Academic literature on the topic 'Principes du maximum fort'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Principes du maximum fort.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Principes du maximum fort"
Hennings, Peter H., Jens‐Erik Lund Snee, Johnathon L. Osmond, Heather R. DeShon, Robin Dommisse, Elizabeth Horne, Casee Lemons, and Mark D. Zoback. "Injection‐Induced Seismicity and Fault‐Slip Potential in the Fort Worth Basin, Texas." Bulletin of the Seismological Society of America 109, no. 5 (July 23, 2019): 1615–34. http://dx.doi.org/10.1785/0120190017.
Full textBrunet, Louis. "RÉFLEXION SUR TROIS POINTS DE DÉONTOLOGIE." Revue québécoise de psychologie 39, no. 3 (March 21, 2019): 223–33. http://dx.doi.org/10.7202/1058191ar.
Full textBonafede, Salvatore, and Francesco Nicolosi. "A generalized maximum principle for boundary value problems for degenerate parabolic operators with discontinuous coefficients." Mathematica Bohemica 125, no. 1 (2000): 39–54. http://dx.doi.org/10.21136/mb.2000.126266.
Full textTakáč, Peter. "An Abstract Form of Maximum and Anti-maximum Principles of Hopf's Type." Journal of Mathematical Analysis and Applications 201, no. 2 (July 1996): 339–64. http://dx.doi.org/10.1006/jmaa.1996.0259.
Full textColas, Émile. "Les caractéristiques originales des coopératives en droit québécois." Revue générale de droit 16, no. 2 (May 2, 2019): 223–72. http://dx.doi.org/10.7202/1059294ar.
Full textBonafede, Salvatore. "A weak maximum principle and estimates of ${\rm ess}\sup\sb \Omega u$ for nonlinear degenerate elliptic equations." Czechoslovak Mathematical Journal 46, no. 2 (1996): 259–69. http://dx.doi.org/10.21136/cmj.1996.127289.
Full textROBERT-GRANIÉ, C., A. LEGARRA, and V. DUCROCQ. "Principes de base de la sélection génomique." INRAE Productions Animales 24, no. 4 (September 8, 2011): 331–40. http://dx.doi.org/10.20870/productions-animales.2011.24.4.3265.
Full textAl-Mahamee, Mohammad. "Maximum Principles for Second Order Elliptic Equations in Nondivergence Form and Applications." Journal of Mathematics and Statistics 4, no. 1 (January 1, 2008): 9–14. http://dx.doi.org/10.3844/jmssp.2008.9.14.
Full textNiderst, Alain. "Le monde de Fontenelle." Images et imaginaire de l’espace 34, no. 1-2 (February 23, 2004): 241–48. http://dx.doi.org/10.7202/007565ar.
Full textMorin, Michel. "Fraternité, souveraineté et autonomie des Autochtones en Nouvelle-France." Dossier : La parenté et les traités 43, no. 2 (February 27, 2014): 531–98. http://dx.doi.org/10.7202/1023206ar.
Full textDissertations / Theses on the topic "Principes du maximum fort"
Neji, Ali. "Existence unicité et régularité de solutions de problèmes non linéaires et complètement non linéaires elliptiques singuliers." Thesis, Cergy-Pontoise, 2019. http://www.theses.fr/2019CERG1017.
Full textWe studied in this thesis the properties of existence and regularity for various nonlinear partial differential equations of elliptic type. We proved the existence of weak solutions to certain problems involving the p-Laplacian operator using critical point theory and the mountain pass theorem . We have also showed the existence of viscosity solutions for singular equations involving fully nonlinear operators
Topp, Paredes Erwin. "Some results for nonlocal elliptic and parabolic nonlinear equations." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/129978.
