Academic literature on the topic 'Prime polynomials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Prime polynomials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Prime polynomials"
Beardon, Alan F. "Prime matrices and prime polynomials." Mathematical Gazette 93, no. 528 (November 2009): 433–40. http://dx.doi.org/10.1017/s0025557200185171.
Full textMcLean, K. Robin. "Prime-Valued Polynomials." Mathematical Gazette 82, no. 494 (July 1998): 195. http://dx.doi.org/10.2307/3620402.
Full textTurnwald, Gerhard. "On Schur's conjecture." Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 58, no. 3 (June 1995): 312–57. http://dx.doi.org/10.1017/s1446788700038349.
Full textKao, P. H. "Almost-prime polynomials at prime arguments." Journal of Number Theory 184 (March 2018): 85–106. http://dx.doi.org/10.1016/j.jnt.2017.08.011.
Full textBonciocat, Anca Iuliana, Nicolae Ciprian Bonciocat, and Mihai Cipu. "Irreducibility Criteria for Compositions and Multiplicative Convolutions of Polynomials with Integer Coefficients." Analele Universitatii "Ovidius" Constanta - Seria Matematica 22, no. 1 (December 10, 2014): 73–84. http://dx.doi.org/10.2478/auom-2014-0007.
Full textSalas, Christian. "Cantor Primes as Prime-Valued Cyclotomic Polynomials." International Journal of Open Problems in Computer Science and Mathematics 5, no. 3 (September 2012): 68–74. http://dx.doi.org/10.12816/0006120.
Full textHashemi, E. "Prime Ideals and Strongly Prime Ideals of Skew Laurent Polynomial Rings." International Journal of Mathematics and Mathematical Sciences 2008 (2008): 1–8. http://dx.doi.org/10.1155/2008/835605.
Full textAkbary, Amir, and Keilan Scholten. "Artin prime producing polynomials." Mathematics of Computation 84, no. 294 (December 2, 2014): 1861–82. http://dx.doi.org/10.1090/s0025-5718-2014-02902-5.
Full textGrosswald, Emil. "On prime representing polynomials." Proceedings of the Indian Academy of Sciences - Section A 97, no. 1-3 (December 1987): 75–84. http://dx.doi.org/10.1007/bf02837816.
Full textMikaelian, Vahagn. "On Degrees of Modular Common Divisors and the Big PrimegcdAlgorithm." International Journal of Mathematics and Mathematical Sciences 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/3262450.
Full textDissertations / Theses on the topic "Prime polynomials"
Hines, Peter Anthony. "The linear complexity of de Bruijn sequences over finite fields." Thesis, Royal Holloway, University of London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313736.
Full textAnderson, Robert Lawrence. "An Exposition of the Deterministic Polynomial-Time Primality Testing Algorithm of Agrawal-Kayal-Saxena." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd869.pdf.
Full textWootton, Aaron. "Defining algebraic polynomials for cyclic prime covers of the Riemann sphere." Diss., The University of Arizona, 2004. http://hdl.handle.net/10150/280574.
Full textSuresh, Arvind. "On the Characterization of Prime Sets of Polynomials by Congruence Conditions." Scholarship @ Claremont, 2015. http://scholarship.claremont.edu/cmc_theses/993.
Full textDomingues, Riaal. "A polynomial time algorithm for prime recognition." Diss., Pretoria : [s.n.], 2006. http://upetd.up.ac.za/thesis/available/etd-08212007-100529.
Full textMoraes, de Oliveira Nathália. "Inductive valuations and defectless polynomials over henselian fields." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/666758.
Full textLet (K; v) be a discrete rank-one valued eld. In a pioneering work, S. MacLane studied and characterized the extensions of the valuation v to the rational function eld K(x). M. Vaquié generalized his work for an arbitrary valued eld (K; v), not necessarily rank-one nor discrete. A more constructive contribution for the theory was given in the case where v is discrete of rank-one, where J. Fernández, J. Guàrdia, J. Montes and E. Nart provided a computation of generators of the graded algebras and introduced some residual polynomial operators. In this memoir we extend these results to a valued eld (K; v), not necessarily rank-one nor discrete. We also establish a connection between inductive valuations and irreducible polynomials with coecients in Kh, precisely, we construct a bijective mapping M — P0= between the MacLane space of (K; v) (considered as the set of strong types) and a certain quotient of the subset P0 C P of defectless polynomials with coecients in the henselian eld K. Finally, as an application of the techniques presented in this work we reobtain some results on the computation of invariants of tame algebraic elements over henselian fields
Burns, Jonathan. "Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5193.
