Academic literature on the topic 'Principle of Maximum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Principle of Maximum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Principle of Maximum"

1

Štecha, Jan, and Jan Rathouský. "Stochastic maximum principle." IFAC Proceedings Volumes 44, no. 1 (January 2011): 4714–20. http://dx.doi.org/10.3182/20110828-6-it-1002.01501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yazhe, Chen. "Aleksandrov maximum principle and bony maximum principle for parabolic equations." Acta Mathematicae Applicatae Sinica 2, no. 4 (December 1985): 309–20. http://dx.doi.org/10.1007/bf01665846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivochkina, Nina. "On the maximum principle for principal curvatures." Banach Center Publications 33, no. 1 (1996): 115–26. http://dx.doi.org/10.4064/-33-1-115-126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dmitruk, A. V., and A. M. Kaganovich. "The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle." Systems & Control Letters 57, no. 11 (November 2008): 964–70. http://dx.doi.org/10.1016/j.sysconle.2008.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LEDZEWICZ, URSZULA, and HEINZ SCHÄTTLER. "AN EXTENDED MAXIMUM PRINCIPLE." Nonlinear Analysis: Theory, Methods & Applications 29, no. 2 (July 1997): 159–83. http://dx.doi.org/10.1016/s0362-546x(96)00038-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parr, Robert G., and Pratim K. Chattaraj. "Principle of maximum hardness." Journal of the American Chemical Society 113, no. 5 (February 1991): 1854–55. http://dx.doi.org/10.1021/ja00005a072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schwick, Wilhelm. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 125, no. 9 (1997): 2581–87. http://dx.doi.org/10.1090/s0002-9939-97-03247-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dufour, Francois, and Boris Miller. "SINGULAR STOCHASTIC MAXIMUM PRINCIPLE." IFAC Proceedings Volumes 38, no. 1 (2005): 29–34. http://dx.doi.org/10.3182/20050703-6-cz-1902.00865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Chunjie. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 134, no. 7 (January 5, 2006): 2061–66. http://dx.doi.org/10.1090/s0002-9939-06-08311-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dreyer, Wolfgang, and Matthias Kunik. "Maximum entropy principle revisited." Continuum Mechanics and Thermodynamics 10, no. 6 (December 1, 1998): 331–47. http://dx.doi.org/10.1007/s001610050097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Principle of Maximum"

1

Andersson, Daniel. "Contributions to the Stochastic Maximum Principle." Doctoral thesis, KTH, Matematik (Avd.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11301.

Full text
Abstract:
This thesis consists of four papers treating the maximum principle for stochastic control problems. In the first paper we study the optimal control of a class of stochastic differential equations (SDEs) of mean-field type, where the coefficients are allowed to depend on the law of the process. Moreover, the cost functional of the control problem may also depend on the law of the process. Necessary and sufficient conditions for optimality are derived in the form of a maximum principle, which is also applied to solve the mean-variance portfolio problem. In the second paper, we study the problem of controlling a linear SDE where the coefficients are random and not necessarily bounded. We consider relaxed control processes, i.e. the control is defined as a process taking values in the space of probability measures on the control set. The main motivation is a bond portfolio optimization problem. The relaxed control processes are then interpreted as the portfolio weights corresponding to different maturity times of the bonds. We establish existence of an optimal control and necessary conditons for optimality in the form of a maximum principle, extended to include the family of relaxed controls. The third paper generalizes the second one by adding a singular control process to the SDE. That is, the control is singular with respect to the Lebesgue measure and its influence on the state is thus not continuous in time. In terms of the portfolio problem, this allows us to consider two investment possibilities - bonds (with a continuum of maturities) and stocks - and incur transaction costs between the two accounts. In the fourth paper we consider a general singular control problem. The absolutely continuous part of the control is relaxed in the classical way, i.e. the generator of the corresponding martingale problem is integrated with respect to a probability measure, guaranteeing the existence of an optimal control. This is shown to correspond to an SDE driven by a continuous orthogonal martingale measure. A maximum principle which describes necessary conditions for optimal relaxed singular control is derived.
QC 20100618
APA, Harvard, Vancouver, ISO, and other styles
2

Cai, Tingting. "The maximum power principle an empirical investigation /." [Gainesville, Fla.] : University of Florida, 2002. http://purl.fcla.edu/fcla/etd/UFE1000112.

