To see the other types of publications on this topic, follow the link: Principal components.

Journal articles on the topic 'Principal components'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Principal components.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Sutter, Jon M., John H. Kalivas, and Patrick M. Lang. "Which principal components to utilize for principal component regression." Journal of Chemometrics 6, no. 4 (July 1992): 217–25. http://dx.doi.org/10.1002/cem.1180060406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abegaz, Fentaw, Kridsadakorn Chaichoompu, Emmanuelle Génin, David W. Fardo, Inke R. König, Jestinah M. Mahachie John, and Kristel Van Steen. "Principals about principal components in statistical genetics." Briefings in Bioinformatics 20, no. 6 (September 14, 2018): 2200–2216. http://dx.doi.org/10.1093/bib/bby081.

Full text
Abstract:
Abstract Principal components (PCs) are widely used in statistics and refer to a relatively small number of uncorrelated variables derived from an initial pool of variables, while explaining as much of the total variance as possible. Also in statistical genetics, principal component analysis (PCA) is a popular technique. To achieve optimal results, a thorough understanding about the different implementations of PCA is required and their impact on study results, compared to alternative approaches. In this review, we focus on the possibilities, limitations and role of PCs in ancestry prediction, genome-wide association studies, rare variants analyses, imputation strategies, meta-analysis and epistasis detection. We also describe several variations of classic PCA that deserve increased attention in statistical genetics applications.
APA, Harvard, Vancouver, ISO, and other styles
3

Haswell, S. J. "Principal Components." Analytica Chimica Acta 309, no. 1-3 (June 1995): 405–6. http://dx.doi.org/10.1016/0003-2670(95)90335-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miyazaki, Haruo, and Youichi Seki. "Principal Components and Principal Clusters." Journal of Information and Optimization Sciences 8, no. 2 (May 1987): 189–99. http://dx.doi.org/10.1080/02522667.1987.10698885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fujiwara, Masakazu, Tomohiro Minamidani, Isamu Nagai, and Hirofumi Wakaki. "Principal Components Regression by Using Generalized Principal Components Analysis." JOURNAL OF THE JAPAN STATISTICAL SOCIETY 43, no. 1 (2013): 57–78. http://dx.doi.org/10.14490/jjss.43.57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saegusa, Ryo, Hitoshi Sakano, and Shuji Hashimoto. "Nonlinear principal component analysis to preserve the order of principal components." Neurocomputing 61 (October 2004): 57–70. http://dx.doi.org/10.1016/j.neucom.2004.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mertens, B. J. A., T. Fearn, and M. Thompson. "Efficient cross-validation of principal components applied to principal component regression." Statistics and Computing 6, no. 2 (June 1996): 178. http://dx.doi.org/10.1007/bf00162530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Whitlark, David, and George H. Dunteman. "Principal Components Analysis." Journal of Marketing Research 27, no. 2 (May 1990): 243. http://dx.doi.org/10.2307/3172855.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ammann, Larry P. "Robust Principal Components." Communications in Statistics - Simulation and Computation 18, no. 3 (January 1989): 857–74. http://dx.doi.org/10.1080/03610918908812795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Franses, Philip Hans, and Eva Janssens. "Spurious principal components." Applied Economics Letters 26, no. 1 (February 2018): 37–39. http://dx.doi.org/10.1080/13504851.2018.1433292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

SINGH, ASHBINDU, and ANDREW HARRISON. "Standardized principal components." International Journal of Remote Sensing 6, no. 6 (June 1985): 883–96. http://dx.doi.org/10.1080/01431168508948511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Vines, S. K. "Simple principal components." Journal of the Royal Statistical Society: Series C (Applied Statistics) 49, no. 4 (January 2000): 441–51. http://dx.doi.org/10.1111/1467-9876.00204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kim, Sung-Hoon, and George H. Dunteman. "Principal Components Analysis." Journal of Educational Statistics 16, no. 2 (1991): 141. http://dx.doi.org/10.2307/1165117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

