To see the other types of publications on this topic, follow the link: Pretransitional phenomena.

Journal articles on the topic 'Pretransitional phenomena'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 33 journal articles for your research on the topic 'Pretransitional phenomena.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Moses, T., Y. Ouchi, W. Chen, and Y. R. Shen. "Pretransitional Surface Phenomena in Ferroelectric Liquid Crystals." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 225, no. 1 (1993): 55–65. http://dx.doi.org/10.1080/10587259308036217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Merekalov, A. S., J. Berkmans, E. R. Zubarev, N. A. Plate, R. V. Talroze, and H. Finkelmann. "Pretransitional phenomena in acrylate-based liquid crystal networks." Liquid Crystals 27, no. 7 (2000): 921–27. http://dx.doi.org/10.1080/02678290050043879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schröer, W., S. Wiegand, W. Staude, and Th Peters. "Dynamical Lightscattering of Pretransitional Phenomena in Liquid Mixtures." Berichte der Bunsengesellschaft für physikalische Chemie 95, no. 9 (1991): 1126–30. http://dx.doi.org/10.1002/bbpc.19910950933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, R. J., and H. F. Gleeson. "The influence of pretransitional phenomena on blue phase range." Liquid Crystals 14, no. 6 (1993): 2001–11. http://dx.doi.org/10.1080/02678299308027736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Demikhov, E., H. Stegemeyer, and V. Tsukruk. "Pretransitional phenomena and pinning in liquid-crystalline blue phases." Physical Review A 46, no. 8 (1992): 4879–87. http://dx.doi.org/10.1103/physreva.46.4879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuroiwa, Yoshihiro, Hideaki Muramoto, Takahisa Shobu, Hiroaki Tokumichi, and Yasusada Yamada. "Pretransitional Phenomena at the First-Order Phase Transition in LaNbO4." Journal of the Physical Society of Japan 64, no. 10 (1995): 3798–803. http://dx.doi.org/10.1143/jpsj.64.3798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Aliev, Amil R., Isa R. Akhmedov, Murad G. Kakagasanov, Zakir A. Aliev, and Sergey P. Kramynin. "PRETRANSITIONAL PHENOMENA IN REGION OF STRUCTURAL PHASE TRANSITION IN SODIUM PERCHLORATE." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 63, no. 1 (2019): 64–70. http://dx.doi.org/10.6060/ivkkt.20206301.6042.

Full text
Abstract:
Structural and dynamic properties and molecular relaxation processes in crystalline sodium NaClO4 perchlorate in the temperature range from 300 K to 650 K were studied by Raman spectroscopy. The temperature dependences of the position of the maximum v (frequency), the width w and the intensity I of the spectral band, corresponding to the fully symmetric vibration v1(A) of the ClO4–1 perchlorate ion, in the spectral range from 933 cm–1 to 944 cm–1 were analyzed. The frequency v and intensity I decrease, and the width w increases with the increasing temperature. It is shown that these temperature dependences have certain features at a temperature of 460 K. With a further increase in temperature, the frequency v decreases more rapidly, the width w increases, and the intensity I decreases more intensively. In the temperature range from 460 K to the temperature Tstr = 581 K of the first order structural phase transition, we observe a deviation of the temperature dependence of the frequency and width from the linear dependences characteristic of lower temperatures. These deviations appear at a temperature of 460 K and increase with the increasing temperature and approaching the phase transition temperature. It has been established that in the crystalline sodium perchlorate NaClO4 a structural first-order phase transition is stretched. At the phase transition temperature (Tstr = 581 K), the width increases sharply, and the frequency decreases sharply, decreasing with a further increase in temperature. The existence of a pretransitional region in the studied crystalline sodium perchlorate NaClO4 was found. This pre-transition region occurs in the temperature range from 460 K to Tstr = 581 K.
APA, Harvard, Vancouver, ISO, and other styles
8

Aliev, A. R., and et al. "Pretransitional phenomena in the region of structural phase transition in potassium carbonate." Izvestiya vysshikh uchebnykh zavedenii. Fizika, no. 12 (December 1, 2019): 96–101. http://dx.doi.org/10.17223/00213411/62/12/96.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Starzonek, Szymon, Joanna Łoś, Sylwester J. Rzoska, Aleksandra Drozd-Rzoska, and Aleš Iglič. "Are Critical Fluctuations Responsible for Glass Formation?" Materials 17, no. 14 (2024): 3385. http://dx.doi.org/10.3390/ma17143385.

