Dissertations / Theses on the topic 'Principal components analysis (pca)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Principal components analysis (pca).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Le, Hanh T. Banking & Finance Australian School of Business UNSW. "Discrete PCA: an application to corporate governance research." Awarded by:University of New South Wales. Banking & Finance, 2007. http://handle.unsw.edu.au/1959.4/40753.
Full textAllemang, Matthew R. "Comparison of Automotive Structures Using Transmissibility Functions and Principal Component Analysis." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367944783.
Full textMassaro, James. "A PCA based method for image and video pose sequencing /." Online version of thesis, 2010. http://hdl.handle.net/1850/11991.
Full textSolat, Karo. "Generalized Principal Component Analysis." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/83469.
Full textPh. D.
Ragozzine, Brett A. "Modeling the Point Spread Function Using Principal Component Analysis." Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1224684806.
Full textRenkjumnong, Wasuta. "SVD and PCA in Image Processing." Digital Archive @ GSU, 2007. http://digitalarchive.gsu.edu/math_theses/31.
Full textLi, Liubo Li. "Trend-Filtered Projection for Principal Component Analysis." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503277234178696.
Full textNelson, Philip R. C. MacGregor John F. Taylor Paul A. "The treatment of missing measurements in PCA and PLS models /." *McMaster only, 2002.
Find full textBianchi, Marcelo Franceschi de. "Extração de características de imagens de faces humanas através de wavelets, PCA e IMPCA." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-10072006-002119/.
Full textImage pattern recognition is an interesting area in the scientific world. The features extraction method refers to the ability to extract features from images, reduce the dimensionality and generates the features vector. Given a query image, the goal of a features extraction system is to search the database and return the most similar to the query image according to a given criteria. Our research addresses the generation of features vectors of a recognition image system for human faces databases. A feature vector is a numeric representation of an image or part of it over its representative aspects. The feature vector is a n-dimensional vector organizing such values. This new image representation can be stored into a database and allow a fast image retrieval. An alternative for image characterization for a human face recognition system is the domain transform. The principal advantage of a transform is its effective characterization for their local image properties. In the past few years researches in applied mathematics and signal processing have developed practical wavelet methods for the multi scale representation and analysis of signals. These new tools differ from the traditional Fourier techniques by the way in which they localize the information in the time-frequency plane; in particular, they are capable of trading on type of resolution for the other, which makes them especially suitable for the analysis of non-stationary signals. The wavelet transform is a set basis function that represents signals in different frequency bands, each one with a resolution matching its scale. They have been successfully applied to image compression, enhancement, analysis, classification, characterization and retrieval. One privileged area of application where these properties have been found to be relevant is computer vision, especially human faces imaging. In this work we describe an approach to image recognition for human face databases focused on feature extraction based on multiresolution wavelets decomposition, taking advantage of Biorthogonal, Reverse Biorthogonal, Symlet, Coiflet, Daubechies and Haar. They were tried in joint the techniques together the PCA (Principal Component Analysis) and IMPCA (Image Principal Component Analysis)
Anjasmara, Ira Mutiara. "Spatio-temporal analysis of GRACE gravity field variations using the principal component analysis." Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/957.
Full textJot, Sapan. "pcaL1: An R Package of Principal Component Analysis using the L1 Norm." VCU Scholars Compass, 2011. http://scholarscompass.vcu.edu/etd/2488.
Full textAnjasmara, Ira Mutiara. "Spatio-temporal analysis of GRACE gravity field variations using the principal component analysis." Curtin University of Technology, Department of Spatial Sciences, 2008. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=18720.
Full textApart from these well-known signals, this contribution also demonstrates that the PCA is able to reveal longer periodic and a-periodic signal. A prominent example for the latter is the gravity signal of the Sumatra-Andaman earthquake in late 2004. In an attempt to isolate these signals, linear trend and annual signal are removed from the original data and the PCA is once again applied to the reduced data. For a complete overview of these results the most dominant PCA modes for the global and regional gravity field solutions are presented and discussed.
Yang, Libin. "An Application of Principal Component Analysis to Stock Portfolio Management." Thesis, University of Canterbury. Department of economics and finance, 2015. http://hdl.handle.net/10092/10293.
Full textBalasubramanian, Vijay. "Variance reduction and outlier identification for IDDQ testing of integrated chips using principal component analysis." Texas A&M University, 2006. http://hdl.handle.net/1969.1/4766.
