Academic literature on the topic 'Pressure Valve'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Pressure Valve.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Pressure Valve"
Odend'hal, C. J. "MODIFIED BACK PRESSURE VALVE." Journal of the American Society for Naval Engineers 39, no. 4 (March 18, 2009): 702–6. http://dx.doi.org/10.1111/j.1559-3584.1927.tb04234.x.
Full textBergsneider, Marvin, Isaac Yang, Xiao Hu, David L. McArthur, Shon W. Cook, and W. J. Boscardin. "Relationship between Valve Opening Pressure, Body Position, and Intracranial Pressure in Normal Pressure Hydrocephalus: Paradigm for Selection of Programmable Valve Pressure Setting." Neurosurgery 55, no. 4 (October 1, 2004): 851–59. http://dx.doi.org/10.1227/01.neu.0000137631.42164.b8.
Full textHorton, Donald, and Michael Pollay. "Fluid flow performance of a new siphon-control device for ventricular shunts." Journal of Neurosurgery 72, no. 6 (June 1990): 926–32. http://dx.doi.org/10.3171/jns.1990.72.6.0926.
Full textChaurasiya, Kanhaiya Lal, Bishakh Bhattacharya, AK Varma, and Sarthak Rastogi. "Dynamic modeling of a cabin pressure control system." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 2 (August 9, 2019): 401–15. http://dx.doi.org/10.1177/0954410019867578.
Full textZhang, Katherine Qinfen, Bryan W. Karney, and David L. McPherson. "Pressure-relief valve selection and transient pressure control." Journal - American Water Works Association 100, no. 8 (August 2008): 62–69. http://dx.doi.org/10.1002/j.1551-8833.2008.tb09700.x.
Full textChakravarty, Tarun, Justin Cox, Yigal Abramowitz, Sharjeel Israr, Abhimanyu Uberoi, Sunghan Yoon, Damini Dey, Paya Zadeh, Wen Cheng, and Raj R. Makkar. "High-pressure post-dilation following transcatheter valve-in-valve implantation in small surgical valves." EuroIntervention 14, no. 2 (June 2018): 158–65. http://dx.doi.org/10.4244/eij-d-17-00563.
Full textLee, Candice Y., Joshua K. Wong, Ronald E. Ross, David C. Liu, Kamal R. Khabbaz, Angelo J. Martellaro, Heather R. Gorea, Jude S. Sauer, and Peter A. Knight. "Prosthetic Aortic Valve Fixation Study: 48 Replacement Valves Analyzed Using Digital Pressure Mapping." Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery 11, no. 5 (September 2016): 327–36. http://dx.doi.org/10.1097/imi.0000000000000286.
Full textSuzuki, Katsuya, Ikuo Nakamura, and J. U. Thoma. "Pressure regulator valve by Bondgraph." Simulation Practice and Theory 7, no. 5-6 (December 1999): 603–11. http://dx.doi.org/10.1016/s0928-4869(99)00024-5.
Full textGassmann, Stefan, and Lienhard Pagel. "Magnetic actuated pressure relief valve." Sensors and Actuators A: Physical 194 (May 2013): 106–11. http://dx.doi.org/10.1016/j.sna.2012.12.033.
Full textStewart, J. T., H. H. Gray, and D. R. Redwood. "MITRAL VALVE AND WEDGE PRESSURE." Lancet 334, no. 8665 (September 1989): 742. http://dx.doi.org/10.1016/s0140-6736(89)90802-7.
Full textDissertations / Theses on the topic "Pressure Valve"
Ogden, Sam. "High-Pressure Microfluidics." Doctoral thesis, Uppsala universitet, Mikrosystemteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-208915.
Full textGomez, Nicasio. "PCV valve flutter : vibration characterization through pressure and flow." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32895.
Full textIncludes bibliographical references (p. 51).
A Positive Crankcase Ventilation, or PCV, valve is required by internal combustion engines in order to regulate the flow of blow-by gases out of the crankcase and into the intake air stream. Fluctuations in the pressure and flow of these gases lead to poor performance and can be detrimental to engine durability. This thesis addresses a specific case of PCV valve component vibration, or flutter, which in certain conditions has been severe enough to be perceived by the customer. Tests monitoring pressure and flow were performed in a variety of test setups in order to simulate every real-world scenario possible at the bench level. Data attained was analyzed in order to identify and characterize any and all patterns in pressure and flow indicative of flutter conditions. The end result of this thesis is summarized in a recommended test procedure to be followed in future cases of PCV valve flutter.
by Nicasio Gomez, III.