Full text
Abstract:
The dynamic heterogeneities occurring just before the transition to the glassy phase have been named as the cause of amorphization in supercooled systems. Numerous studies conducted so far have confirmed this hypothesis, and based on it, a widely accepted solution to the puzzle of glass transition has been developed. This report focuses on verifying the existence of a strong pretransitional anomaly near the glass transition Tg. For this purpose, supercooled liquid-crystalline systems with a strong rod-like structure were selected. Based on the obtained experimental data, we demonstrate in this article that the previously postulated dynamic heterogeneities exhibit a critical characteristic, meaning a strong pretransitional anomaly can be observed with the described critical exponent α=0.5. Due to this property, it can be concluded that these heterogeneities are critical fluctuations, and consequently, the transition to the glassy state can be described based on the theory of critical phenomena. To measure the pretransitional anomaly near Tg in supercooled liquid-crystalline systems, broadband dielectric spectroscopy (BDS) and nonlinear dielectric effect (NDE) methods were applied. The exponent α provides insight into the nature and intensity of critical fluctuations in the system. A value of α=0.5 suggests that the fluctuations become increasingly intense as the system approaches the critical point, contributing to the divergence in specific heat. Understanding the role of critical fluctuations in the glass transition is crucial for innovating and improving a wide range of materials for energy storage, materials design, biomedical applications, food preservation, and environmental sustainability. These advancements can lead to materials with superior properties, optimized manufacturing processes, and applications that meet the demands of modern technology and sustainability challenges.
APA, Harvard, Vancouver, ISO, and other styles
10

Blachnik, N., H. Kneppe, and F. Schneider. "Cotton-Mouton constants and pretransitional phenomena in the isotropic phase of liquid crystals." Liquid Crystals 27, no. 9 (2000): 1219–27. http://dx.doi.org/10.1080/02678290050122079.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Emsley, J. W., C. T. Imrie, G. R. Luckhurst, and R. D. Newmark. "Pretransitional phenomena in liquid crystals studied via electric field induced deuterium quadrupolar splittings." Molecular Physics 63, no. 2 (1988): 317–27. http://dx.doi.org/10.1080/00268978800100231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Chilaya, G. S., Z. M. Elashvili, M. A. Gogadze, S. P. Tavzarashvili, K. D. Vinokur, and S. A. Pikin. "The effect of pretransitional phenomena on the characteristics of induced ferroelectric liquid-crystalline systems." Liquid Crystals 5, no. 4 (1989): 1195–202. http://dx.doi.org/10.1080/02678298908026424.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bodnár, Igor, Jan K. G. Dhont, and Henk N. W. Lekkerkerker. "Pretransitional Phenomena of a Colloid Polymer Mixture Studied with Static and Dynamic Light Scattering." Journal of Physical Chemistry 100, no. 50 (1996): 19614–19. http://dx.doi.org/10.1021/jp962553v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chilaya, G. S. "Effect of various external factors and pretransitional phenomena on structural transformations in cholesteric liquid crystals." Crystallography Reports 45, no. 5 (2000): 871–86. http://dx.doi.org/10.1134/1.1312938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Demikhov, E., J. Hollmann, and P. Pollmann. "Influence of Pressure on Pretransitional Phenomena in the Isotropic Liquid of a Chiral Liquid Crystal." Europhysics Letters (EPL) 21, no. 5 (1993): 581–86. http://dx.doi.org/10.1209/0295-5075/21/5/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Oh, Soo Han, Jae-Hyeon Ko, Ho-Yong Lee, Iwona Lazar, and Krystian Roleder. "Precursor Phenomena of Barium Titanate Single Crystals Grown Using a Solid-State Single Crystal Growth Method Studied with Inelastic Brillouin Light Scattering and Birefringence Measurements." Molecules 23, no. 12 (2018): 3171. http://dx.doi.org/10.3390/molecules23123171.