Full text\quad Esta tesis est\'a dedicada al estudio de propiedades cualitativas de ecuaciones el\'ipticas degeneradas donde la difusi\'on es puramente no local, y se lleva a cabo en el contexto de la teor\'ia de soluciones viscosas. La primera parte de la tesis trata el estudio de propiedades de compacidad de una familia de \textsl{operadores no locales de orden cero}, es decir, operadores el\'ipticos no locales definidos a trav\'es de una medida finita. Consideramos un familia uni-param\'etrica de operadores de orden cero de la forma \begin \mathcal_\epsilon(u, x) = \int_ [u(x + z) - u(x)]K_\epsilon(z)dz, \end donde, para cada $\epsilon \in (0,1)$, $K_\epsilon \in L^1(\mathbb^N)$ es una funci\'on radialmente sim\'etrica y positiva. Configuramos nuestro problema de manera que $\mathcal_\epsilon$ aproxime el Laplaciano fraccionario cuando $\epsilon \to 0^+$, lo que implica que la norma $L^1$ de $K_\epsilon$ es no acotada a medida que $\epsilon \to 0^+$. Como primer resultado de esta parte obtenemos un m\'odulo de continuidad en espacio-tiempo para la familia de soluciones acotadas de la ecuaci\'on del calor no local en el plano asociada a $\mathcal_\epsilon$ que es independiente de $\epsilon \in (0,1)$. El segundo resultado de esta parte considera un problema de Dirichlet en un dominio acotado $\Omega \subset \mathbb^N$ asociado a $\mathcal_\epsilon$, y concluimos la compacidad de la familia de soluciones acotadas $\_\epsilon$ para estos problemas de Dirichlet encontrando un m\'odulo de continuidad com\'un en $\bar$ para $\_\epsilon$, que es independiente de $\epsilon$. \medskip La segunda parte de la tesis est\'a relacionada con la existencia y unicidad, regularidad y comportamiento a grandes tiempos para ecuaciones no locales con t\'erminos de gradiente dominantes. Comenzamos con la existencia y unicidad de una ecuaci\'on de Hamilton-Jacobi de la forma \begin{equation*} \begin{array}{rll} \lambda u - \mathcal{I}(u) + H(x, Du) & = 0 \quad & \mbox{en} \ \Omega \\ u & = \varphi \quad & \mbox{en} \ \Omega^c, \end{array} \end{equation*} donde el Hamiltoniano $H$ tiene una \textsl{forma de Bellman}. Estructuramos el problema de manera que el operador no local $\mathcal{I}$ es de orden menor que $1$ y por lo tanto puede aparecer una p\'erdida de la condici\'on de borde. En la segunda secci\'on de esta parte, consideramos $H$ coercivo con un crecimiento en el gradiente m\'as fuerte que el orden de la difusi\'on del operador no local. El resultado principal en este caso es la continuidad H\"older para \textsl{subsoluciones} para este problema. Estabilidad de las estimaciones de regularidad cuando $\lambda \to 0$ permiten concluir el comportamiento asint\'otico erg\'odico cuando $t \to \infty$ para el problema parab\'olico asociado en el toro. En esta tarea, principios del m\'aximo fuertes son de importancia mayor en el an\'alisis asint\'otico. Finalmente, adaptamos los resultados obtenidos en las primeras dos secciones de esta parte de la tesis para obtener el comportamiento a grandes tiempos para el problema de Cauchy-Dirichlet asociado a $H$ en las formas Bellman y coercivo. En este caso, la influencia del dato exterior en la ecuaci\'on a trav\'es del t\'ermino no local hace que el problema parab\'olico aproxime al correspondiente problema estacionario cuando $t \to \infty$.
Nguyen, Thi Tuyen. "Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi du premier et second ordre, locales et non-locales, dans des cas non-périodiques." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S089/document.
Full textThe main aim of this thesis is to study large time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN in presence of an Ornstein-Uhlenbeck drift. We also consider the same issue for a first order Hamilton-Jacobi equation. In the first case, which is the core of the thesis, we generalize the results obtained by Fujita, Ishii and Loreti (2006) in several directions. The first one is to consider more general operators. We first replace the Laplacian by a general diffusion matrix and then consider a non-local integro-differential operator of fractional Laplacian type. The second kind of extension is to deal with more general Hamiltonians which are merely sublinear
Lobo, Pereira Fernando Manuel Ferreira. "A maximum principle for impulsive control systems." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38084.
Full textFontana, Eleonora. "Maximum Principle for Elliptic and Parabolic Equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12061/.
Full textThaher, Mohammed. "Efficient Algorithms for the Maximum Convex Sum Problem." Thesis, University of Canterbury. Computer Science and Software Engineering, 2009. http://hdl.handle.net/10092/2102.
Full textDaghighi, Abtin. "The Maximum Principle for Cauchy-Riemann Functions and Hypocomplexity." Licentiate thesis, Mittuniversitetet, Institutionen för tillämpad naturvetenskap och design, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-17701.