S.B.
Ozkan, Tulay. "Leakage Control By Optimal Valve Operation." Phd thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609419/index.pdf.
Full textHuang, Jiahai, Long Quan, and Youshan Gao. "Characteristics of Proportional Flow Control Poppet Valve with Pilot Pressure Compensation." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-199471.
Full textRitchie, Greg. "Minimizing pressure relief valve seat leakage through optimization of design parameters." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/31013.
Full textNasr, Ahmed. "Computational and experimental studies of flow through a plate valve." Thesis, University of Strathclyde, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243954.
Full textCARNEIRO, LEONARDO MOTTA. "STUDY OF THE DYNAMIC BEHAVIOR OF SPRING PRESSURE RELIEF VALVE FOR PIPELINES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21693@1.
Full textA grande maioria dos dutos de transporte de petróleo e derivados no Brasil trabalha com válvulas de alívio no projeto dos seus sistemas de proteção. Desta forma, o perfeito dimensionamento e funcionamento destas válvulas são fundamentais para garantir a segurança de dutos de transporte e dos terminais de carga e descarga, caso haja alguma condição anormal de operação que gere sobrepressões. Estas válvulas aliviam a pressão interna do duto caso a mesma ultrapasse um valor definido e calibrado na válvula. Simplificadamente, a válvula de alívio de pressão tipo mola possui um disco o qual é pressionado pela mola contra o bocal de entrada. Quando a pressão do duto se eleva, a força gerada na superfície do disco aumenta e, dependendo do ponto de ajuste da mola, supera a força exercida pela mesma fazendo com que o disco se eleve, descarregando pelo bocal de saída o fluido para o tanque de alívio e, consequentemente, reduzindo a pressão no duto. Desta forma, a válvula de alívio garante que o duto não seja submetido a pressões superiores às pressões de projeto, o que poderia levar a uma falha do duto e a um possível vazamento de produto para meio ambiente. Este trabalho propõe um estudo experimental e numérico para determinar o comportamento dinâmico de válvulas de alívio de mola. Foi realizada a montagem de uma bancada experimental com um circuito de água contendo uma bomba, uma válvula de alívio e uma válvula de bloqueio capaz de interromper o fluxo no circuito gerando um transiente de pressão que obriga a abertura da válvula para aliviar a pressão interna no sistema. A válvula de alívio foi instrumentada para medir as grandezas necessárias para estudar o comportamento dinâmico da válvula e os transientes de pressão e vazão gerados no duto. Os resultados experimentais foram comparados com os resultados obtidos de modelos computacionais proporcionando o aperfeiçoamento e validação destes modelos.
The majority of oil and refined product pipelines in Brazil employ pressure relief valves in the design of their protection system. Thus, the perfect design and operation of these valves is essential to ensure the safety of transport pipelines and loading and unloading terminals, under any abnormal condition of operation that generates overpressures. These valves work by relieving the internal pressure in case it exceeds a pre-set and calibrated value. In a nutshell, the spring-type pressure relief valve has a disk which is pressed by a spring against the inlet nozzle of the valve. When the pressure rises, the force generated on the surface of the disc increases and, depending on the pressure relief valve set point, the pressure force overcomes the force exerted by the spring, causing the disk to rise and thus discharging the fluid through the outlet nozzle to the relief tank, consequently reducing the pressure in the pipeline. Using this principle, the relief valve ensures that the pipeline is not subjected to high transient pressures, which could lead to pipeline or equipment rupture and possible product leak. The present dissertation describes a numerical and experimental study conducted to determine the dynamic behavior of spring-type relief valves. The experiments were conducted in a water pipe loop equipped a pump, a block valve to generate the pressure transients and a commercial spring-type pressure relief valve. The loop was instrumented with pressure, flow and temperature transducers. The relief valve was instrumented to measure the variables necessary to study the dynamic behavior of the valve and the transient pressure and flow generated in the pipeline. The experimental results were compared with results obtained from computer models allowing the improvement and validation of these models.