Full text
Abstract:
The nature of precursor phenomena in the paraelectric phase of ferroelectrics is one of the main questions to be resolved from a fundamental point of view. Barium titanate (BaTiO3) is one of the most representative perovskite-structured ferroelectrics intensively studied until now. The pretransitional behavior of BaTiO3 single crystal grown using a solid-state crystal growth (SSCG) method was investigated for the first time and compared to previous results. There is no melting process in the SSCG method, thus the crystal grown using a SSCG method have inherent higher levels of impurity and defect concentrations, which is a good candidate for investigating the effect of crystal quality on the precursor phenomena. The acoustic, dielectric, and piezoelectric properties, as well as birefringence, of the SSCG-grown BaTiO3 were examined over a wide temperature range. Especially, the acoustic phonon behavior was investigated in terms of Brillouin spectroscopy, which is a complementary technique to Raman spectroscopy. The obtained precursor anomalies of the SSCG-grown BaTiO3 in the cubic phase were similar to those of other single crystals, in particular, of high-quality single crystal grown by top-seeded solution growth method. These results clearly indicate that the observed precursor phenomena are common and intrinsic effect irrespective of the crystal quality.
APA, Harvard, Vancouver, ISO, and other styles
17

Rzoska, Sylwester J., Aleksandra Drozd-Rzoska, Weronika Bulejak, et al. "Critical Insight into Pretransitional Behavior and Dielectric Tunability of Relaxor Ceramics." Materials 16, no. 24 (2023): 7634. http://dx.doi.org/10.3390/ma16247634.

Full text
Abstract:
This model discussion focuses on links between the unique properties of relaxor ceramics and the basics of Critical Phenomena Physics and Glass Transition Physics. It indicates the significance of uniaxiality for the appearance of mean-field type features near the paraelectric-to-ferroelectric phase transition. Pretransitional fluctuations, that are increasing up to the size of a grain and leading to inter-grain, random, local electric fields are responsible for relaxor ceramics characteristics. Their impact yields the pseudospinodal behavior associated with “weakly discontinuous” local phase transitions. The emerging model redefines the meaning of the Burns temperature and polar nanoregions (PNRs). It offers a coherent explanation of “dielectric constant” changes with the “diffused maximum” near the paraelectric-to-ferroelectric transition, the sensitivity to moderate electric fields (tunability), and the “glassy” dynamics. These considerations are challenged by the experimental results of complex dielectric permittivity studies in a Ba0.65Sr0.35TiO3 relaxor ceramic, covering ca. 250 K, from the paraelectric to the “deep” ferroelectric phase. The distortion-sensitive and derivative-based analysis in the paraelectric phase and the surrounding paraelectric-to-ferroelectric transition reveal a preference for the exponential scaling pattern for ε(T) changes. This may suggest that Griffith-phase behavior is associated with mean-field criticality disturbed by random local impacts. The preference for the universalistic “critical & activated” evolution of the primary relaxation time is shown for dynamics. The discussion is supplemented by a coupled energy loss analysis. The electric field-related tunability studies lead to scaling relationships describing their temperature changes.
APA, Harvard, Vancouver, ISO, and other styles
18

Gasilova, E. R., V. A. Shevelev, and S. Ya Frenkel. "Proton magnetic relaxation study of pretransitional phenomena in the isotropic phase of a nematic liquid crystal I. Dynamics of local order fluctuations." Liquid Crystals 27, no. 5 (2000): 573–78. http://dx.doi.org/10.1080/026782900202408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gasilova, E. R., and V. A. Shevelev. "Proton magnetic relaxation study of pretransitional phenomena in the isotropic phase of a nematic liquid crystal II. Presence of inner magnetic field gradients as revealed by self-diffusion study." Liquid Crystals 27, no. 5 (2000): 579–84. http://dx.doi.org/10.1080/026782900202417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pocheć, Michał, Katarzyna M. Krupka, Jarosław J. Panek, Kazimierz Orzechowski, and Aneta Jezierska. "Inside out Approach to Rotator State in Hydrogen-Bonded System—Experimental and Theoretical Cross-Examination in n-Octanol." International Journal of Molecular Sciences 23, no. 4 (2022): 2138. http://dx.doi.org/10.3390/ijms23042138.