de la Iglesia, Manuel D., and Esteban G. Tabak. "Principal Dynamical Components." Communications on Pure and Applied Mathematics 66, no. 1 (June 22, 2012): 48–82. http://dx.doi.org/10.1002/cpa.21411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lefkovitch, L. P. "Consensus Principal Components." Biometrical Journal 35, no. 5 (1993): 567–80. http://dx.doi.org/10.1002/bimj.4710350506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Boente, Graciela, Ana M. Pires, and Isabel M. Rodrigues. "Detecting influential observations in principal components and common principal components." Computational Statistics & Data Analysis 54, no. 12 (December 2010): 2967–75. http://dx.doi.org/10.1016/j.csda.2010.01.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mertens, Bart, Tom Fearn, and Michael Thompson. "The efficient cross-validation of principal components applied to principal component regression." Statistics and Computing 5, no. 3 (September 1995): 227–35. http://dx.doi.org/10.1007/bf00142664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kim, Bu-Yong, and Myung-Hee Shin. "Procedure for the Selection of Principal Components in Principal Components Regression." Korean Journal of Applied Statistics 23, no. 5 (October 31, 2010): 967–75. http://dx.doi.org/10.5351/kjas.2010.23.5.967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Artigue, Heidi, Gary Smith, and Zudi Lu. "The principal problem with principal components regression." Cogent Mathematics & Statistics 6, no. 1 (January 1, 2019): 1622190. http://dx.doi.org/10.1080/25742558.2019.1622190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shin, Jae-Kyoung, and Yutaka Tanaka. "CROSS-VALIDATORY CHOICE FOR THE NUMBER OF PRINCIPAL COMPONENTS IN PRINCIPAL COMPONENT REGRESSION." Journal of the Japanese Society of Computational Statistics 9, no. 1 (1996): 53–59. http://dx.doi.org/10.5183/jjscs1988.9.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tanaka, Yukata. "Sensitivity analysis in principal component analysis:influence on the subspace spanned by principal components." Communications in Statistics - Theory and Methods 17, no. 9 (January 1988): 3157–75. http://dx.doi.org/10.1080/03610928808829796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

KARAKUZULU, Cihan, İbrahim Halil GÜMÜŞ, Serkan GÜLDAL, and Mustafa YAVAŞ. "Determining The Number of Principal Components with Schur's Theorem in Principal Component Analysis." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 12, no. 2 (February 23, 2023): 299–306. http://dx.doi.org/10.17798/bitlisfen.1144360.

Full text
Abstract:
Principal Component Analysis is a method for reducing the dimensionality of datasets while also limiting information loss. It accomplishes this by producing uncorrelated variables that maximize variance one after the other. The accepted criterion for evaluating a Principal Component’s (PC) performance is λ_j/tr(S) where tr(S) denotes the trace of the covariance matrix S. It is standard procedure to determine how many PCs should be maintained using a predetermined percentage of the total variance. In this study, the diagonal elements of the covariance matrix are used instead of the eigenvalues to determine how many PCs need to be considered to obtain the defined threshold of the total variance. For this, an approach which uses one of the important theorems of majorization theory is proposed. Based on the tests, this approach lowers the computational costs.
APA, Harvard, Vancouver, ISO, and other styles
23

Ekvall, Karl Oskar. "Targeted principal components regression." Journal of Multivariate Analysis 190 (July 2022): 104995. http://dx.doi.org/10.1016/j.jmva.2022.104995.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Oksanen, E. H. "Principal components in econometrics." Communications in Statistics - Theory and Methods 17, no. 8 (January 1988): 2507–32. http://dx.doi.org/10.1080/03610928808829759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hörmann, Siegfried, Łukasz Kidziński, and Marc Hallin. "Dynamic functional principal components." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77, no. 2 (July 18, 2014): 319–48. http://dx.doi.org/10.1111/rssb.12076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Meister, J., and W. H. E. Schwarz. "Principal Components of Ionicity." Journal of Physical Chemistry 98, no. 33 (August 1994): 8245–52. http://dx.doi.org/10.1021/j100084a048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