PÉREZ, MARCOS JOSÉ BABILONIA. "STUDY OF THE DYNAMIC BEHAVIOR OF A SPRING-TYPE PRESSURE RELIEF VALVE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28093@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
As válvulas de alívio de pressão (PRVs, do inglês, pressure relief valves) são dispositivos fundamentais para a segurança de operações em dutos de transporte de fluidos, sendo encarregadas de garantir a integridade das instalações no caso de algum bloqueio súbito do escoamento. Dependendo da natureza e duração do evento de bloqueio, das características da válvula de alívio e do comprimento do duto, o comportamento dinâmico da PRV, i.e., seu tempo de resposta e o coeficiente de descarga em função da abertura, podem variar consideravelmente. Estas informações mais detalhadas sobre o comportamento transiente da válvula não são especificadas em normas e raramente são disponibilizadas pelos fabricantes. Uma caracterização detalhada do comportamento dinâmico da válvula de alívio é informação importante para a simulação computacional de transientes hidráulicos em dutos de líquido. Em particular, o comportamento dinâmico do coeficiente de descarga da válvula não é conhecido, sendo por vezes simplificadamente representado por dados obtidos em condições de regime permanente. No presente trabalho foi realizado um estudo detalhado do comportamento dinâmico de um modelo de válvula de alívio, com o objetivo de obter informações comparativas sobre o comportamento do coeficiente de descarga da válvula quando investigada sob condições de regime permanente e transiente rápido. Para isso, construiu-se um modelo de PRV transparente, permitindo a medição de campos instantâneos de escoamento em seu interior com a técnica de Velocimetria por Imagem de Partículas em duas dimensões (PIV). Transdutores de pressão e deslocamento foram devidamente instalados de maneira a fornecer informações instantâneas sobre a queda de pressão e posição de abertura da válvula, com alta resolução temporal. O modelo da válvula transparente foi montado em um circuito fechado, no qual água era bombeada através de uma tubulação longa, passando pela PRV e por uma válvula de bloqueio com tempo de fechamento controlado eletronicamente, podendo produzir bloqueios súbitos no escoamento, com tempos na faixa de 4 ms a 3,5 s. Sistemas de controle foram especialmente desenvolvidos para sincronizar os eventos de bloqueio da válvula, disparo do laser do sistema PIV, aquisição de imagens e dados de pressão e deslocamento. Estes dados permitiram a determinação do valor instantâneo e de média de fase para o coeficiente de descarga da válvula de alívio de pressão no caso transiente.
Pressure relief valves (PRVs) are important devices which guarantee the safe operation of liquid pipelines, being responsible for preserving the integrity of the duct in case a sudden flow blockage event occurs. The PRV s dynamic behavior, that is, its response time and discharge coefficient as a function of open fraction, can vary considerably depending on the nature and duration of the blockage event, on the valve s characteristics and on the duct length. This more detailed information on the valve s transient behavior is not specified in standards and is rarely made available by valve manufacturers. A detailed characterization of the valve s dynamic behavior is relevant information for the computational simulation of hydraulic transients in liquid pipelines. In particular, the dynamic behavior of the valve discharge coefficient is not known, being normally replaced by data obtained from tests under steady state conditions. In the present work, a detailed study was conducted using a valve model with the objective of obtaining comparative information on the valve discharge coefficient for steady and transient conditions. To this end, a transparent PRV model was constructed in order to allow for the use of the two-dimensional Particle Image Velocimetry technique (PIV) for measuring the instantaneous flow field inside the valve. Pressure and displacement transducers were employed to yield instantaneous information on the pressure drop and valve opening. The valve model was installed in a closed circuit where water was pumped through a long pipe, passing through the PRV and through the blockage valve that was capable of producing flow blockage events in the range of 4 ms to 3.5 s. Control systems were specially constructed to synchronize the events of valve blockage, PIV laser firing, and acquisition of pressure, and displacement data. These data allowed the determination of the instantaneous and phase-averaged values for the valve discharge coefficient.
McGregor, Brian. "The left ventricle, aortic valve, and arterial tree - a fresh engineering perspective." Thesis, University of Ulster, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339346.
Full textBrubaker, Christopher L. "Dynamic Model of a Non-Linear Pneumatic Pressure Modulating Valve Using Bond Graphs." Cleveland State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=csu1432264539.
Full textBooks on the topic "Pressure Valve"
Zappe, R. W. Valve selection handbook: Engineering fundamentals for selecting manual valves, check valves, pressure relief valves, and rupture discs. 4th ed. Houston, Tex: Gulf Pub. Co., 1999.