Full textFREITAS, Sabrina Alves de. "Polinômios centrais para álgebras T-primas." Universidade Federal de Campina Grande, 2010. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1233.
Full textMade available in DSpace on 2018-07-24T16:42:24Z (GMT). No. of bitstreams: 1 SABRINA ALVES DE FREITAS - DISSERTAÇÃO PPGMAT 2010..pdf: 457483 bytes, checksum: d828740083c1ccca9a0a0f8b45be01d0 (MD5) Previous issue date: 2010-04
Capes
Neste trabalho apresentaremos um estudo sobre polinômios centrais ordinários, Z2-graduados e com involução para algumas importantes álgebras na PI-teoria sobre corpos infinitos. Mais precisamente, descreveremos os polinômios centrais Z2-graduados para as álgebras M2(K) (matrizes 2 × 2 sobre um corpo K), M1,1(E) (subálgebra de M2(E) que consite das matrizes cujas entradas da diagonal principal estão em E0 e os da diagonal secundária estão em E1,onde E é a álgebra de Grassmann com unidade de dimensão infinita e E0 e E1 suas componentes homogêneas de graus 0 e 1, respectivamente) e E ⊗ E. Além disso descreveremos os polinômios centrais para E sobre um corpo infinito K de característica diferente de 2 e finalmente os polinômios centrais com involução para M2(K), considerando as involuções transposta e simplética.
In this work we study ordinary, Z2-graded central polinomials and central polinomials with involution for some important algebras in the theory of algebras with polinomial identities, over infinite fields.Namely, we decribe Z2-graded central polinomials for the algebras M2(K) (2 × 2 matrices over a field K), M1,1(E) (subalgebra of M2(E) whose entries on the diagonal belong to E0 and the off-diagonal entries lie in E1, E is the infinite-dimensional unitary Grassmann algebra, E0 is the center of E and E1 is the anticommutative part of E) and E ⊗ E. Also, we describe the central polinomials for e over a field K, with charK ≠ 2 and finally the central polinomial with involution for M2 (K), considering the transpose and the sympletic involutions.
Bamunoba, Alex Samuel. "Arithmetic of carlitz polynomials." Doctoral thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95850.
Full textGopalan, Parikshit. "Computing with Polynomials over Composites." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11564.
Full textBooks on the topic "Prime polynomials"
Goodearl, K. R. Prime ideals in skew and q-skew polynomial rings. Providence, R.I: American Mathematical Society, 1994.
Find full textMcWilliams, Alicia M. The appliucation of orthogonal polynomials to analyse the price movements of precious metals. (s.l: The Author), 1999.
Find full textComputational aspects of modular forms and Galois representations: How one can compute in polynomial time the value of Ramanujan's tau at a prime. Princeton: Princeton University Press, 2011.
Find full textKubbinga, Henk, ed. The Collected Papers of Frits Zernike (1888-1966): Volumes I, II, III, IV. Groningen, Netherlands: Groningen University Press, 2012.
Find full textFlorian, Luca, ed. Analytic number theory: Exploring the anatomy of integers. Providence, R.I: American Mathematical Society, 2012.
Find full textPrimality Testing in Polynomial Time: From Randomized Algorithms to "PRIMES Is in P" (Lecture Notes in Computer Science). Springer, 2004.
Find full textCai, Zongwu. Functional Coefficient Models for Economic and Financial Data. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.6.
Full textJong, Robin de, Franz Merkl, Jean-Marc Couveignes, Johan Bosman, and Bas Edixhoven. Computational Aspects of Modular Forms and Galois Representations: How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime. Princeton University Press, 2011.
Find full textCouveignes, Jean-Marc, and Bas Edixhoven. Computational Aspects of Modular Forms and Galois Representations: How One Can Compute in Polynomial Time the Value of Ramanujan's Tau at a Prime. Princeton University Press, 2011.