Full text
Abstract:
The experimental and theoretical description of premelting behavior is one of the most challenging tasks in contemporary material science. In this paper, n-octanol was studied using a multi-method approach to investigate it at macroscopic and molecular levels. The experimental infrared (IR) spectra were collected in the solid state and liquid phase at temperature range from −84∘C to −15 ∘C to detect temperature-related indicators of pretransitional phenomena. Next, the nonlinear dielectric effect (NDE) was measured at various temperatures (from −30 ∘C to −15 ∘C) to provide insight into macroscopic effects of premelting. As a result, a two-step mechanism of premelting in n-octanol was established based on experimental data. It was postulated that it consists of a rotator state formation followed by the surface premelting. In order to shed light onto molecular-level processes, classical molecular dynamics (MD) was performed to investigate the time evolution of the changes in metric parameters as a function of simulation temperature. The applied protocol enabled simulations in the solid state as well as in the liquid (the collapse of the ordered crystal structure). The exact molecular motions contributing to the rotator state formation were obtained, revealing an enabling of the rotational freedom of the terminal parts of the chains. The Car–Parrinello molecular dynamics (CPMD) was applied to support and interpret experimental spectroscopic findings. The vibrational properties of the stretching of OH within the intermolecular hydrogen bond were studied using Fourier transformation of the autocorrelation function of both dipole moments and atomic velocity. Finally, path integral molecular dynamics (PIMD) was carried out to analyze the quantum effect’s influence on the bridged proton position in the hydrogen bridge. On the basis of the combined experimental and theoretical conclusions, a novel mechanism of the bridged protons dynamics has been postulated—the interlamellar hydrogen bonding pattern, resulting in an additional OH stretching band, visible in the solid-state experimental IR spectra.
APA, Harvard, Vancouver, ISO, and other styles
21

Waplak, S., W. Bednarski, and A. Ostrowski. "Pretransition Phenomena in Fast-Proton Conductors." Acta Physica Polonica A 108, no. 2 (2005): 261–70. http://dx.doi.org/10.12693/aphyspola.108.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mroz, B., R. Czajka, and S. Mielcarek. "Pretransition phenomena on the surface of ferroelastic crystal." Journal of Physics: Condensed Matter 12, no. 45 (2000): L685—L690. http://dx.doi.org/10.1088/0953-8984/12/45/102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhizhin, G. N., Yu N. Krasjukov, E. I. Mukhtarov, V. N. Rogovoi, and N. V. Sidorov. "Investigation of pretransition phenomena in organic crystals by vibrational spectroscopy." Journal of Molecular Structure 216 (January 1990): 91–103. http://dx.doi.org/10.1016/0022-2860(90)80319-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Aliev, A. R., I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev. "Pretransition Phenomena Near First-Order Phase Transitions in Ion-Molecular Crystals." Physics of the Solid State 62, no. 6 (2020): 998–1010. http://dx.doi.org/10.1134/s1063783420060037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Aliev, A. R., I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev. "Pretransition Phenomena in the Vicinity of Structural Phase Transition in Crystalline Sodium Carbonate." Crystallography Reports 65, no. 2 (2020): 285–88. http://dx.doi.org/10.1134/s1063774520020029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Aliev, A. R., I. R. Akhmedov, M. G. Kakagasanov, and Z. A. Aliev. "Pretransition Phenomena in the Region of a Structural Phase Transition in Potassium Perchlorate." Journal of Structural Chemistry 60, no. 10 (2019): 1584–89. http://dx.doi.org/10.1134/s0022476619100032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lobodyuk, V. A., Yu N. Koval’, and V. G. Pushin. "Crystal-structural features of pretransition phenomena and thermoelastic martensitic transformations in alloys of nonferrous metals." Physics of Metals and Metallography 111, no. 2 (2011): 165–89. http://dx.doi.org/10.1134/s0031918x11010212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Aliev, Amil R., Isa R. Akhmedov, Murad G. Kakagasanov та Zakir A. Aliev. "ПРЕДПЕРЕХОДНЫЕ ЯВЛЕНИЯ В ОБЛАСТИ СТРУКТУРНОГО ФАЗОВОГО ПЕРЕХОДА В СУЛЬФАТЕ КАЛИЯ". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, № 3 (2019): 350–57. http://dx.doi.org/10.17308/kcmf.2019.21/1148.