Find full textRidgely, J. N. Resolution of Generic Issue C-8: An evaluation of boiling water reactor main stream isolation valve leakage and the effectiveness of leakage treatment methods. Washington, DC: Division of Boiling Water Reactor Licensing, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1986.
Find full textGraves, C. C. Regulatory analysis for the resolution of generic issue C-8, "main steam isolation valve leakage and LCS failure". Washington, DC: Division of Safety Issue Resolution, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1990.
Find full textSymposium on ASME Codes and Recent Advances in PVP and Valve Technology Including a Survey of Operations Research Methods in Engineering (1986 Chicago, Ill.). Symposium On ASME Codes and Recent Advances in PVP and Valve Technology Including a Survey of Operations Research Methods in Engineering: Presented at the 1986 Pressure Vessels and Piping Conference and Exhibition, Chicago, Illinois, July 20-24, 1986. Edited by Fong J. T. 1934-, American Society of Mechanical Engineers. Codes and Standards Liaison Subcommittee., and Pressure Vessels and Piping Conference (1986 : Chicago, Ill.). New York, N.Y. (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1986.
Find full textAmerican Petroleum Institute. Refining Dept. Seat tightness of pressure relief valves. 3rd ed. Washington, D.C. (1220 L St., NW, Washington 20005): American Petroleum Institute, 1991.
Find full textPressure relief devices: ASME and API code simplified. New York: McGraw-Hill, 2006.
Find full textStaunton, R. H. Aging and service wear of spring-loaded pressure relief valves used in safety-related systems at nuclear power plants. Washington, DC: U.S. Nuclear Regulatory Commission, 1995.
Find full textRolander, Nathan. Materials investigation of thermal triggers used in pressure relief devices on transit buses. Washington, D.C: Federal Transit Administration, 2003.
Find full textNational Board of Boiler and Pressure Vessel Inspectors. National board VR® repair symbol administrative rules and procedures: Repair of ASME and national board stamped pressure relief valves. Columbus, Ohio (1055 Crupper Ave., Columbus 43229): National Board of Boiler and Pressure Vessel Inspectors, 1985.
Find full textMartin, C. N. B. Effects of upstream bends and valves on orifice plate pressure distributions and discharge coefficients. Glasgow: National Engineering Laboratory, 1986.
Find full textBook chapters on the topic "Pressure Valve"
Yin, Yaobao. "Ultra-High-Pressure Pneumatic Pressure Reducing Valve." In High Speed Pneumatic Theory and Technology Volume I, 323–60. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5986-6_7.
Full textTrost, H. A., Ch Sprung, W. Lanksch, D. Stolke, and C. Miethke. "Dual-Switch Valve: Clinical Performance of a New Hydrocephalus Valve." In Intracranial Pressure and Neuromonitoring in Brain Injury, 360–63. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-6475-4_104.
Full textItoh, Kaoru, Mitsunori Matsumae, Ryuichi Tsugane, and Osamu Sato. "The Shunt Flow in Programmable Pressure Valve." In Annual Review of Hydrocephalus, 64–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-11158-1_37.
Full textDuijnhouwer, Anthonie L., and Arie P. J. van Dijk. "Echocardiographic Assessment of Pulmonary Artery Pressure, Tips and Tricks." In Practical Manual of Tricuspid Valve Diseases, 235–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-58229-0_12.
Full textFoster, P. A. "Two Applications of a Differential Pressure Valve in Anaesthesia." In Anaesthesia — Innovations in Management, 67–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82392-3_14.
Full textFuse, Takahisa, Takuji Takagi, Masahiro Ohno, and Hajime Nagai. "Experiences of Shunt Operation with Programmable Pressure Valve in Infants." In Annual Review of Hydrocephalus, 83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-11155-0_55.
Full textSydorenko, Ihor, Inna Sinko, and Yiheng Zhang. "Characteristics of Pressure Passive Reduction Valve with Mechanical Control System." In Lecture Notes in Mechanical Engineering, 608–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40724-7_62.
Full textRajamannan, Nalini M. "Application of the LDL-Density-Pressure Theory: The Mitral Valve." In Molecular Biology of Valvular Heart Disease, 131–38. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6350-3_16.
Full textMu, Yuanpeng, Zhixian Ma, and Mingsheng Liu. "Research of the Influence of Valve Position on Flow Measurement of Butterfly Valve with Differential Pressure Sensor." In Environmental Science and Engineering, 269–75. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-9524-6_29.