Full textGonzalez, Nicolas Alejandro. "Principal Components Analysis, Factor Analysis and Trend Correlations of Twenty-Eight Years of Water Quality Data of Deer Creek Reservoir, Utah." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3309.
Full textAguirre, Jurado Ricardo. "Resilient Average and Distortion Detection in Sensor Networks." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/962.
Full textMarques, Miguel Alexandre Castanheira. "On-line system for faults detection in induction motors based on PCA." Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8578.
Full textNowadays in the industry there many processes where human intervention is replaced by electrical machines, especially induction machines due to his robustness, performance and low cost. Although, induction machines are a high reliable device, they are also susceptible to faults. Therefore, the study of induction machine state is essential to reduce human and financial costs. The faults in induction machines can be divided mainly into two types: electrical faults and mechanical faults. Electrical faults represent between 40% and 50% of the reported faults and can be divided essentially in 2 types: stator unbalances and broken rotor bars. Taking into account the high dependency of induction machines and the massive use of automatic processes the industrial level, it is necessary to have diagnostic and monitoring systems these machines. It is presented in this work an on-line system for detection and diagnosis of electrical faults in induction motors based on computer-aided monitoring of the supply currents. The main objective is to detect and identify the presence of broken rotor bars and stator short-circuits in the induction motor. The presence of faults in the machine causes different disturbances in the supply currents. Through a stationary reference frame, such as αβ transform it is possible to extract and manipulate the results obtained from the supply currents using Eigen decomposition.
Alberi, Matteo. "La PCA per la riduzione dei dati di SPHERE IFS." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6563/.
Full textLandgraf, Andrew J. "Generalized Principal Component Analysis: Dimensionality Reduction through the Projection of Natural Parameters." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437610558.
Full textSanderson, Conrad, and conradsand@ieee org. "Automatic Person Verification Using Speech and Face Information." Griffith University. School of Microelectronic Engineering, 2003. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030422.105519.
Full textFANEGAN, JULIUS BOLUDE. "A FUZZY MODEL FOR ESTIMATING REMAINING LIFETIME OF A DIESEL ENGINE." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1188951646.
Full textYu, Xiaoqian. "The Impact of Latency Jitter on the Interpretation of P300 in the Assessment of Cognitive Function." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6443.
Full textStrindlund, Olle. "Evaluation of Homogeneity in Drug Seizures Using Near-Infrared (NIR) Hyperspectral Imaging and Principal Component Analysis (PCA)." Thesis, Linköpings universitet, Kemi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166747.
Full textYou, Xiaozhen. "Principal Component Analysis and Assessment of Language Network Activation Patterns in Pediatric Epilepsy." FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/176.
Full textSurtees, Alexander Peter Harrison. "Development of geochemical identification and discrimination by Raman spectroscopy : the development of Raman spectroscopic methods for application to whole soil analysis and the separation of volcanic ashes for tephrachronology." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14409.
Full textSurtees, Alexander P. H. "Development of geochemical identification and discrimination by Raman spectroscopy. The development of Raman spectroscopic methods for application to whole soil analysis and the separation of volcanic ashes for tephrachronology." Thesis, University of Bradford, 2015. http://hdl.handle.net/10454/14409.
Full textRadjabi, Ryan F. "WILDFIRE DETECTION SYSTEM BASED ON PRINCIPAL COMPONENT ANALYSIS AND IMAGE PROCESSING OF REMOTE-SENSED VIDEO." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1621.
Full textRodeia, José Pedro dos Santos. "Analysis and recognition of similar environmental sounds." Master's thesis, FCT - UNL, 2009. http://hdl.handle.net/10362/2305.
Full textHumans have the ability to identify sound sources just by hearing a sound. Adapting the same problem to computers is called (automatic) sound recognition. Several sound recognizers have been developed throughout the years. The accuracy provided by these recognizers is influenced by the features they use and the classification method implemented. While there are many approaches in sound feature extraction and in sound classification, most have been used to classify sounds with very different characteristics. Here, we implemented a similar sound recognizer. This recognizer uses sounds with very similar properties making the recognition process harder. Therefore, we will use both temporal and spectral properties of the sound. These properties will be extracted using the Intrinsic Structures Analysis (ISA) method, which uses Independent Component Analysis and Principal Component Analysis. We will implement the classification method based on k-Nearest Neighbor algorithm. Here we prove that the features extracted in this way are powerful in sound recognition. We tested our recognizer with several sets of features the ISA method retrieves, and achieved great results. We, finally, did a user study to compare human performance distinguishing similar sounds against our recognizer. The study allowed us to conclude the sounds are in fact really similar and difficult to distinguish and that our recognizer has much more ability than humans to identify them.