Full text
Abstract:
Методами спектроскопии комбинационного рассеяния света исследованы структурно-динамические свойства и процессы молекулярной релаксации в кристаллическом сульфате калия K2SO4 в интервале температур от 293 до 900 К. Проанализированы температурные зависимости положения максимума v (частоты), ширины w и интенсивности I спектральной полосы, отвечающей полносимметричному колебанию v1(A) сульфат-иона SO4 2–, в спектральном интервале от 963 до 976 см–1. С ростом температуры частота колебания уменьшается. Примерно при 650 K имеют место определённые особенности температурной зависимости v(T). При дальнейшем увеличении температуры частота продолжает уменьшаться. В точке структурного фазового перехода первого рода (Ts = 854 K)уменьшение частоты приостанавливается. С ростом температуры ширина возрастает, а интенсивность уменьшается. Примерно при 650 K имеют место определённые особенности температурных зависимостей w(T) и I(T). Уменьшение интенсивности приостанавливается, и в интервале температур 650–850 K интенсивность остаётся почти постоянной. При структурном фазовом переходе первого рода (Ts = 854 K) интенсивность уменьшается. Рост ширины при температуре T ≈ 650 K приостанавливается, а затем снова ширина начинает увеличиваться. Ближе к структурному фазовому переходу первого рода (Ts = 854 K) рост ширины замедляется и в точке структурного фазового перехода первого рода (Ts = 854 K) имеет место уменьшение ширины. Установлено, что в кристаллическом сульфате калия K2SO4 структурный фазовый переход первого рода носит растянутый характер. При температуре фазового перехода (Ts = 854 К) ширина резко возрастает, а частота резко уменьшается, уменьшаясь и при дальнейшем увеличении температуры. Обнаружено существование предпереходной области в исследованном кристаллическом сульфате калия K2SO4. Эта предпереходная область имеет место в интервале температур от 650 К до Ts = 854 К.
 
 
 
