Academic literature on the topic 'Principe du maximum d'entropie'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Principe du maximum d'entropie.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Principe du maximum d'entropie"
Queiros-Conde, Diogo. "Principe de conservation du flux d'entropie pour l'évolution des espèces." Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science 330, no. 6 (March 2000): 445–49. http://dx.doi.org/10.1016/s1251-8050(00)00153-1.
Full textMohammad-Djafari, A., and G. Demoment. "Tomographie de diffraction et synthèse de Fourier à maximum d'entropie." Revue de Physique Appliquée 22, no. 2 (1987): 153–67. http://dx.doi.org/10.1051/rphysap:01987002202015300.
Full textAbraham-Frois, Gilbert, and Alain Goergen. "À propos du principe du Maximum." Revue économique 53, no. 1 (2002): 7. http://dx.doi.org/10.3917/reco.531.0007.
Full textAbraham-Frois, Gilbert, and Alain Goergen. "A propos du principe du Maximum." Revue économique 53, no. 1 (2002): 7–27. http://dx.doi.org/10.3406/reco.2002.410388.
Full textChambolle, Antonin, and Bradley J. Lucier. "Un principe du maximum pour des opérateurs monotones." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 7 (April 1998): 823–27. http://dx.doi.org/10.1016/s0764-4442(98)80020-7.
Full textYates, F. Eugene, and Laurel A. Benton. "Rejoinder to Rosen's Comments on “Biological Senescence: Loss of Integration and Resilience”." Canadian Journal on Aging / La Revue canadienne du vieillissement 14, no. 1 (1995): 125–30. http://dx.doi.org/10.1017/s0714980800010576.
Full textNazaret, Bruno. "Principe du maximum strict pour un opérateur quasi linéaire." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no. 2 (July 2001): 97–102. http://dx.doi.org/10.1016/s0764-4442(01)02020-1.
Full textAuscher, Pascal, Thierry Coulhon, and Philippe Tchamitchian. "Absence de principe du maximum pour certaines équations paraboliques complexes." Colloquium Mathematicum 71, no. 1 (1996): 87–95. http://dx.doi.org/10.4064/cm-71-1-87-95.
Full textMazet, Pierre. "Principe du Maximum et Lemme de Schwarz a Valeurs Vectorielles." Canadian Mathematical Bulletin 40, no. 3 (September 1, 1997): 356–63. http://dx.doi.org/10.4153/cmb-1997-042-9.
Full textItô, Masayuki. "Le principe semi-complet du maximum pour les noyaux de convolution réels." Nagoya Mathematical Journal 101 (March 1986): 55–109. http://dx.doi.org/10.1017/s0027763000000349.
Full textDissertations / Theses on the topic "Principe du maximum d'entropie"
Venditti, Véronique. "Aspects du principe de maximum d'entropie en modélisation statistique." Université Joseph Fourier (Grenoble), 1998. http://www.theses.fr/1998GRE10108.
Full textMichel, Julien. "Un principe de maximum d'entropie pour les mesures de Young : applications." Lyon 1, 1993. http://www.theses.fr/1993LYO10225.
Full textZhang, Tianyu. "Problème inverse statistique multi-échelle pour l'identification des champs aléatoires de propriétés élastiques." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2068.
Full textWithin the framework of linear elasticity theory, the numerical modeling and simulation of the mechanical behavior of heterogeneous materials with complex random microstructure give rise to many scientific challenges at different scales. Despite that at macroscale such materials are usually modeled as homogeneous and deterministic elastic media, they are not only heterogeneous and random at microscale, but they often also cannot be properly described by the local morphological and mechanical properties of their constituents. Consequently, a mesoscale is introduced between macroscale and microscale, for which the mechanical properties of such a random linear elastic medium are represented by a prior non-Gaussian stochastic model parameterized by a small or moderate number of unknown hyperparameters. In order to identify these hyperparameters, an innovative methodology has been recently proposed by solving a multiscale statistical inverse problem using only partial and limited experimental data at both macroscale and mesoscale. It has been formulated as a multi-objective optimization problem which consists in minimizing a (vector-valued) multi-objective cost function defined by three numerical indicators corresponding to (scalar-valued) single-objective cost functions for quantifying and minimizing distances between multiscale experimental data measured simultaneously at both macroscale and mesoscale on a single specimen subjected to a static test, and the numerical solutions of deterministic and stochastic computational models used for simulating the multiscale experimental test configuration under uncertainties. This research work aims at contributing to the improvement of the multiscale statistical inverse identification method in terms of computational efficiency, accuracy and robustness by introducing (i) an additional mesoscopic numerical indicator allowing the distance between the spatial correlation length(s) of the measured experimental fields and the one(s) of the computed numerical fields to be quantified at mesoscale, so that each hyperparameter of the prior stochastic model has its own dedicated single-objective cost-function, thus allowing the time-consuming global optimization algorithm (genetic algorithm) to be avoided and replaced with a more efficient algorithm, such as the fixed-point iterative algorithm, for solving the underlying multi-objective optimization problem with a lower computational cost, and (ii) an ad hoc stochastic representation of the hyperparameters involved in the prior stochastic model of the random elasticity field at mesoscale by modeling them as random variables, for which the probability distributions can be constructed by using the maximum entropy principle under a set of constraints defined by the available and objective information, and whose hyperparameters can be determined using the maximum likelihood estimation method with the available data, in order to enhance both the robustness and accuracy of the statistical inverse identification method of the prior stochastic model. Meanwhile, we propose as well to solve the multi-objective optimization problem by using machine learning based on artificial neural networks. Finally, the improved methodology is first validated on a fictitious virtual material within the framework of 2D plane stress and 3D linear elasticity theory, and then illustrated on a real heterogenous biological material (beef cortical bone) in 2D plane stress linear elasticity
Krysta, Monika. "Modélisation numérique et assimilation de données de la dispersion de radionucléides en champ proche et à l'échelle continentale." Phd thesis, Université Paris XII Val de Marne, 2006. http://tel.archives-ouvertes.fr/tel-00652840.