Gomes, Róbson Koszeniewski. "Uma Abordagem para Detecção Automática de Planos em Modelos Digitais de Afloramentos Baseada em PCA." Universidade do Vale do Rio dos Sinos, 2014. http://www.repositorio.jesuita.org.br/handle/UNISINOS/4465.
Full textMade available in DSpace on 2015-07-15T18:16:55Z (GMT). No. of bitstreams: 1 ROBSON.pdf: 2705073 bytes, checksum: d6eefccd3ecb288572c9262f7dc4079a (MD5) Previous issue date: 2014
PROCERGS - Companhia de Processamento Dados do Estado Rio Grande Sul
A coleta de dados espaciais tem sido intensamente empregada na área geológica, através da técnica de LIDAR (Light Detection and Ranging). Este tipo de sensoriamento digital remoto de alta resolução e precisão, resulta em modelos digitais 3D que permitem uma análise mais detalhada e quantitativa de estruturas heterôgeneas, como afloramentos. Um dos estudos realizados pelos geólogos são análises sobre a geometria da formação de rochas, onde a informação de orientação de um plano inclinado é um indicativo para a compreensão global da estrutura. Este trabalho propõe a utilização da técnica de Análise de Componentes Principais (PCA) para calcular e detectar automaticamente todos os planos em uma nuvem de pontos. Uma ferramenta foi construída para implementar a visualização do modelo digital e apurar os melhores planos. Um estudo foi realizado a fim de validar as informações encontradas pelo método proposto e dados medidos em campo.
The use of LIDAR (Light Detection and Ranging) systems for gathering spatial data has been extensively used in geological studies. This type of digital remote sensing delivers high resolution and accuracy, resulting in 3D digital models which allow a more detailed and quantitative analysis of heterogeneous structures, as outcrops. One of the studies is based on analysis of the forming rocks geometry. The orientation of a slope plane is an indication for the overall undestanding of the structure. This work proposes a new method to automatically compute and detect all possible planes in a point cloud, based on Principal Component Analysis (PCA) technique. A software tool was constructed to implement the digital model visualization and compute the best planes. A study was conducted to compare and validate the results of the method and the field data collected.
Britto, Rodrigo da Silva. "Detecção de falhas com PCA e PLS aplicados a uma planta didática." Pós-Graduação em Engenharia Elétrica, 2014. https://ri.ufs.br/handle/riufs/5012.
Full textUm sistema de monitoramento de falhas em geral, que além da detecção inclui etapas de isolamento, diagnóstico e recuperação das falhas, é uma área de pesquisa de grande interesse, uma vez que a ocorrência de falhas pode ter consequências negativas em diversos níveis, com impactos socioeconômicos e ambientais. Em processos industriais cada vez mais complexos, é necessária uma rápida detecção de falhas, exigindo um sistema de gerenciamento de falhas otimizado, de modo a evitar perdas de recursos materiais e humanos. Este trabalho desenvolve um estudo sobre técnicas estatísticas de detecção de falhas aplicadas numa planta didática. A planta didática empregada no estudo compreende um processo industrial simples controlado. Para a detecção das falhas nesse processo, foram aplicados os principais métodos estatísticos: Análise de Componentes Principais (PCA) e Mínimos Quadrados Parciais (PLS). Estes métodos foram implementados e aplicados ao processo objetivando uma análise comparativa entre os mesmos. Como resultado, os métodos foram capazes de detectar todos os diferentes tipos de falhas emuladas, com pouco ou nenhum atraso na detecção e com desempenhos similares.