Full textUppsatsen innehåller resultat om maximumprincipen för kontinuerligaCauchy–Riemann funktioner (CR-funktioner) på svagt 1-konkava CRmångfalder,samt hypokomplexitet för lokalt integrerbara strukturer.Maximumprincipen gäller inte generellt för släta CR funktioner ochmotexempel kan konstrueras givet strängt pseudokonvexa punkter.Vi bevisar en maximumprincip för kontinuerliga CR-funktioner påsläta inbäddade svagt 1-konkava CR-mångfalder. Eftersom svagt 1-konkavitet också är nödvändigt får vi som konsekvens att för slätageneriska inbäddade CR-mångfalder i Cn gäller att maximum-principenför kontinuerliga CR-funktioner håller om och endast om CR-mångfaldenär svagt 1-konkav. Vi generaliserar satsen till svagt p-konkava CRmångfalderi p-kompletta mångfalder. Den andra delen behandlarhypokomplexitet och hypoanalytiska strukturer. Vi generaliserar enkänd sats om automatisk släthet för lösningar till de tangentiella CRekvationerna,givet existensen av lokal holomorf utvidgning. Generaliseringenger att en lokalt integrerbar struktur är hypokomplex iorigo om och endast om den inte tillåter lösningar nära origo som inteär släta nära origo.
Forskning finansierad av Forskarskolan i Matematik och Beräkningsvetenskap (FMB), baserad i Uppsala.
Ciomaga, Adina. "Analytical properties of viscosity solutions for integro-differential equations : image visualization and restoration by curvature motions." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2011. http://tel.archives-ouvertes.fr/tel-00624378.
Full textSantos, Telma João da Fonseca. "Some versions of the maximum principle for elliptic integral functionals." Doctoral thesis, Universidade de Évora, 2011. http://hdl.handle.net/10174/17940.
Full textOtt, Curdin. "Optimal stopping problems for the maximum process." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.601683.
Full textBooks on the topic "Principes du maximum fort"
Econometric applications of maximum likelihood methods. Cambridge [Cambridgeshire]: Cambridge University Press, 1986.
Find full textMcKee, Paul W. Computed and estimated pollutant loads, West Fork Trinity River, Fort Worth, Texas, 1997. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 2002.
Find full textGentleman of the Middle Temple. The grounds and rudiments of law and equity, alphabetically digested: Containing a collection of rules or maxims, with the doctrine upon them, illustrated by various cases extracted from the books and records, to evince that these principles have been the foundation upon which the judges and sages of the law have built their solemn resolutions and determinations. The whole designed to reduce the knowledge of the laws of England to a more regular science, and to form them into a proper digest for the service of the nobility, clergy, gentlemen in the commission of the peace, and private gentlemen, as well as the professors and students of the law. With three tables. First, of the rudiments and grounds. Second, of the new cases. Third, of principal matters. Clark, NJ: Lawbook Exchange, 2008.
Find full textIsmailov, Nariman. Globalism and ecophilosophy of the future. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1212905.
Full textBalikoev, Vladimir. Economic studies: history, theory, methodology. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1035827.
Full text1943-, Gossez J. P., and Bonheure Denis, eds. Nonlinear elliptic partial differential equations: Workshop in celebration of Jean-Pierre Gossez's 65th birthday, September 2-4, 2009, Université libre de Bruxelles, Belgium. Providence, R.I: American Mathematical Society, 2011.
Find full textEpstein, Charles L., and Rafe Mazzeo. Maximum Principles and Uniqueness Theorems. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691157122.003.0003.
Full textRaymer, Anastasia M., and Leslie J. Gonzalez Rothi. Principles of Aphasia Rehabilitation. Edited by Anastasia M. Raymer and Leslie J. Gonzalez Rothi. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199772391.013.18.
Full textauthor, Mazʹi︠a︡ V. G., ed. Maximum principles and sharp constants for solutions of elliptic and parabolic systems. 2012.
Find full textTiwari, Sandip. Information mechanics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198759874.003.0001.
Full textBook chapters on the topic "Principes du maximum fort"
da Veiga, Lourenço Beirão, Konstantin Lipnikov, and Gianmarco Manzini. "Analysis of parameters and maximum principles." In The Mimetic Finite Difference Method for Elliptic Problems, 311–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02663-3_11.
Full textEcker, Klaus. "Local Estimates via the Maximum Principle." In Regularity Theory for Mean Curvature Flow, 23–46. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8210-1_3.
Full textTripathi, G. P. "Maximum Entropy Principle in Reliability Analysis." In Reliability, Safety and Hazard Assessment for Risk-Based Technologies, 865–76. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9008-1_72.
Full textLumer, G. "Principes du maximum paraboliques pour des domaines (x,t) non-cylindriques." In Séminaire de Théorie du Potentiel Paris, No. 8, 105–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0072751.
Full textShakarchi, Rami. "Applications of the Maximum Modulus Principle and Jensen’s Formula." In Problems and Solutions for Complex Analysis, 191–205. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1534-9_12.