Full text
Abstract:
Thesis (Ph. D.)--University of Florida, 2002.
Title from title page of source document. Document formatted into pages; contains vii, 175 p.; also contains graphics. Includes vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
3

Lobo, Pereira Fernando Manuel Ferreira. "A maximum principle for impulsive control systems." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fontana, Eleonora. "Maximum Principle for Elliptic and Parabolic Equations." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12061/.

Full text
Abstract:
Nel primo capitolo si riporta il principio del massimo per operatori ellittici. Sarà considerato, in un primo momento, l'operatore di Laplace e, successivamente, gli operatori ellittici del secondo ordine, per i quali si dimostrerà anche il principio del massimo di Hopf. Nel secondo capitolo si affronta il principio del massimo per operatori parabolici e lo si utilizza per dimostrare l'unicità delle soluzioni di problemi ai valori al contorno.
APA, Harvard, Vancouver, ISO, and other styles
5

Klinedinst, James. "A Maximum Principle in the Engel Group." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5248.

Full text
Abstract:
In this thesis, we will examine the properties of subelliptic jets in the Engel group of step 3. Step-2 groups, such as the Heisenberg group, do not provide insight into the general abstract calculations. This thesis then, is the first explicit non-trivial computation of the abstract results.
APA, Harvard, Vancouver, ISO, and other styles
6

Daghighi, Abtin. "The Maximum Principle for Cauchy-Riemann Functions and Hypocomplexity." Licentiate thesis, Mittuniversitetet, Institutionen för tillämpad naturvetenskap och design, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-17701.

Full text
Abstract:
This licentiate thesis contains results on the maximum principle forCauchy–Riemann functions (CR functions) on weakly 1-concave CRmanifolds and hypocomplexity of locally integrable structures. Themaximum principle does not hold true in general for smooth CR functions,and basic counterexamples can be constructed in the presenceof strictly pseudoconvex points. We prove a maximum principle forcontinuous CR functions on smooth weakly 1-concave CR submanifolds.Because weak 1-concavity is also necessary for the maximumprinciple, a consequence is that a smooth generic CR submanifold ofCn obeys the maximum principle for continuous CR functions if andonly if it is weakly 1-concave. The proof is then generalized to embeddedweakly p-concave CR submanifolds of p-complete complexmanifolds. The second part concerns hypocomplexity and hypoanalyticstructures. We give a generalization of a known result regardingautomatic smoothness of solutions to the homogeneous problemfor the tangential CR vector fields given local holomorphic extension.This generalization ensures that a given locally integrable structureis hypocomplex at the origin if and only if it does not allow solutionsnear the origin which cannot be represented by a smooth function nearthe origin.
Uppsatsen innehåller resultat om maximumprincipen för kontinuerligaCauchy–Riemann funktioner (CR-funktioner) på svagt 1-konkava CRmångfalder,samt hypokomplexitet för lokalt integrerbara strukturer.Maximumprincipen gäller inte generellt för släta CR funktioner ochmotexempel kan konstrueras givet strängt pseudokonvexa punkter.Vi bevisar en maximumprincip för kontinuerliga CR-funktioner påsläta inbäddade svagt 1-konkava CR-mångfalder. Eftersom svagt 1-konkavitet också är nödvändigt får vi som konsekvens att för slätageneriska inbäddade CR-mångfalder i Cn gäller att maximum-principenför kontinuerliga CR-funktioner håller om och endast om CR-mångfaldenär svagt 1-konkav. Vi generaliserar satsen till svagt p-konkava CRmångfalderi p-kompletta mångfalder. Den andra delen behandlarhypokomplexitet och hypoanalytiska strukturer. Vi generaliserar enkänd sats om automatisk släthet för lösningar till de tangentiella CRekvationerna,givet existensen av lokal holomorf utvidgning. Generaliseringenger att en lokalt integrerbar struktur är hypokomplex iorigo om och endast om den inte tillåter lösningar nära origo som inteär släta nära origo.