GONZALEZPINTO, A. "Principal components of mania." Journal of Affective Disorders 76, no. 1-3 (September 2003): 95–102. http://dx.doi.org/10.1016/s0165-0327(02)00070-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Voegtlin, Thomas. "Recursive principal components analysis." Neural Networks 18, no. 8 (October 2005): 1051–63. http://dx.doi.org/10.1016/j.neunet.2005.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Maronna, Ricardo A., Fernanda Méndez, and Víctor J. Yohai. "Robust nonlinear principal components." Statistics and Computing 25, no. 2 (December 11, 2013): 439–48. http://dx.doi.org/10.1007/s11222-013-9442-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Benko, Michal, Wolfgang Härdle, and Alois Kneip. "Common functional principal components." Annals of Statistics 37, no. 1 (February 2009): 1–34. http://dx.doi.org/10.1214/07-aos516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Diaz-Garcia, J. A., and R. A. Perez-Agamez. "Principal components under singularity." International Mathematical Forum 2 (2007): 1093–103. http://dx.doi.org/10.12988/imf.2007.07094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Peña, Daniel, and Victor J. Yohai. "Generalized Dynamic Principal Components." Journal of the American Statistical Association 111, no. 515 (July 2, 2016): 1121–31. http://dx.doi.org/10.1080/01621459.2015.1072542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Umali, Jennifer, and Erniel Barrios. "Nonparametric Principal Components Regression." Communications in Statistics - Simulation and Computation 43, no. 7 (January 2014): 1797–810. http://dx.doi.org/10.1080/03610918.2012.744046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Al-Ibrahim, A. H., and Noriah M. Al-Kandari. "Stability of principal components." Computational Statistics 23, no. 1 (August 10, 2007): 153–71. http://dx.doi.org/10.1007/s00180-007-0082-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Maćkiewicz, Andrzej, and Waldemar Ratajczak. "Principal components analysis (PCA)." Computers & Geosciences 19, no. 3 (March 1993): 303–42. http://dx.doi.org/10.1016/0098-3004(93)90090-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yendle, Peter W., and Halliday J. H. MacFie. "Discriminant principal components analysis." Journal of Chemometrics 3, no. 4 (September 1989): 589–600. http://dx.doi.org/10.1002/cem.1180030407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Richman, Michael B. "Rotation of principal components." Journal of Climatology 6, no. 3 (1986): 293–335. http://dx.doi.org/10.1002/joc.3370060305.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Vanella, Patrizio. "Stochastic Forecasting of Demographic Components Based on Principal Component." Athens Journal of Sciences 5, no. 3 (August 31, 2018): 223–45. http://dx.doi.org/10.30958/ajs.5-3-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chapman, R. M., and J. W. Mccrary. "EP Component Identification and Measurement by Principal Components-Analysis." Brain and Cognition 27, no. 3 (April 1995): 288–310. http://dx.doi.org/10.1006/brcg.1995.1024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Chapman, Robert M., John W. McCrary, R. M. Chapman, and J. W. Mccrary. "EP Component Identification and Measurement by Principal Components-Analysis." Brain and Cognition 28, no. 3 (August 1995): 342. http://dx.doi.org/10.1006/brcg.1995.1262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, Bu-Yong. "A Criterion for the Selection of Principal Components in the Robust Principal Component Regression." Communications for Statistical Applications and Methods 18, no. 6 (November 30, 2011): 761–70. http://dx.doi.org/10.5351/ckss.2011.18.6.761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Cristina, O. Chávez Chong, E. Sánchez García Jesús, and DelaCerda Gastélum José. "Análisis de componentes principales funcionales en series de tiempo económicas (Analysis of principal functional components in economic time series)." GECONTEC: Revista Internacional de Gestión del Conocimiento y la Tecnología 3, no. 2 (December 16, 2015): 13–25. https://doi.org/10.5281/zenodo.7080829.