Sousa, Patrícia Ferreira Cunha [UNESP]. "Avaliação de laranjeiras doces quanto à qualidade de frutos, períodos de maturação e resistência a Guignardia citricarpa." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/102823.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Apesar de sua importância comercial, o número de variedades de laranjas é muito restrito no Brasil. Os Bancos de Germoplasmas de citros possuem grande número de genótipos de laranjas doces para serem explorados e avaliados quanto aos aspectos botânicos, genéticos e agronômicos, visando elevar a variabilidade genética e as qualidades agronômicas das cultivares. Como parte desse trabalho, avaliou-se 58 genótipos de laranjeiras doces em relação aos caracteres físicos, visando mercado in natura por meio de 9 caracteres físicos (diâmetro, perímetro, altura e peso dos frutos, espessuras da casca, albedo e polpa e número de sementes) e 7 caracteres visando qualidade industrial (acidez total titulável, sólidos solúveis totais, “ratio”, peso dos frutos, rendimento de suco, ácido ascórbico e índice tecnológico= kg sólidos solúveis/40,8kg). A análise multivariada indicou a existência de variabilidade entre os genótipos em relação aos caracteres físicos visando mercado in natura e qualidade industrial. Dois componentes principais, com autovalores > 1, representaram 66,03% da variância total para os caracteres físicos. As variáveis com maior poder discriminatório na primeira componente principal foram: diâmetro, perímetro, peso e altura dos frutos. Os escores desse componente foram designados MI-CP1 (mercado in natura), e os genótipos com os maiores valores foram os mais indicados para o mercado de fruta fresca. Na segunda componente principal, as variáveis mais discriminantes foram espessura do endocarpo e rendimento de suco, cujos escores foram nomeados (S-CP2), caracteres físicos esses ideais para a qualidade industrial. Nos escores dos dois componentes principais (MI-CP1 e S-CP2), o genótipo 22- ‘Lanelate’ foi destaque, seguido por 43-Telde, 39-Rotuna, 44-Torregrossa, 46-Tua Mamede e 17-Grada. Quanto às avaliações visando qualidade industrial...
Although its commercial importance, the number of you cultivate of oranges it is very restricted in Brazil. The Banks of Germoplasmas of citros possess innumerable accesses of oranges candies to be explored and evaluated how much to the botanical, genetic and agronomics aspects, aiming at to raise the genetic variability and the agronomics qualities cultivating of them. As part of that work, was sought to evaluate 58 genotypes of sweet orange trees in relation to the physical characters, seeking market in nature and industry quality, through 9 physical characters (diameter, perimeter, height and weight of the fruits, thickness of the peel, albedo and pulp and number of seeds) and 7 characters seeking industrial quality (acidity total titillate, total soluble solids, ratio , weight of the fruits, juice revenue, ascorbic acid and technological index = kg solid solutes/40,8kg). The analysis multivariate indicated the variability existence among the genotypes in relation to the physical characters and industrial quality. Two main components, with autovalues> 1, they represented 66,03% of the total variance for the physical characters. The variables with larger power discriminate in the first main component were: diameter, perimeter, weight and height of the fruits; we named the scores of that component of MI-CP1 (market in nature), genotypes with the largest values were the most suitable to the market of fresh fruit; in the second main component the variables more discriminate were thickness of the endocarp and juice revenue, it was named (S-CP2), characters physical ideas for the industrial quality. In the scores of the two main components (MI-CP1 and S-CP2), the genotype 22-Lanelate was prominence, followed for 43-Telde, 39-Rotuna, 44- Torregrossa, 46-Tua Mamede and it 17-Grada. How much to the evaluations aiming at industrial quality (INDUST-CP1), had been distinguished: ...(Complete abstract click electronic access below)
Veverka, Vojtěch. "Automatické rozměření vícesvodových EKG signálů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-316834.
Full textHassling, Andreas, and Simon Flink. "SYSTEM IDENTIFICATION OF A WASTE-FIRED CFB BOILER : Using Principal Component Analysis (PCA) and Partial Least Squares Regression modeling (PLS-R)." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-34979.
Full textEdberg, Alexandra. "Monitoring Kraft Recovery Boiler Fouling by Multivariate Data Analysis." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230906.
Full textDetta arbete handlar om inkruster i sodapannan pa Montes del Plata, Uruguay. Multivariat dataanalys har anvands for att analysera den stora datamangd som fanns tillganglig for att undersoka hur olika parametrar paverkar inkrusterproblemen. Principal·· Component Analysis (PCA) och Partial Least Square Projection (PLS) har i detta jobb anvants. PCA har anvants for att jamfora medelvarden mellan tidsperioder med hoga och laga inkrusterproblem medan PLS har anvants for att studera korrelationen mellan variablema och darmed ge en indikation pa vilka parametrar som kan tankas att andras for att forbattra tillgangligheten pa sodapannan. Resultaten visar att sodapannan tenderar att ha problem med inkruster som kan hero pa fdrdelningen av luft, pa svartlutens tryck eller pa torrhalten i svartluten. Resultaten visar ocksa att multivariat dataanalys ar ett anvandbart verktyg for att analysera dessa typer av inkrusterproblem.