 REFERENCES
 
 Ivanova E. S., Petrzhik E. A., Gainutdinov R. V., Lashkova A. K., Volk T. R. Fatigue processes in triglycine sulfate and the effect of a magnetic fi eld on them. Phys. Solid State, 2017, vol. 59(3), ph. 569–574. https://doi.org/10.1134/S1063783417030155
 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Inelastic intermolecular exchange of vibrational quanta and relaxation of vibrationally excited states in solid binary systems. Phys. Solid State, 2017, vo l . 59(4), pp. 752–757. https://doi.org/10.1134/10.1134/S1063783417040035
 Bondarev V. S., Mikhaleva E. A., Flerov I. N., Gorev M. V. Electrocaloric effect in triglycine sulfate under equilibrium and nonequilibrium thermodynamic conditions. Phys. Solid State, 2017, vol. 59(6), pp. 1118–1126. https://doi.org/10.1134/S1063783417060051
 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states insolid binary systems “carbonate – sulfate”. Phys. Solid State, 2018, vol. 60(2), pp. 347–351. https://doi.org/10.1134/S1063783418020038
 Nguyen Hoai Thu’o’ng, Sidorkin A. S., Milovidova S. D. Dispersion of dielectric permittivity in a nanocrystallinecellulose–triglycine sulfate composite at low and ultralow frequencies. Phys. Solid State, 2018, vo l . 60(3), pp. 559–565. https://doi.org/10.1134/S1063783418030320
 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Vibrational relaxation in LiNO3 – LiClO4, Na2CO3 – Na2SO4, and KNO3 – KNO2 solid binary systems. Rus. J. Phys. Chem. B, 2018, vol. 12(3), pp. 357–362. https://doi.org/10.1134/S1990793118030211
 Mikhaleva E. A., Flerov I. N., Kartashev A. V., Gorev M. V., Molokeev M. S., Korotkov L. N., Rysiakiewicz-Pasek E. Specifi c heat and thermal expansion of triglycine sulfate–porous glass nanocomposites. Phys. Solid State, 2018, vol. 60(7), pp. 1338–1343. https://doi.org/10.1134/S1063783418070181
 Korabel’nikov D. V., Zhuravlev Yu. N. Ab initio structure and vibration properties of oxyanionic crystalline hydrates. Phys. Solid State, 2018, vol. 60(10), pp. 2058-2065. https://doi.org/10.1134/S106378341810013X
 Koposov G. D., Bardyug D. Yu. Analysis of ice premelting in water-containing disperse media. Tech. Phys. Lett., 2007, vol. 33(7), pp. 622–624. https://doi.org/10.1134/S1063785007070243
 Demikhov E. I., Dolganov V. K. Pretransitional effects near blue phases of a cholesteric liquid crystal. JETP Lett., 1983, vol. 38(8), pp. 445–447. (in Russ.)
 Kizel’ V. A., Panin S. I. Pretransition phenomena in cholesterics with a short helix pitch. JETP Lett., 1986, vol. 44(2), pp. 93–96. (in Russ.)
 Klopotov A. A., Chekalkin T. L., Gyunter V. E. Effect of preliminary deformation on the fi ne structure of a TiNi-based alloy in the premartensitic region. Tech. Phys., 2001, vol. 46(6), pp. 770–772. https://doi.org/10.1134/1.1379650
 Grishkov V. N., Lotkov A. I., Dubinin S. F., Teploukhov S.G., Parkhomenko V.D. Short-wavelength atomic-displacement modulation preceding the B2 →B19’ martensitic transformation in a TiNi-based alloy. Phys. Solid State, 2004, vol. 46(8), pp. 1386–1393. https://doi.org/10.1134/1.1788767
 Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Phase transition in a KPb2Br5 crystal. Phys. Solid State, 2005, vol. 47(2), pp. 332–336. https://doi.org/10.1134/1.1866415
 Mel’nikova S. V., Fokina V. D., Laptash N. M. Phase transitions in oxyfl uoride (NH4)2WO2F4. Phys. Solid State, 2006, vol. 48(1), pp. 117–121. https://doi.org/10.1134/S1063783406010239
 Mel’nikova S. V., Isaenko L. I., Pashkov V. M., Pevnev I. V. Search for and study of phase transitions in some representatives of the APb2X5 family. Phys. Solid State, 2006, vol. 48(11), pp. 2152–2156. https://doi.org/10.1134/S1063783406110217
 Mel’nikova S. V., Laptash N. M., Aleksandrov K. S. Optical studies of phase transitions in oxyfl uoride (NH4)2NbOF5. Phys. Solid State, 2010, vol. 52(10), pp. 2168–2172. https://doi.org/10.1134/S1063783410100240
 Slyadnikov E. E. Pretransition state and structural transition in a deformed crystal. Phys. Solid State, 2004, vol. 46(6), pp. 1095–1100. https://doi.org/10.1134/1.1767251
 Belyaev A. P., Rubets V. P., Antipov V. V. Infl uence of temperature on the rhombic shape of paracetamol molecular crystals. Technical Physics, 2017, vol. 62(4), pp. 645-647. https://doi.org/10.1134/S1063784217040041
 Aliev A. R., Gafurov M. M., Akhmedov I. R., Kakagasanov M.G., Aliev Z.A. Structural phase transition peculiarities in ion-molecular perchlorate crystals. Phys. Solid State, 2018, vol. 60(6), pp. 1203–1213. https://doi.org/10.1134/S1063783418060045
 Maksimov V. I., Maksimova E. N., Surkova T. P., Vokhmyanin A. P. On possible states of the crystal structure preceding to a phase transition in Zn1–xVxSe (0.01 ≤ x ≤ 0.10) crystals. Phys. Solid State, 2018, vol . 60(12), pp. 2424–2435. https://doi.org/10.1134/S1063783419010177
 Vtyurin A. N., Bulou A., Krylov A. S., Afanas’ev M. L., Shebanin A. P. The cubic-to-monoclinic phase transition in (NH4)3ScF6 cryolite: A Raman scattering study. Phys. Solid State, 2001, vol. 43(12), pp. 2307–2310. https://doi.org/10.1134/1.1427961
 Karpov S. V., Shultin A. A. Orientational melting and pretransition in ordered phases of rubidium and cesium nitrates. Sov. Phys. Solid State, 1975, vol. 17(10), pp. 1915–1919. (in Russ.)
 Gafurov M. M., Aliev A. R., Akhmedov I. R. Raman and infrared study of the crystals with molecular anions in the region of the solid – liquid phase transition. Spectrochim. Acta, 2002, vol. 58A(12), pp. 2683–2692. https://doi.org/10.1016/S1386-1425(02)00014-8
 Gafurov M. M., Aliev A. R. Molecular relaxation processes in the salt systems containing anions of various configurations. Spectrochim. Acta, 2004, vol. 60A(7), pp. 1549–1555. https://doi.org/10.1016/j.saa.2003.06.004
 Chemical Encyclopedy. V. 2. Moscow, Sov. Entsiklopediya, 1990, p. 289 (in Russ.)
 Bale C. W., Pelton A. D. Coupled phase diagram and thermodynamic analysis of the 18 binary systems formed among Li2CO3, K2CO3, Na2CO3, LiOH, KOH, NaOH, Li2SO4, K2SO4 and Na2SO4. CALPHAD, 1982, vol. 6(4), pз. 255–278. https://doi.org/10.1016/0364-5916(82)90020-7
 Dessureault Y., Sangster J., Pelton A. D. Coupledphase diagram / thermodynamic analysis of the ninecommon-ion binary systems involving the carbonates and sulfates of lithium, sodium, and potassium. J. Electrochem. Soc., 1990, vol. 137(9), pр. 2941–2950. https://doi.org/10.1149/1.2087103
 Lindberg D., Backman R., Chartrand P. Thermodynamic evaluation and optimization of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system. J. Chem. Thermodynamics, 2007, vol. 39, pp. 942–960. https://doi.org/10.1016/j.jct.2006.11.002
 Aliev A. R., Akhmedov I. R., Kakagasanov M. G., Aliev Z. A., Gafurov M. M., Rabadanov K. Sh., Amirov A. M. Relaxation of vibrationally excited states in solid “nitrate – nitrite” binary systems. Opt. Spectrosc., 2017, vol. 123(4), pp. 587–589. https://doi.org/10.1134/S0030400X17100022
APA, Harvard, Vancouver, ISO, and other styles
29