Full textDoghri, Mouna, Sophie Duchesne, Annie Poulin, and Maxim Ouellet. "Comparative Study of Pressure Reduction Valve Controllers in Water Distribution Systems." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions, 1001–3. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70548-4_289.
Full textConference papers on the topic "Pressure Valve"
Bagagli, Riccardo, Alessio Capanni, Carmelo Maggi, and Leonardo Tognarelli. "Advances in Hypercompressor Valve and Valve Spring Design." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78472.
Full textReich, Alton. "Relief Valve Impact Analysis." In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21063.
Full textChabane, Saïd, François Corbin, Anthony Couzinet, Daniel Pierrat, and Martin Bayart. "Experimental Incompressible Forces Applied in a Safety Valve." In ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/pvp2012-78129.
Full textVeiga, Jose´ C., Carlos Cipolatti, Carlos Gira˜o, Leandro Ascenco, and Fabio Castro. "Valve Packings Seating Stress." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61214.
Full textPorter, Michael A., Dennis Martens, Ramesh Harrylal, and Charles Henley. "Valve-Induced Piping Vibration." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57391.
Full textSlavík, Petr, Blanka Skočilasová, Josef Soukup, and František Klimenda. "Low pressure EGR valve testing." In 38TH MEETING OF DEPARTMENTS OF FLUID MECHANICS AND THERMODYNAMICS. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5114768.
Full textKourakos, Vasilios, Sai¨d Chabane, Patrick Rambaud, and Jean-Marie Buchlin. "Flowforce in Safety Relief Valve Under Incompressible, Compressible and Two-Phase Flow Conditions." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57896.
Full textJosodipuro, Irawan. "Development of Valve Performance Qualification Methodology and Testing." In ASME 2020 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/pvp2020-21835.
Full textFarrell, Ronald, and L. Ike Ezekoye. "Valve Modeling Methods for Modal Analysis." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93904.
Full textKoyabu, Eitaro, Tetsuhiro Tsukiji, Yoshito Matsumura, and Taizo Sato. "Study on Improvement of the Suction Valve Using PIV Technique." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71080.
Full textReports on the topic "Pressure Valve"
Blaedel, K. L. Glovebox pressure relief and check valve. Office of Scientific and Technical Information (OSTI), March 1986. http://dx.doi.org/10.2172/5395402.
Full textBrown, E. J. Workshop on gate valve pressure locking and thermal binding. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/95199.
Full textZuo, Xiqing, Guowen Liu, Shouli Zhang, Sheng Li, and Jian Ruan. Design and Characteristics Analysis of Bourdon Tube Pressure Feedback for 2D Pressure Servo Valve. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/crabs.2018.01.13.
Full textZuo, Xiqing, Guowen Liu, Shouli Zhang, Sheng Li, and Jian Ruan. Design and Characteristics Analysis of Bourdon Tube Pressure Feedback for 2D Pressure Servo Valve. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, January 2018. http://dx.doi.org/10.7546/grabs2018.1.13.
Full textOsswald, Sandra, Victor A. Convertino, and F. A. Gaffney. Effect of Lower Body Negative Pressure on Mitral Valve Movement. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada354386.
Full textTokuo, Kenichiro, Kenji Hiraku, and Hiroyuki Yamada. Integration of Magnetic Solenoid Valve Model Into High-Pressure Fuel Pump Simulator and Its Application. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0013.
Full textBontha, Jagannadha R., Nancy G. Colton, Eric A. Daymo, T. D. Hylton, C. K. Bayne, and T. H. May. Qualification of the Lasentec M600P Particle Size Analyzer and the Red Valve Model 1151 Pressure Sensor. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/15002697.
Full textJR Bontha, NG Colton, EA Daymo, TD Hylton, CK Bayne, and TH May. Qualification of the Lasentec M600P Particle Size Analyzer and the Red Valve Model 1151 Pressure Sensor. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/750437.
Full textHarold Schock, Farhad Jaberi, Ahmed Naguib, Guoming Zhu, and David Hung. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/967307.
Full textDeWall, K. G., J. C. Watkins, M. G. McKellar, and D. Bramwell. Results of pressure locking and thermal binding tests of gate valves. Office of Scientific and Technical Information (OSTI), May 1998. http://dx.doi.org/10.2172/654182.
Full text