Xian, Qing. "Statistical Assessment of Hydrochemical Characteristics of Streams and Rivers in Eastern New England." Thesis, Boston College, 2009. http://hdl.handle.net/2345/1364.
Full textThis study characterizes the current state of water quality of surface streams and rivers in the eastern New England region. A set of water quality data for nine rivers, part of the USGS National Water-Quality Assessment (NAWQA) Program was statistically evaluated to identify natural and anthropogenic persistent influential factors on water quality in surface waters. Binary analysis and multivariate analysis, mainly Principal Component Analysis (PCA) and Factor Analysis (FA) were applied to determine the least number of independent relationships among multiple chemical components in the data set. Statistical results show that in eight of the nine rivers included in this study, four principal components can explain about 80% of the total variance of the original data. The most significant contributing factors can be identified with: (1) chemical weathering; (2) road salt applications; (3) nutrient cycling; and (4) agricultural/waste water
Thesis (MS) — Boston College, 2009
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Geology and Geophysics
Razifar, Pasha. "Novel Approaches for Application of Principal Component Analysis on Dynamic PET Images for Improvement of Image Quality and Clinical Diagnosis." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6053.
Full textIriarte, Martel Jorge Hugo [UNESP]. "Caracterização de germoplasma de pupunha (Bactris gasipaes Kunth) por descritores morfológicos." Universidade Estadual Paulista (UNESP), 2002. http://hdl.handle.net/11449/102849.
Full textA pupunheira tem um potencial econômico e social muito grande, sendo a palmeira mais importante na América pré-colombiana, constituindo junto com o milho e a mandioca, a base da alimentação dos povos primitivos. Os principais produtos extraídos são o palmito e os frutos para o consumo humano direto, alimento animal, farinhas para consumo humano e óleo vegetal. Os objetivos do presente trabalho foram de utilizar uma lista de descritores morfológicos recomendada, para discriminar primeiramente as raças Pará e Putumayo e após sua validação estatística, verificar também a existência da raça Solimões, que até hoje tem sido negada. Foram aplicadas técnicas estatísticas univariadas e multivariadas na tentativa de discriminar as raças. Dos 42 descritores iniciais, 25 apresentaram diferenças significativas entre as raças e 15 tiveram aproximação normal. A análise discriminante mostrou que a raça Pará possuía 15% das plantas mal classificadas e Putumayo 14%, já com a seleção de desenvolmer para componentes principais, as percentagens foram 9 e 19%, respectivamente, para as duas raças. A população de Manacapuru, não formou grupo nas duas primeiras análises de agrupamento e nem com componentes principais. As três análises em conjunto, conseguiram discriminar as raças Pará, Putumayo e Solimões, sendo os descritores mais importantes nesta discriminação e classificação das raças: número de espigas por cacho, comprimento da ráquis, peso dos frutos, espessura das cascas, facilidade para descascar os frutos, peso das cascas, sabor dos frutos, espessura da polpa, distância morfológica dos frutos e peso das sementes.
The peach palm has a economic and social potential very great being the palm most important in the América pre-Colombian, contribuiting together with the maize and the cassava in the indenous feeds. The target of the present work was: to use a morphological descriptor list recommended, to discriminate between two landraces and descriptors validation , to verify the existence of solimoes landraces. Univariated and multivariated statistical techniques were used to attemp discriminate the landraces. Form fort yone initial descriptors, twenty five had presented significant difference between the landraces and fifteen had presented normal approach. The discriminant analysis have showed that Pará landrace possessed fifteen percent of the plant badly c1assified and Putumayo about fourteen percent to it. In the analysis of principal component, the percentages were nine and nineteen percent, respectively, for the two landraces. Manacapuru population did not form c1usterin in the two first one analysis of and nor with principal components. Three joint analysis in the set had obtained to discriminate the Pará, Putumayo and Solimoes landraces and the discrimnant analysis with three landraces, c1assified Manacapuru of the Putumayo landrace inside. The most important descriptors in the discrimination between landraces were: numbers of ears per raceme, raquis length, fruit weight, thickness of fruits bark, facility to peel fruits, weight of fruit bark, fruit flavor, pulp thickness, morphological distance between fruits and seed weight.
