including microglia, in several brain regions. This remodeling of the brain will have long term consequences in behavior.Microglia are the immune cells of the central nervous system that are responsible for sculpting neuronal circuits during neurodevelopment, but also ensuring the homeostasis through screening the parenchyma with their highly dynamic ramifications. The morphology and function of microglia are under the influence of the A2A receptor (A2AR), which blockade is known to have anxiolytic effects. Our group has demonstrated that upon prenatal stress, induced by dexamethasone (DEX) exposure on gestational days 18 and 19, males and females have an anxious-like behavior at adulthood (postnatal day 90 – PND90) and present a sex-specific remodeling of microglia morphology in the prefrontal cortex (PFC), a brain region essential for emotional regulation. Furthermore, when these animals are treated with an anxiolytic (SCH58261, an antagonist of the A2AR), only male behavior and microglia morphology return to physiological conditions. The sex dimorphism observed in this study lead to the hypothesis that testosterone could have a protective effect in males.The aim of this thesis is to assess A2AR ability to retrieve microglia morphology and behavior upon brain masculinization of females prenatally exposed to DEX. In other words, through female masculinization (by mimicking the peak of testosterone in males on PND0), we aim to evaluate if testosterone has a permissive effect for the action of the antagonist of the A2AR in females exposed to DEX. Neurodevelopmental behavior is assessed between PND5 and 17, through a battery of tests. Regarding sex differences, males and females have a similar performance in physiology therefore, neonatal administration of testosterone did not have major effects on behavior. When DEX is administered, no effect is observed on behavior however, females have reduced strength and an anticipation of eye opening day. In DEX groups, no sex dimorphism is observed, but testosterone increases strength and delays eye opening day in females. Furthermore, testosterone induces a delay in cliff avoidance, which is reverted by DEX exposure. Previous results from our group show that males and females prenatally exposed to DEX have changes in neurodevelopmental tests performance and anxious-like behavior at adulthood. In this cohort of animals DEX did not induce changes in the progeny performance in neurodevelopmental tests nor an anxious-like behavior, suggesting that alterations in neurodevelopmental behavior might be used as predictive factors for the development of neuropsychiatric disorders.When DEX females are neonatally masculinized with testosterone, no anxious-like behavior is observed with or without SCH58261 administration, suggesting a protective effect of testosterone in behavior. However, when we analyze masculinized females’ microglia from the PFC at adulthood, we observe testosterone was not able to revert DEX-induced atrophy even with anxiolytic treatment. Furthermore, when comparing CTRL+T and DEX+T females we observe no association between behavior and microglia morphology. These results suggest that testosterone was not permissive to the action of SCH58261, and also that testosterone has a mechanism to modulate behavior that is independent of microglia morphology. Neonatal testosterone administration did not induce changes in peripheral levels of corticosterone at adulthood. Hence, when evaluating testosterone levels from serum we observe a tendency for SCH58261 to reduce levels of this hormone in CTRL+T females, but when this anxiolytic is administered in DEX+T females the pattern of action changes, and there is a tendency for an increase in testosterone levels. These results lead us to suggest that the blockage of A2AR modulates testosterone levels, peripherally. In vitro studies were conducted aiming to unravel a possible interaction between androgen receptors (AR) and A2AR specifically in microglial cells. We show that testosterone has an impact on A2AR density that is dependent of time of exposure and concentration. On the other hand, activating or blocking A2AR does not have an impact on AR density. This work highlights the potential anxiolytic properties of testosterone, and also its role in modulating A2AR, namely in microglia, which could account for the sex dimorphism observed in microglia morphology and in behavior. Nonetheless, additional studies are needed to further unveil the possible protective and organizational effect of testosterone in this model of chronic anxiety.
As doenças neuropsiquiátricas, são as enfermidades mentais mais comuns no mundo e apresentam dimorfismo de sexo na sua prevalência, sintomatologia e tratamento. Estas diferenças iniciam-se no neurodesenvolvimento, pois os machos têm um pico de testosterona que induz masculinização cerebral, ou seja, reorganização na densidade, conectividade e morfologia das células, como a microglia, em várias regiões cerebrais. A remodelação cerebral irá ter repercussões a longo-prazo no comportamento. A microglia é a célula imune do sistema nervoso central que é responsável por esculpir os circuitos neuronais durante o desenvolvimento cerebral, mas também por manter a homeostasia no parênquima, através das suas ramificações altamente dinâmicas. A morfologia e função da microglia estão sob a influência dos recetores A2A (A2AR), cujo bloqueio foi demonstrado como tendo efeito ansiolítico.O nosso grupo mostrou que numa situação de stress pré-natal, induzido por dexametasona (DEX) nos dias gestacionais 18 e 19, machos e fêmeas têm um comportamento do tipo ansioso na idade adulta (dia pós-natal 90 – PND90) e remodelação da morfologia da microglia dependente do sexo no córtex pré-frontal (PFC), uma região cerebral essencial para a regulação emocional. Adicionalmente, quando os descendentes são tratados com um ansiolítico (SCH58261; antagonista dos A2AR), apenas o comportamento e a morfologia da microglia dos machos regressa à