Forskning finansierad av Forskarskolan i Matematik och Beräkningsvetenskap (FMB), baserad i Uppsala.

APA, Harvard, Vancouver, ISO, and other styles
7

Guo, Weiyu. "Implementing the principle of maximum entropy in option pricing /." free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9946259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Felixová, Lucie. "Matematické metody teorie optimálního řízení a jejich užití." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229886.

Full text
Abstract:
Tato diplomová práce se zabývá problematikou spojitého optimálního řízení, což je jedna z nejvýznamnějších aplikací teorie diferenciálních rovnic. Cílem této práce bylo jak nastudování matematické teorie optimálního řízení, tak především ukázat užití Pontrjaginova principu maxima a Bellmanova principu optimality při řešení vybraných úloh optimálního řízení. Důraz byl kladen především na problematiku časově a energeticky optimálního řízení elektrického vlaku, při zahrnutí kvadratické odporové funkce.
APA, Harvard, Vancouver, ISO, and other styles
9

Le, Ngan Trang. "The positive maximum principle on Lie groups and symmetric spaces." Thesis, University of Sheffield, 2019. http://etheses.whiterose.ac.uk/22779/.

Full text
Abstract:
In this thesis we will use harmonic analysis to get new results in probability on Lie groups and symmetric spaces. We will establish necessary and sufficient conditions for the existence of a square integrable K-bi-invariant density of a K-bi-invariant measure. We will show that there is a topological isomorphism between K-bi-invariant smooth functions and a subspace of the Sugiura space of rapidly decreasing functions. Furthermore, we will extend Courrège's classical results to Lie groups and symmetric spaces, this consists of characterizing all linear operators on the space of smooth functions with compact support, that satisfy the positive maximum principle, as Lévy- type operators. We will specify some conditions under which such operators map to the Banach space of continuous functions vanishing at infinity, this allows us to study Feller semigroups and their generator in this context. We will show that on compact Lie groups all linear operators satisfying the positive maximum principle can be represented as pseudo-differential operators and on compact symmetric spaces they have analogous representations called spherical pseudo-differential operators.
APA, Harvard, Vancouver, ISO, and other styles
10

Santos, Telma João da Fonseca. "Some versions of the maximum principle for elliptic integral functionals." Doctoral thesis, Universidade de Évora, 2011. http://hdl.handle.net/10174/17940.

Full text
Abstract:
O Princípio do Máximo Forte (PMF) é uma propriedade bem conhecida que pode ser vista como um resultado de unicidade para soluções de Equações Diferenciais Parciais. Através das condições necessárias de optimalidade, à também aplicável a algumas classes de problemas variacionais. O trabalho é dedicado a várias versões do PMF em tal contexto variacional, que sê verificam mesmo quando as respectivas equações de Euler-Lagrange não são válidas. Provarmos PMF variacionais para algum tipo de funcionais integrais no sentido tradicional, e obtemos uma extensão deste princípio, que pode ser visto como r:ma propriedade extremal de uma série de funções específicas. ABSTRACT: The Strong Maximum Principle (SMP) is a well-known property, which can be recognized as a kind of uniqueness result for solutions of Partial Differential Equations. Through the necessary conditions of optimality it is applicable to minimizers in some classes of variational problems as well. The work is devoted to various versions of SMP in such variational setting, which hold also if the respective Euler-Lagrange equations are no longer valid. We prove variational SMP for some types of integral functionals in the traditional sense as well a-s obtain an extension of this principle, which can be seen as an extremal property of a series of specific functions.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Principle of Maximum"

1

Pucci, Patrizia, and James Serrin. The Maximum Principle. Basel: Birkhäuser Basel, 2007. http://dx.doi.org/10.1007/978-3-7643-8145-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boltyanski, Vladimir G., and Alexander S. Poznyak. The Robust Maximum Principle. Boston, MA: Birkhäuser Boston, 2012. http://dx.doi.org/10.1007/978-0-8176-8152-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Donnenfeld, Shabtai. The principle of maximum product differentiation. Toronto, Ont: Dept. pf Economice, York University,[1989], 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kapur, Jagat Narain. The generalized maximum entropy principle (with applications). Waterloo, Ont: Sandford Educational Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

missing], [name. Entropy measures, maximum entropy principle, and emerging applications. Berlin: Springer Verlag, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Burstein, Joseph. Sequential optimization: Dynamic programming, maximum principle, and extensions. Boston: Metrics Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Karmeshu, ed. Entropy Measures, Maximum Entropy Principle and Emerging Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36212-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