Stark, Love. "Outlier detection with ensembled LSTM auto-encoders on PCA transformed financial data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296161.
Full textFinansinstitut genererar idag en stor mängd data, data som kan innehålla intressant information värd att undersöka för att främja den ekonomiska tillväxten för nämnda institution. Det finns ett intresse för att analysera dessa informationspunkter, särskilt om de är avvikande från det normala dagliga arbetet. Att upptäcka dessa avvikelser är dock inte en lätt uppgift och ej möjligt att göra manuellt på grund av de stora mängderna data som genereras dagligen. Tidigare arbete för att lösa detta har undersökt användningen av maskininlärning för att upptäcka avvikelser i finansiell data. Tidigare studier har visat på att förbehandlingen av datan vanligtvis står för en stor del i förlust av emphinformation från datan. Detta arbete syftar till att studera om det finns en korrekt balans i hur förbehandlingen utförs för att behålla den högsta mängden information samtidigt som datan inte förblir för komplex för maskininlärnings-modellerna. Det emphdataset som användes bestod av valutatransaktioner som tillhandahölls av värdföretaget och förbehandlades genom användning av Principal Component Analysis (PCA). Huvudsyftet med detta arbete är att undersöka om en ensemble av Long Short-Term Memory Recurrent Neural Networks (LSTM), konfigurerad som autoenkodare, kan användas för att upptäcka avvikelser i data och om ensemblen är mer precis i sina predikteringar än en ensam LSTM-autoenkodare. Tidigare studier har visat att en ensembel avautoenkodare kan visa sig vara mer precisa än en singel autokodare, särskilt när SkipCells har implementerats (en konfiguration som hoppar över vissa av LSTM-cellerna för att göra modellerna mer varierade). En datapunkt kommer att betraktas som en avvikelse om LSTM-modellen har problem med att återskapa den väl, dvs ett mönster som nätverket har svårt att återskapa, vilket gör datapunkten tillgänglig för vidare undersökningar. Resultaten visar att en ensemble av LSTM-modeller predikterade mer precist än en singel LSTM-modell när det gäller att återskapa datasetet, och då enligt vår definition av avvikelser, mer precis avvikelse detektering. Resultaten från förbehandlingen visar olika metoder för att uppnå ett optimalt antal komponenter för dina data genom att studera bibehållen varians och precision för PCA-transformation jämfört med modellprestanda. En av slutsatserna från arbetet är att en ensembel av LSTM-nätverk kan visa sig vara mycket kraftfulla, men att alternativ till förbehandling bör undersökas, såsom categorical embedding istället för PCA.
Santos, Anderson Rodrigo dos. "Identificação de faces humanas através de PCA-LDA e redes neurais SOM." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-21042006-222231/.
Full textThe use of biometric technique for automatic personal identification is one of the biggest challenges in the security field. The process is complex because it is influenced by many factors related to the form, position, illumination, rotation, translation, disguise and occlusion of face characteristics. Now a days, there are many face recognition techniques. This work presents a methodology for searching a face in the ORL database with some different training sets. The algorithm for face recognition was based on sub-space LDA (PCA + LDA) technique using a SOM neural net to represent each class (face) in the stage of classification/identification. By applying the sub-space LDA method, we extract the most important characteristics in the identification of previously known faces that belong to the database, creating a reduced and more discriminated dimensional space than the original space. The SOM nets are responsible for the memorization of each class characteristic. The algorithm offers great performance (recognition rates between 97% and 98%) considering the adversities and sources of errors inherent to the traditional methods of face recognition.
Fontes, Nayanne Maria Garcia Rego. "Monitoramento e avaliação de desempenho de sistemas MPC utilizando métodos estatísticos multivariados." Universidade Federal de Sergipe, 2017. http://ri.ufs.br:8080/xmlui/handle/123456789/5037.
Full textMonitoring of process control systems is extremely important for industries to ensure the quality of the product and the safety of the process. Predictive controllers, also known by MPC (Model Predictive Control), usually has a well performance initially. However, after a period, many factors contribute to the deterioration of its performance. This highlights the importance of monitoring the MPC control systems. In this work, tools based on multivariate statistical methods are discussed and applied to the problem of monitoring and Performance Assessment of predictive controllers. The methods presented here are: PCA (Principal Component Analysis) and ICA (Independent Component Analysis). Both are techniques that use data collected directly from the process. The first is widely used in Performance Assessment of predictive controllers. The second is a more recent technique that has arisen, mainly in order to be used in fault detection systems. The analyzes are made when applied in simulated processes characteristic of the petrochemical industry operating under MPC control.