Find full textBook chapters on the topic "Prime polynomials"
Lucas, Thomas G. "Divisorial Prime Ideals in Prüfer Domains." In Rings, Polynomials, and Modules, 281–98. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65874-2_14.
Full textOrłowski, Arkadiusz, and Leszek J. Chmielewski. "Ulam Spiral and Prime-Rich Polynomials." In Computer Vision and Graphics, 522–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00692-1_45.
Full textKovačec, Alexander. "Relatively Prime Gröbner Bases and Reducibility of S-Polynomials." In Lattices, Semigroups, and Universal Algebra, 143–46. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-2608-1_16.
Full textBogdanov, Andrej, Akinori Kawachi, and Hidetoki Tanaka. "Hard Functions for Low-Degree Polynomials over Prime Fields." In Mathematical Foundations of Computer Science 2011, 120–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22993-0_14.
Full textFilippis, Vincenzo De, Giovanni Scudo, and Feng Wei. "b-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings." In Springer INdAM Series, 109–38. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63111-6_7.
Full textDhara, Basudeb. "Generalized Derivations with Nilpotent Values on Multilinear Polynomials in Prime Rings." In Algebra and its Applications, 307–19. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1651-6_18.
Full textElliott, P. D. T. A. "More Primes and Polynomials." In Developments in Mathematics, 299–320. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-6044-6_22.
Full textLyall, Neil, and Alex Rice. "Polynomial Differences in the Primes." In Combinatorial and Additive Number Theory, 129–46. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1601-6_10.
Full textBaier, Stephan, and Liangyi Zhao. "On primes represented by quadratic polynomials." In CRM Proceedings and Lecture Notes, 159–66. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/crmp/046/11.
Full textKonyagin, Sergei, and Carl Pomerance. "On Primes Recognizable in Deterministic Polynomial Time." In Algorithms and Combinatorics, 176–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60408-9_15.
Full textConference papers on the topic "Prime polynomials"
Bialostocki, A., and T. Shaska. "Galois groups of prime degree polynomials with nonreal roots." In Computational Aspects of Algebraic Curves. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701640_0015.
Full textHaramaty, Elad, Amir Shpilka, and Madhu Sudan. "Optimal Testing of Multivariate Polynomials over Small Prime Fields." In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2011. http://dx.doi.org/10.1109/focs.2011.61.
Full textLevin, Alexander. "Bivariate Dimension Polynomials of Non-Reflexive Prime Difference-Differential Ideals." In ISSAC '18: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3208976.3209008.
Full textLima, J. B., R. M. Campello de Souza, and D. Panario. "Security of public-key cryptosystems based on Chebyshev polynomials over prime finite fields." In 2008 IEEE International Symposium on Information Theory - ISIT. IEEE, 2008. http://dx.doi.org/10.1109/isit.2008.4595307.
Full textKitano, Teruaki, and Masaaki Suzuki. "Twisted Alexander polynomials and a partial order on the set of prime knots." In Groups, homotopy and configuration spaces, in honour of Fred Cohen's 60th birthday. Mathematical Sciences Publishers, 2008. http://dx.doi.org/10.2140/gtm.2008.13.307.
Full textBob-Manuel, K. D. H., and B. O. Okim. "Optimising technique in matching combined diesel engine or gas turbine (CODOG) propulsion system to hull and propeller of a frigate." In 14th International Naval Engineering Conference and Exhibition. IMarEST, 2018. http://dx.doi.org/10.24868/issn.2515-818x.2018.035.
Full textYOKOYAMA, KAZUHIRO. "PRIME DECOMPOSITION OF POLYNOMIAL IDEALS OVER FINITE FIELDS." In Proceedings of the First International Congress of Mathematical Software. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777171_0022.
Full textAdleman, L., and M. Huang. "Recognizing primes in random polynomial time." In the nineteenth annual ACM conference. New York, New York, USA: ACM Press, 1987. http://dx.doi.org/10.1145/28395.28445.
Full textLu, Peng, and James N. Siddall. "Nonlinear Programming Using Logic Methods." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0066.
Full textLaw, Marshall, and Michael Monagan. "A parallel implementation for polynomial multiplication modulo a prime." In PASCO '15: International Workshop on Parallel Symbolic Computation. New York, NY, USA: ACM, 2015. http://dx.doi.org/10.1145/2790282.2790291.
Full text