Full textMichel, Philippe. "Principe d'entropie relative généralisée et dynamique de populations structurées." Paris 9, 2005. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2005PA090032.
Full textThis thesis deals with the dynamic of population balance equations (PBE) as the Cell Division Equation (CDE) or as the classical McKendrick age model. More precisely, we show a family of relative entropies (General Relative Entropy-GRE) in a large class of PBE. The existence of such a family and a sharp study of the asymptotic behavior is related to the existence and uniqueness of the solution to an eigenproblem. For instance, the study of this eigenproblem in a CDE model, allows us to show the link between the Malthusian growth rate of a cell population an the symmetry of its division. We prove, in a simple nonlinear age model, the global convergence to a steady state and we compare the results given by the GRE method and the linearization method
Mihelich, Martin. "Vers une compréhension du principe de maximisation de production d'entropie." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS038/document.
Full textIn this thesis we try to understand why the maximum entropy production principlegives really good results in a wide range of Physics fields and notably in climatology. Thus we study this principle on classical toy models which mimic the behaviour of climat models. In particular we worked on the Asymmetric Simple Exclusion Process(ASEP) and on the Zero Range Process (ZRP). This enabled us first to connect MEP to an other principle which is the maximum Kolmogorov-Sinaï entropy principle (MKS). Moreover the application of MEP on these systems gives results that are physically coherent. We then wanted to extend this link between MEP and MKS in more complicated systems, before showing that, for Markov Chains, maximise the KS entropy is the same as minimise the time the system takes to reach its stationnary state (mixing time). Thus, we applied MEP to the atmospheric convection
Chakik, Fadi El. "Maximum d'entropie et réseaux de neurones pour la classification." Grenoble INPG, 1998. http://www.theses.fr/1998INPG0091.
Full textGamboa, Fabrice. "Méthode du maximum d'entropie sur la moyenne et applications." Paris 11, 1989. http://www.theses.fr/1989PA112346.
Full textAn explicit solution for the problem of probability reconstruction when only the averages of random variables are known is given by the maximum entropy method. We use this method to reconstruct a function constrained to a convex set C, (no linear constraint) using a finite number of its generalized moments linear constraint). A sequence of entropy maximization problems is considered. The nth problem consists in the reconstruction of a probability distribution on Cn, the projection of C on Rⁿ whose mean satisfies a constraint approximating the initial linear constraint (generalized moments). When n approaches infinity this gives a solution for the initial problem as the limit of the sequence of means of maximum entropy distributions on Cn. We call this technique the maximum entropy method on the mean (M. E. M) because linear constraints are only on the mean of the distribution to be reconstructed. We mainly study the case where C is a band of continuous functions. We find a reconstruction familly, each element of this family only depends of referenced measures used for the sequence of entropy problems. We show that the M. E. M method is equivalent to a concav criteria maximization. We then use the M. E. M method to construct a numerically computable criteria to solve generalized moments problem on a bounded band of continuous functions. In the last chapter we discuss statistical applications of the method
Bouhelal, Mediouny. "Principe du maximum avec sauts." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37603251j.
Full textZheng, Huicheng Daoudi Mohamed Jedynak Bruno. "Modèles de maximum d'entropie pour la détection de la peau." Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2007. https://iris.univ-lille1.fr/dspace/handle/1908/297.
Full textN° d'ordre (Lille 1) : 3508. Texte en anglais. Résumé en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 101-107. Liste des publications.
Book chapters on the topic "Principe du maximum d'entropie"
Le Dret, Hervé. "Principe du maximum, régularité elliptique et applications." In Mathématiques et Applications, 99–124. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36175-3_5.
Full textDellacherie, C. "Théorie non linéaire du potentiel: Un principe unifié de domination et du maximum et quelques applications." In Lecture Notes in Mathematics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0100840.
Full textBouleau, Nicolas. "Autour de la variance comme forme de Dirichlet : filtrations et resolutions de l’identite contractions et BMO, esperances conditionnelles et principe complet du maximum." In Séminaire de Théorie du Potentiel Paris, No. 8, 39–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0072747.
Full text"Principe du maximum de Pontriaguine, principe du maximum avec contraintes sur l’état et synthèses optimales." In Mathématiques & Applications, 153–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-37640-2_7.
Full text