fisiologia. O dimorfismo de sexo visto neste estudo levou à hipótese de que a testosterona poderia ter um efeito protetor nos machos.O objetivo deste estudo é perceber a capacidade dos A2AR recuperarem a morfologia da microglia e comportamento após masculinização cerebral de fêmeas prenatalmente expostas a DEX. Noutras palavras, através da masculinização feminina (mimetização do pico de testosterona que ocorre a PND0 em machos), objetivámos avaliar se a testosterona tem um efeito permissivo para a ação do antagonista dos A2AR em fêmeas expostas a DEX. O comportamento no neurodesenvolvimento foi estudado entre PND5 e 17 através de uma bateria de testes. Relativamente às diferenças de sexo, machos e fêmeas têm uma performance semelhante fisiologicamente, como tal a administração neonatal de testosterona não teve efeitos major no comportamento. A exposição a DEX não teve efeito no comportamento, contudo, as fêmeas têm uma redução na força e uma antecipação do dia de abertura do olho. Nos grupos DEX, não se observou dimorfismo de sexo, mas a testosterona aumentou a força e atrasou o dia de abertura do olho em fêmeas. Além disso, a testosterona induziu um atraso na aversão ao precipício, que foi revertida pela DEX. Estudos prévios do grupo mostraram que machos e fêmeas prenatalmente expostos a DEX têm mudanças no comportamento do neurodesenvolvimento e um comportamento do tipo ansioso a PND90. Nestes animais a DEX não induziu mudanças comportamentais em nenhuma idade, sugerindo que as alterações no comportamento do neurodesenvolvimento poderão ser usadas como fatores preditivos para o desenvolvimento de doenças psiquiátricas.Quando as fêmeas DEX são masculinizadas neonatalmente com testosterona, não se observa comportamento do tipo ansioso, com ou sem administração de SCH58261, sugerindo um efeito protetor da testosterona no comportamento. No entanto, quando analisamos a microglia do PFC de fêmeas a PND90, observamos que a testosterona não é capaz de reverter a atrofia induzida pela DEX mesmo com a administração do ansiolítico. Adicionalmente, quando comparamos as fêmeas CTRL+T e DEX+T vimos que não há associação entre o comportamento e a morfologia da microglia. Estes resultados sugerem que a testosterona não teve um efeito permissivo à ação do SCH58261, mas também que o mecanismo de ação da testosterona no comportamento é independente da morfologia da microglia.A administração neonatal de testosterona não induziu alterações nos níveis periféricos de corticosterona a PND90. Todavia, quando avaliamos os níveis de testosterona vemos uma tendência para o SCH58261 reduzir os níveis desta hormona em fêmeas CTRL+T, mas em fêmeas DEX+T o ansiolítico induz uma tendência para o aumento de testosterona. Estes resultados levam a sugerir que o bloqueio dos A2AR modula os níveis de testosterona periféricos. Estudos in vitro tiveram o objetivo de perceber a possível interação entre recetores de androgénios (AR) e A2AR na microglia. Mostramos que a testosterona modula a densidade dos A2AR, de modo dependente do tempo de exposição e da concentração. Por outro lado, a ativação ou bloqueio dos A2AR não teve impacto na densidade dos AR. Este trabalho mostra as propriedades ansiolíticas da testosterona, mas também o seu papel modulador dos A2AR, nomeadamente na microglia, o que poderá explicar o dimorfismo de sexo na morfologia da microglia e comportamento. No entanto, estudos adicionais são necessários para melhor perceber o possível efeito protetor e organizacional da testosterona neste modelo de ansiedade crónica.
FCT
Books on the topic "Prenatal testosterone"
Svetlana, Lutchmaya, Knickmeyer Rebecca, and NetLibrary Inc, eds. Prenatal testosterone in mind: Amniotic fluid studies. Cambridge, Mass: MIT Press, 2004.
Find full textBaron-Cohen, Simon, Svetlana Lutchmaya, and Rebecca Knickmeyer. Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.001.0001.
Full textLutchmaya, Svetlana, Rebecca Knickmeyer, and Simon Baron-Cohen. Prenatal Testosterone in Mind: Amniotic Fluid Studies. MIT Press, 2006.
Find full textLutchmaya, Svetlana, Rebecca Knickmeyer, and Simon Baron-Cohen. Prenatal Testosterone in Mind: Amniotic Fluid Studies. MIT Press, 2006.
Find full textPrenatal Testosterone in Mind: Amniotic Fluid Studies (Bradford Books). The MIT Press, 2004.
Find full textPrenatal Testosterone in Mind: Amniotic Fluid Studies (Bradford Books). The MIT Press, 2006.
Find full textBook chapters on the topic "Prenatal testosterone"
Puttabyatappa, Muraly, and Vasantha Padmanabhan. "Prenatal Testosterone Programming of Insulin Resistance in the Female Sheep." In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity, 575–96. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70178-3_25.
Full textRiedstra, Bernd J., Kristina A. Pfannkuche, and Antonius G. G. Groothuis. "Organisational and Activational Effects of Prenatal Exposure to Testosterone on Lateralisation in the Domestic Chicken (Gallus gallus domesticus)." In Behavioral Lateralization in Vertebrates, 87–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30203-9_7.
Full text"Fetal Testosterone." In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0002.
Full text"Why Study Fetal Testosterone?" In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0003.
Full text"Cerebral Lateralization and Animal Studies." In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0004.
Full text"Disorders of Sexual Development." In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0005.
Full text"Research Strategies for Studying Hormone Effects." In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0006.
Full text"“Amniocentesized Children”: From Fetus to 12 Months." In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0007.
Full text"“Amniocentesized Children”: From Fetus to 24 Months." In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0008.
Full text"“Amniocentesized Children”: From Fetus to 48 Months." In Prenatal Testosterone in Mind. The MIT Press, 2004. http://dx.doi.org/10.7551/mitpress/5522.003.0009.
Full text