O monitoramento de sistemas de controle de processos é extremamente importante no que diz respeito às indústrias, para garantir a qualidade do que é produzido e a segurança do processo. Os controladores preditivos, também conhecidos pela sigla em inglês MPC (Model Predictive Control), costumam ter um bom desempenho inicialmente. Entretanto, após um certo período, muitos fatores contribuem para a deterioração de seu desempenho. Isto evidencia a importância do monitoramento dos sistemas de controle MPC. Neste trabalho aborda-se ferramentas, baseada em métodos estatísticos multivariados, aplicados ao problema de monitoramento e avaliação de desempenho de controladores preditivos. Os métodos aqui apresentados são: o PCA (Análise por componentes principais) e o ICA (Análise por componentes independentes). Ambas são técnicas que utilizam dados coletados diretamente do processo. O primeiro é largamente utilizado na avaliação de desempenho de controladores preditivos. Já o segundo, é uma técnica mais recente que surgiu, principalmente, com o intuito de ser utilizado em sistemas de detecção de falhas. As análises são feitas quando aplicadas em processos simulados característicos da indústria petroquímica operando sob controle MPC.
Ergin, Emre. "Investigation Of Music Algorithm Based And Wd-pca Method Based Electromagnetic Target Classification Techniques For Their Noise Performances." Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611218/index.pdf.
Full textSaleh, Mohamed Ibrahim. "Using Ears for Human Identification." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/33158.
Full textMaster of Science
Owen, Jade Denise. "Investigation of the elemental profiles of Hypericum perforatum as used in herbal remedies." Thesis, University of Hertfordshire, 2014. http://hdl.handle.net/2299/13233.
Full textGeschwinder, Lukáš. "Možnosti využití metod vícerozměrné statistické analýzy dat při hodnocení spolehlivosti distribučních sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-217824.
Full textSINGH, BHUPINDER. "A HYBRID MSVM COVID-19 IMAGE CLASSIFICATION ENHANCED USING PARTICLE SWARM OPTIMIZATION." Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18864.
Full textŠrenk, David. "Vizualizace spektroskopických dat pomocí metody analýzy hlavních komponent." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401532.
Full textIvan, Jean-Paul. "Principal Component Modelling of Fuel Consumption ofSeagoing Vessels and Optimising Fuel Consumption as a Mixed-Integer Problem." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-51847.
Full textPresentation was performed remotely using Zoom.
Königsson, Sofia. "PCA för detektering av avvikande händelser i en kraftvärmeprocess." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-347516.
Full textBoiler 6 at the Högdalen facility in southern Stockholm (P6) combined with a a steam turbine produces Combined Heat and Power (CHP) through combustion of treated industry waste. In order to minimise maintenance costs and increase plant availability it is of importance to detect process faults and deviations at an early state. In this study a method for outlier detection using Principal Component Analysis (PCA) is applied on the CHP production process. A PCA model with reduced dimension is created using process data from a problem free period and is used as a template for new operating data to be compared with in a control chart. Deviations from the model should be an indication of the presence of abnormal conditions and the reasons for the deviations are analysed. Two cases of tube failure in 2014 and 2015 are used to study the deviations. The result shows that process deviations from the models can be detected in the control chart in both cases of tube failure and the variables known to be associated with tube failure contributes highly to the deviating behaviour. There is potential for applying this method for process control, a difficulty lies in creating a model that represents the stable process when there are big variances within what is considererd a stable process state. The method can be used for data analysis when suspecting a tube failure.
Gavioli, Alan. "Módulos computacionais para seleção de variáveis e Análise de agrupamento para definição de zonas de manejo." Universidade Estadual do Oeste do Paraná, 2017. http://tede.unioeste.br/handle/tede/3063.