A stochastic maximum principle for optimal control of diffusions. Harlow: Longman Scientific & Technical, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aseev, S. M. The Pontryagin maximum principle and optimal economic growth problems. Moscow: MAIK Nauka/Interperiodica, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

A stochastic maximum principle for optimal control of diffusions. Harlow, Essex, England: Longman, Scientific & Technical, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Principle of Maximum"

1

Górecki, Henryk. "Maximum Principle." In Optimization and Control of Dynamic Systems, 437–518. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62646-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jost, Jürgen. "The Maximum Principle." In Universitext, 343–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-05306-5_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cvitanić, Jakša, and Jianfeng Zhang. "Stochastic Maximum Principle." In Contract Theory in Continuous-Time Models, 183–227. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-14200-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pólya, George, and Gabor Szegö. "The Maximum Principle." In Problems and Theorems in Analysis I, 157–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-61983-0_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jost, Jürgen. "The Maximum Principle." In Universitext, 329–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03635-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Afanas’ev, V. N., V. B. Kolmanovskii, and V. R. Nosov. "The Maximum Principle." In Mathematical Theory of Control Systems Design, 183–237. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-017-2203-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Ying. "Stochastic Maximum Principle." In Encyclopedia of Systems and Control, 1347–50. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-5058-9_229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hu, Ying. "Stochastic Maximum Principle." In Encyclopedia of Systems and Control, 1–5. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5102-9_229-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hu, Ying. "Stochastic Maximum Principle." In Encyclopedia of Systems and Control, 1–4. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-5102-9_229-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Locatelli, Arturo. "The Maximum Principle." In Studies in Systems, Decision and Control, 3–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42126-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Principle of Maximum"

1

Choque-Rivero, Abdon E., and Pedro Luis Castulo Cruz. "On Korobov's admissible maximum principle." In 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). IEEE, 2016. http://dx.doi.org/10.1109/ropec.2016.7830634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bilich, F., R. DaSilva, Marcelo de Souza Lauretto, Carlos Alberto de Bragança Pereira, and Julio Michael Stern. "MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2008. http://dx.doi.org/10.1063/1.3039007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Jianhua, Luhua Liu, and Guojian Tang. "Analysis of lateral maximal range based on maximum principle." In 2014 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). IEEE, 2014. http://dx.doi.org/10.1109/cgncc.2014.7007299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Qian. "Threshold Selection Using Maximum Autocorrelation Principle." In 2011 Fifth International Conference on Management of E-Commerce and E-Government (ICMeCG). IEEE, 2011. http://dx.doi.org/10.1109/icmecg.2011.36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aghayeva, Charkaz, and Gurban Abushov. "Stochastic maximum principle for switching systems." In 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI). IEEE, 2012. http://dx.doi.org/10.1109/icpci.2012.6486420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fradkov, Alexander, Anton Krivtsov, Ali Mohammad-Djafari, Jean-François Bercher, and Pierre Bessiére. "Speed-gradient principle for description of transient dynamics in systems obeying maximum entropy principle." In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 30th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2011. http://dx.doi.org/10.1063/1.3573643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fiedor, Pawel. "Maximum Entropy Production Principle for Stock Returns." In 2015 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2015. http://dx.doi.org/10.1109/ssci.2015.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Suski, Damian, and Radoslaw Pytlak. "The weak maximum principle for hybrid systems." In 2016 24th Mediterranean Conference on Control and Automation (MED). IEEE, 2016. http://dx.doi.org/10.1109/med.2016.7535943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sussmann, Hector J. "Set separation and the lipschitz maximum principle." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Crandall, M. G. "The maximum principle, semicontinuity and nonlinear PDE's." In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.204045.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Principle of Maximum"