Full textLieberman, Gary M. "Boundary Behavior of Capillary Surfaces Via the Maximum Principle." In Variational Methods for Free Surface Interfaces, 123–26. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4656-5_14.
Full textMiller, K., G. R. Joldes, J. Qian, A. P. Patel, M. S. Jung, A. C. R. Tavner, and A. Wittek. "Maximum Principal AAA Wall Stress Is Proportional to Wall Thickness." In Computational Biomechanics for Medicine, 43–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75589-2_5.
Full textLipnikov, Konstantin. "Mimetic Finite Difference Schemes with Conditional Maximum Principle for Diffusion Problems." In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 373–81. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05684-5_36.
Full textDi Nunno, Giulia, Olivier Menoukeu Pamen, Bernt Øksendal, and Frank Proske. "A General Maximum Principle for Anticipative Stochastic Control and Applications to Insider Trading." In Advanced Mathematical Methods for Finance, 181–221. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18412-3_7.
Full textYang, Lin H., R. L. Zhang, Y. J. Zeng, and C. Y. Fong. "Design of Alkali-Metal-Based Half-Heusler Alloys Having Maximum Magnetic Moments from First Principles." In Low Power Semiconductor Devices and Processes for Emerging Applications in Communications, Computing, and Sensing, 69–77. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &: CRC Press, 2018. http://dx.doi.org/10.1201/9780429503634-3.
Full textConference papers on the topic "Principes du maximum fort"
Yafei He and Hailiang Zhang. "Maximum principles for inhomogeneous equation." In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6002687.
Full textKiss, Endre. "Dirichlet Integral Principle For Elliptic Type Quasilinear PDEs of Irreversible Heat Conduction Process With Minimum Principles For First, Second And Third Type Boundary Conditions." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 22nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2003. http://dx.doi.org/10.1063/1.1570538.
Full textBilich, F., R. DaSilva, Marcelo de Souza Lauretto, Carlos Alberto de Bragança Pereira, and Julio Michael Stern. "MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2008. http://dx.doi.org/10.1063/1.3039007.
Full textHabeck, Michael. "A new principle for macromolecular structure determination." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2004. http://dx.doi.org/10.1063/1.1751364.
Full textAghayeva, Charkaz, and Gurban Abushov. "Stochastic maximum principle for switching systems." In 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI). IEEE, 2012. http://dx.doi.org/10.1109/icpci.2012.6486420.
Full textPappalardo, Michele. "MaxEnt Principle for Handling Uncertainty with Qualitative Values." In Bayesian Inference and Maximum Entropy Methods In Science and Engineering. AIP, 2006. http://dx.doi.org/10.1063/1.2423308.
Full textFradkov, Alexander, Anton Krivtsov, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Speed-gradient principle for description of transient dynamics in systems obeying maximum entropy principle." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573643.
Full textDomoshnitsky, Alexander, Alberto Cabada, Eduardo Liz, and Juan J. Nieto. "Maximum Principles and Boundary Value Problems for FDEs." In MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE: International Conference on Boundary Value Problems: Mathematical Models in Engineering, Biology and Medicine. AIP, 2009. http://dx.doi.org/10.1063/1.3142957.
Full textDewar, Roderick C. "A general maximum entropy framework for thermodynamic variational principles." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 33rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2013). AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4903723.
Full textFiedor, Pawel. "Maximum Entropy Production Principle for Stock Returns." In 2015 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2015. http://dx.doi.org/10.1109/ssci.2015.106.
Full textReports on the topic "Principes du maximum fort"
Bai, Z. D., and J. C. Fu. Likelihood Principle and Maximum Likelihood Estimator of Location Parameter for Cauchy Distribution. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada171860.
Full textBoyadzhiev, Georgi, and Nikolay Kutev. Strong Interior and Boundary Maximum Principle for Weakly Coupled Linear Cooperative Elliptic Systems. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2019. http://dx.doi.org/10.7546/crabs.2019.07.02.
Full textHenson, V., G. Sanders, and J. Trask. Extremal eigenpairs of adjacency matrices wear their sleeves near their hearts: Maximum principles and decay rates for resolving community structure. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1084717.
Full textBras, Rafael L., and Jingfeng Wang. Using the Maximum Entropy Principle as a Unifying Theory for Characterization and Sampling of Multi-scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada519510.
Full textBras, Rafael L., Jingfeng Wang, and Veronica Nieves. Using the Maximum Entropy Principle as a Unifying Theory for Characterization and Sampling of Multi-scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada585304.
Full text