Full text
Abstract:
Resumen El análisis de datos funcionales ha cobrado gran relevancia en los últimos años, convirtiéndose en un importante campo de investigación en la Estadística. El primer método considerado para procesar este tipo de datos fue el de las componentes principales. En este trabajo se considera la extensión del método de las componentes principales clásicas (ACP) al caso funcional (ACPF), algunas propiedades interesantes que aparecen y otras que se conservan al realizar dicha extensión, así como su aplicación el procesamiento de datos reales económicos y una breve explicación de algunas bibliotecas que realizan el análisis de componentes principales funcionales.  English abstract The functional data analysis has gained relevance over the last years becoming an important statistics investigation field. The first method used to process this data type was the principal components analysis (PCA). In this paper, an extension of the classical principal components analysis (PCA) to the functional method (FPCA) is considered, as well as some interesting properties that appear and others that remain with it. Furthermore, its application in the processing of real economic data and some previous work that analyze functional principal components are explained.
APA, Harvard, Vancouver, ISO, and other styles
43

Oja, Erkki. "Principal components, minor components, and linear neural networks." Neural Networks 5, no. 6 (November 1992): 927–35. http://dx.doi.org/10.1016/s0893-6080(05)80089-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hancock, Peter J. B. "Evolving faces from principal components." Behavior Research Methods, Instruments, & Computers 32, no. 2 (June 2000): 327–33. http://dx.doi.org/10.3758/bf03207802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Boudou, Alain, and Sylvie Viguier-Pla. "Principal components analysis and cyclostationarity." Journal of Multivariate Analysis 189 (May 2022): 104875. http://dx.doi.org/10.1016/j.jmva.2021.104875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Greer, Kieran. "Exemplars can Reciprocate Principal Components." WSEAS TRANSACTIONS ON COMPUTERS 20 (April 21, 2021): 30–38. http://dx.doi.org/10.37394/23205.2021.20.4.

Full text
Abstract:
This paper presents a clustering algorithm that is an extension of the Category Trees algorithm. Category Trees is a clustering method that creates tree structures that branch on category type and not feature. The development in this paper is to consider a secondary order of clustering that is not the category to which the data row belongs, but the tree, representing a single classifier, that it is eventually clustered with. Each tree branches to store subsets of other categories, but the rows in those subsets may also be related. This paper is therefore concerned with looking at that second level of clustering between the category subsets, to try to determine if there is any consistency over it. It is argued that Principal Components may be a related and reciprocal type of structure, and there is an even bigger question about the relation between exemplars and principal components, in general. The theory is demonstrated using the Portugal Forest Fires dataset as a case study. The Category Trees are then combined with other Self-Organising algorithms from the author and it is suggested that they all belong to the same family type, which is an Entropy-style of classifier. Some analysis of classifier types is also presented.
APA, Harvard, Vancouver, ISO, and other styles
47

Bahashwan, Ameerah O., Zakiah I. Kalantan, and Samia A. Adham. "Double gamma principal components analysis." Applied Mathematical Sciences 12, no. 11 (2018): 523–33. http://dx.doi.org/10.12988/ams.2018.8455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bensen, Jeannette T., Leslie A. Lange, Carl D. Langefeld, Bao-Li Chang, Eugene R. Bleecker, Deborah A. Meyers, and Jianfeng Xu. "Exploring pleiotropy using principal components." BMC Genetics 4, Suppl 1 (2003): S53. http://dx.doi.org/10.1186/1471-2156-4-s1-s53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Bair, Eric, Trevor Hastie, Debashis Paul, and Robert Tibshirani. "Prediction by Supervised Principal Components." Journal of the American Statistical Association 101, no. 473 (March 2006): 119–37. http://dx.doi.org/10.1198/016214505000000628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Calmon, Flavio du Pin, Ali Makhdoumi, Muriel Medard, Mayank Varia, Mark Christiansen, and Ken R. Duffy. "Principal Inertia Components and Applications." IEEE Transactions on Information Theory 63, no. 8 (August 2017): 5011–38. http://dx.doi.org/10.1109/tit.2017.2700857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!