Full textMade available in DSpace on 2017-09-18T14:32:46Z (GMT). No. of bitstreams: 1 Alan_Gavioli2017.pdf: 4935513 bytes, checksum: 58816f2871fee27474b2fd5e511826af (MD5) Previous issue date: 2017-02-17
Two basic activities for the definition of quality management zones (MZs) are the variable selection task and the cluster analysis task. There are several methods proposed to execute them, but due to their complexity, they need to be made available by computer systems. In this study, 5 methods based on spatial correlation analysis, principal component analysis (PCA) and multivariate spatial analysis based on Moran’s index and PCA (MULTISPATI-PCA) were evaluated. A new variable selection algorithm, named MPCA-SC, based on the combined use of spatial correlation analysis and MULTISPATI-PCA, was proposed. The potential use of 20 clustering algorithms for the generation of MZs was evaluated: average linkage, bagged clustering, centroid linkage, clustering large applications, complete linkage, divisive analysis, fuzzy analysis clustering (fanny), fuzzy c-means, fuzzy c-shells, hard competitive learning, hybrid hierarchical clustering, k-means, McQuitty’s method (mcquitty), median linkage, neural gas, partitioning around medoids, single linkage, spherical k-means, unsupervised fuzzy competitive learning, and Ward’s method. Two computational modules developed to provide the variable selection and data clustering methods for definition of MZs were also presented. The evaluations were conducted with data obtained between 2010 and 2015 in three commercial agricultural areas, cultivated with soybean and corn, in the state of Paraná, Brazil. The experiments performed to evaluate the 5 variable selection algorithms showed that the new method MPCA-SC can improve the quality of MZs in several aspects, even obtaining satisfactory results with the other 4 algorithms. The evaluation experiments of the 20 clustering methods showed that 17 of them were suitable for the delineation of MZs, especially fanny and mcquitty. Finally, it was concluded that the two computational modules developed made it possible to obtain quality MZs. Furthermore, these modules constitute a more complete computer system than other free-to-use software such as FuzME, MZA, and SDUM, in terms of the diversity of variable selection and data clustering algorithms.
A seleção de variáveis e a análise de agrupamento de dados são atividades fundamentais para a definição de zonas de manejo (ZMs) de qualidade. Para executar essas duas atividades, existem diversos métodos propostos, que devido à sua complexidade precisam ser executados por meio da utilização de sistemas computacionais. Neste trabalho, avaliaramse 5 métodos de seleção de variáveis baseados em análise de correlação espacial, análise de componentes principais (ACP) e análise espacial multivariada baseada no índice de Moran e em ACP (MULTISPATI-PCA). Propôs-se um novo algoritmo de seleção de variáveis, denominado MPCA-SC, desenvolvido a partir da aplicação conjunta da análise de correlação espacial e de MULTISPATI-PCA. Avaliou-se a viabilidade de aplicação de 20 algoritmos de agrupamento de dados para a geração de ZMs: average linkage, bagged clustering, centroid linkage, clustering large applications, complete linkage, divisive analysis, fuzzy analysis clustering (fanny), fuzzy c-means, fuzzy c-shells, hard competitive learning, hybrid hierarchical clustering, k-means, median linkage, método de McQuitty (mcquitty), método de Ward, neural gas, partitioning around medoids, single linkage, spherical k-means e unsupervised fuzzy competitive learning. Apresentaram-se ainda dois módulos computacionais desenvolvidos para disponibilizar os métodos de seleção de variáveis e de agrupamento de dados para a definição de ZMs. As avaliações foram realizadas com dados obtidos entre os anos de 2010 e 2015 de três áreas agrícolas comerciais, localizadas no estado do Paraná, nas quais cultivaram-se milho e soja. Os experimentos efetuados para avaliar os 5 algoritmos de seleção de variáveis mostraram que o novo método MPCA-SC pode melhorar a qualidade de ZMs em diversos aspectos, mesmo obtendo-se resultados satisfatórios com os outros 4 algoritmos. Os experimentos de avaliação dos 20 métodos de agrupamento citados mostraram que 17 deles foram adequados para o delineamento de ZMs, com destaque para fanny e mcquitty. Por fim, concluiu-se que os dois módulos computacionais desenvolvidos possibilitaram a obtenção de ZMs de qualidade. Além disso, esses módulos constituem uma ferramenta computacional mais abrangente que outros softwares de uso gratuito, como FuzME, MZA e SDUM, em relação à diversidade de algoritmos disponibilizados para selecionar variáveis e agrupar dados.
Nordahl, Åke. "Metoder för informationsoptimering vid organisk syntes." Doctoral thesis, Umeå universitet, Kemiska institutionen, 1990. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-102557.
Full text