Mariette, C., Ilya Frantsuzov, Bo Wang, et al. "Frustrated pretransitional phenomena in aperiodic composites." Physical Review B 94, no. 18 (2016). http://dx.doi.org/10.1103/physrevb.94.184105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Timonin, P. N. "Pretransitional phenomena in dilute crystals with a first-order phase transition." Physical Review B 69, no. 21 (2004). http://dx.doi.org/10.1103/physrevb.69.212103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Aliev, A., I. Akhmedov, M. Kakagasanov, and Z. Aliev. "Pretransitional phenomena in the region of structural phase transition in sodium sulfate." Himičeskaâ fizika i mezoskopiâ 21, no. 2 (2019). http://dx.doi.org/10.15350/17270529.2019.2.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

"Pretransition phenomena in the region of structural phase transition in potassium perchlorate." Журнал структурной химии, 2019. http://dx.doi.org/10.26902/jsc_id47983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Okonkwo, Bright O., Zimin Li, Li Li, Jianqiu Wang, and En-Hou Han. "Research progress on zirconium alloys: applications, development trend, and degradation mechanism in nuclear environment." Corrosion Reviews, December 25, 2024. https://doi.org/10.1515/corrrev-2024-0075.

Full text
Abstract:
Abstract In this paper, the research progress of zirconium (Zr) alloys is critically reviewed from the aspects of application, development status, and degradation mechanism in a nuclear environment. The review focused on the application of Zr alloys in the nuclear industry, which are widely used due to their low thermal neutron absorption, good corrosion resistance, and excellent mechanical properties. However, with the increasing requirements in the chemical and medical fields, the application of Zr alloys in these non-nuclear fields is growing due to their excellent properties like good corrosion resistance and low thermal expansion coefficient, as summarized in this review. Additionally, the degradation mechanisms of Zr alloy exposed to a corrosive environment, i.e., corrosion and hydrogen uptake, and the role of alloying selection in minimizing these two phenomena is considered in this review, based on pretransition kinetics and the loss of oxide protectiveness at transition. This is corroborated by the discussion on alloying elements with beneficial and detrimental effects on the corrosion performance of Zr alloys, as well as elements with contradicting effects on Zr alloys corrosion performance owing to the discrepancies in literature. Overall, this review can be leveraged in future alloy design to further improve Zr alloys corrosion resistance in nuclear applications, thus ultimately improving their integrity.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!