1

Nishii, Ryuei. Maximum Likelihood Principle and Model Selection when the True Model is Unspecified. Fort Belvoir, VA: Defense Technical Information Center, February 1987. http://dx.doi.org/10.21236/ada186027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bai, Z. D., and J. C. Fu. Likelihood Principle and Maximum Likelihood Estimator of Location Parameter for Cauchy Distribution. Fort Belvoir, VA: Defense Technical Information Center, May 1986. http://dx.doi.org/10.21236/ada171860.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boyadzhiev, Georgi, and Nikolay Kutev. Strong Interior and Boundary Maximum Principle for Weakly Coupled Linear Cooperative Elliptic Systems. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, July 2019. http://dx.doi.org/10.7546/crabs.2019.07.02.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tankin, Richard S., Long P. Chin, and P. C. Hsing. Use of Maximum Entropy Principle as a Guide in Design of Spray Nozzles. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada299119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bras, Rafael L., and Jingfeng Wang. Using the Maximum Entropy Principle as a Unifying Theory Characterization and Sampling of Multi-Scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ad1007428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bras, Rafael L., and Jingfeng Wang. Using the Maximum Entropy Principle as a Unifying Theory for Characterization and Sampling of Multi-scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, February 2010. http://dx.doi.org/10.21236/ada519510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bras, Rafael L., Jingfeng Wang, and Veronica Nieves. Using the Maximum Entropy Principle as a Unifying Theory for Characterization and Sampling of Multi-scaling Processes in Hydrometeorology. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada585304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schaefer, Philip W. Conference on Maximum Principles and Eigenvalue Problems in Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada187870.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Henson, V., G. Sanders, and J. Trask. Extremal eigenpairs of adjacency matrices wear their sleeves near their hearts: Maximum principles and decay rates for resolving community structure. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1084717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McGuire, Mark A., Amichai Arieli, Israel Bruckental, and Dale E. Bauman. Increasing Mammary Protein Synthesis through Endocrine and Nutritional Signals. United States Department of Agriculture, January 2001. http://dx.doi.org/10.32747/2001.7574338.bard.

Full text
Abstract:
Objectives To determine endocrine factors that regulate the partitioning of amino acids by the mammary gland. To evaluate dietary flow and supply of energy and amino acids and their effects on milk protein synthesis and endocrine status. To use primary cultures of cow mammary epithelial cells to examine the role of specific factors on the rates and pattern of milk protein synthesis. Milk protein is an increasingly valuable component of milk but little is known regarding the specific hormonal and nutritional factors controlling milk protein synthesis. The research conducted for this project has determined that milk protein synthesis has the potential to be enhanced much greater than previously believed. Increases of over 25% in milk protein percent and yield were detected in studies utilizing abomasal infusion of casein and a hyperinsulinemic-euglycemic clamp. Thus, it appears that insulin, either directly or indirectly, can elicit a substantial increase in milk protein synthesis if additional amino acids are supplied. For additional amino acids, casein provided the best response even though substantial decreases in branched chain amino acids occur when the insulin clamp is utilized. Branched chain amino acids alone are incapable of supporting the enhanced milk protein output. The mammary gland can vary both blood flow and extraction efficiency of amino acids to support protein synthesis. A mammary culture system was used to demonstrate specific endocrine effects on milk protein synthesis. Insulin-like growth factor-I when substituted for insulin was able to enhance casein and a-lactalbumin mRNA. This suggests that insulin is a indirect regulator of milk protein synthesis working through the IGF system to control mammary production of casein and a-lactalbumin. Principal component analysis determined that carbohydrate had the greatest effect on milk protein yield with protein supply only having minor effects. Work in cattle determined that the site of digestion of starch did not affect milk composition alone but the degradability of starch and protein in the rumen can interact to alter milk yield. Cows fed diets with a high degree of rumen undegradability failed to specifically enhance milk protein but produced greater milk yield with similar composition. The mammary gland has an amazing ability to produce protein of great value. Research conducted here has demonstrated the unprecedented potential of the metabolic machinery in the mammary gland. Insulin, probably signaling the mammary gland through the IGF system is a key regulator that must be combined with adequate nutrition in order for maximum response.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography