To see the other types of publications on this topic, follow the link: Principle of Maximum.

Journal articles on the topic 'Principle of Maximum'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Principle of Maximum.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Štecha, Jan, and Jan Rathouský. "Stochastic maximum principle." IFAC Proceedings Volumes 44, no. 1 (January 2011): 4714–20. http://dx.doi.org/10.3182/20110828-6-it-1002.01501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yazhe, Chen. "Aleksandrov maximum principle and bony maximum principle for parabolic equations." Acta Mathematicae Applicatae Sinica 2, no. 4 (December 1985): 309–20. http://dx.doi.org/10.1007/bf01665846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivochkina, Nina. "On the maximum principle for principal curvatures." Banach Center Publications 33, no. 1 (1996): 115–26. http://dx.doi.org/10.4064/-33-1-115-126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dmitruk, A. V., and A. M. Kaganovich. "The Hybrid Maximum Principle is a consequence of Pontryagin Maximum Principle." Systems & Control Letters 57, no. 11 (November 2008): 964–70. http://dx.doi.org/10.1016/j.sysconle.2008.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LEDZEWICZ, URSZULA, and HEINZ SCHÄTTLER. "AN EXTENDED MAXIMUM PRINCIPLE." Nonlinear Analysis: Theory, Methods & Applications 29, no. 2 (July 1997): 159–83. http://dx.doi.org/10.1016/s0362-546x(96)00038-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parr, Robert G., and Pratim K. Chattaraj. "Principle of maximum hardness." Journal of the American Chemical Society 113, no. 5 (February 1991): 1854–55. http://dx.doi.org/10.1021/ja00005a072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schwick, Wilhelm. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 125, no. 9 (1997): 2581–87. http://dx.doi.org/10.1090/s0002-9939-97-03247-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dufour, Francois, and Boris Miller. "SINGULAR STOCHASTIC MAXIMUM PRINCIPLE." IFAC Proceedings Volumes 38, no. 1 (2005): 29–34. http://dx.doi.org/10.3182/20050703-6-cz-1902.00865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Chunjie. "On Korenblum’s maximum principle." Proceedings of the American Mathematical Society 134, no. 7 (January 5, 2006): 2061–66. http://dx.doi.org/10.1090/s0002-9939-06-08311-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dreyer, Wolfgang, and Matthias Kunik. "Maximum entropy principle revisited." Continuum Mechanics and Thermodynamics 10, no. 6 (December 1, 1998): 331–47. http://dx.doi.org/10.1007/s001610050097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Pshenichnyi, B. N., and P. I. Ginailo. "Generalized discrete maximum principle." Ukrainian Mathematical Journal 37, no. 6 (1986): 630–33. http://dx.doi.org/10.1007/bf01057434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lugovtsov, B. A. "Principle of maximum discharge." Journal of Applied Mechanics and Technical Physics 32, no. 4 (1992): 563–64. http://dx.doi.org/10.1007/bf00851561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Eschenburg, J. H. "Maximum principle for hypersurfaces." Manuscripta Mathematica 64, no. 1 (March 1989): 55–75. http://dx.doi.org/10.1007/bf01182085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bongini, Mattia, Massimo Fornasier, Francesco Rossi, and Francesco Solombrino. "Mean-Field Pontryagin Maximum Principle." Journal of Optimization Theory and Applications 175, no. 1 (August 10, 2017): 1–38. http://dx.doi.org/10.1007/s10957-017-1149-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Da̧browski, Mariusz P., and H. Gohar. "Abolishing the maximum tension principle." Physics Letters B 748 (September 2015): 428–31. http://dx.doi.org/10.1016/j.physletb.2015.07.047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Pearson, Ralph G. "Principle of Maximum Physical Hardness." Journal of Physical Chemistry 98, no. 7 (February 1994): 1989–92. http://dx.doi.org/10.1021/j100058a044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kesavan, H. K., and J. N. Kapur. "The generalized maximum entropy principle." IEEE Transactions on Systems, Man, and Cybernetics 19, no. 5 (1989): 1042–52. http://dx.doi.org/10.1109/21.44019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pinchover, Yehuda. "Book Review: The maximum principle." Bulletin of the American Mathematical Society 46, no. 3 (March 16, 2009): 499–504. http://dx.doi.org/10.1090/s0273-0979-09-01246-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pearson, Ralph G. "The principle of maximum hardness." Accounts of Chemical Research 26, no. 5 (May 1993): 250–55. http://dx.doi.org/10.1021/ar00029a004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Wang, Shaojun, Dale Schuurmans, and Yunxin Zhao. "The Latent Maximum Entropy Principle." ACM Transactions on Knowledge Discovery from Data 6, no. 2 (July 2012): 1–42. http://dx.doi.org/10.1145/2297456.2297460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mariconda, C., and G. Treu. "Gradient Maximum Principle for Minima." Journal of Optimization Theory and Applications 112, no. 1 (January 2002): 167–86. http://dx.doi.org/10.1023/a:1013052830852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Mohammed, Ahmed, and Antonio Vitolo. "On the strong maximum principle." Complex Variables and Elliptic Equations 65, no. 8 (April 4, 2019): 1299–314. http://dx.doi.org/10.1080/17476933.2019.1594207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cellina, Arrigo. "On the strong maximum principle." Proceedings of the American Mathematical Society 130, no. 2 (May 23, 2001): 413–18. http://dx.doi.org/10.1090/s0002-9939-01-06104-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Agrachev, A. A., and R. V. Gamkrelidze. "The geometry of maximum principle." Proceedings of the Steklov Institute of Mathematics 273, no. 1 (July 2011): 1–22. http://dx.doi.org/10.1134/s0081543811040018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Guiasu, Silviu, and Abe Shenitzer. "The principle of maximum entropy." Mathematical Intelligencer 7, no. 1 (March 1985): 42–48. http://dx.doi.org/10.1007/bf03023004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Barbero-Liñán, M., and M. C. Muñoz-Lecanda. "Presymplectic high order maximum principle." Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 106, no. 1 (March 22, 2011): 97–110. http://dx.doi.org/10.1007/s13398-011-0022-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pucci, Patrizia, and James Serrin. "The strong maximum principle revisited." Journal of Differential Equations 196, no. 1 (January 2004): 1–66. http://dx.doi.org/10.1016/j.jde.2003.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Whittle, P. "A risk-sensitive maximum principle." Systems & Control Letters 15, no. 3 (September 1990): 183–92. http://dx.doi.org/10.1016/0167-6911(90)90110-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Meyer, J. C., and D. J. Needham. "Extended weak maximum principles for parabolic partial differential inequalities on unbounded domains." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2167 (July 8, 2014): 20140079. http://dx.doi.org/10.1098/rspa.2014.0079.

Full text
Abstract:
In this paper, we establish extended maximum principles for solutions to linear parabolic partial differential inequalities on unbounded domains, where the solutions satisfy a variety of growth/decay conditions on the unbounded domain. We establish a conditional maximum principle, which states that a solution u to a linear parabolic partial differential inequality satisfies a maximum principle whenever a suitable weight function can be exhibited. Our extended maximum principles are then established by exhibiting suitable weight functions and applying the conditional maximum principle. In addition, we include several specific examples, to highlight the importance of certain generic conditions, which are required in the statements of maximum principles of this type. Furthermore, we demonstrate how to obtain associated comparison theorems from our extended maximum principles.
APA, Harvard, Vancouver, ISO, and other styles
30

Antón, I., and J. López-Gómez. "Principal eigenvalue and maximum principle for cooperative periodic–parabolic systems." Nonlinear Analysis 178 (January 2019): 152–89. http://dx.doi.org/10.1016/j.na.2018.07.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Berestycki, Henri, Italo Capuzzo Dolcetta, Alessio Porretta, and Luca Rossi. "Maximum Principle and generalized principal eigenvalue for degenerate elliptic operators." Journal de Mathématiques Pures et Appliquées 103, no. 5 (May 2015): 1276–93. http://dx.doi.org/10.1016/j.matpur.2014.10.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Stehlík, Petr, and Jonáš Volek. "Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation." Discrete Dynamics in Nature and Society 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/791304.

Full text
Abstract:
We study reaction-diffusion equations with a general reaction functionfon one-dimensional lattices with continuous or discrete timeux′ (or Δtux)=k(ux-1-2ux+ux+1)+f(ux),x∈Z. We prove weak and strong maximum and minimum principles for corresponding initial-boundary value problems. Whereas the maximum principles in the semidiscrete case (continuous time) exhibit similar features to those of fully continuous reaction-diffusion model, in the discrete case the weak maximum principle holds for a smaller class of functions and the strong maximum principle is valid in a weaker sense. We describe in detail how the validity of maximum principles depends on the nonlinearity and the time step. We illustrate our results on the Nagumo equation with the bistable nonlinearity.
APA, Harvard, Vancouver, ISO, and other styles
33

Zemliak, Alexander. "Circuit Optimization Study According to the Maximum Principle." WSEAS TRANSACTIONS ON COMPUTERS 20 (December 9, 2021): 362–71. http://dx.doi.org/10.37394/23205.2021.20.38.

Full text
Abstract:
The minimization of the processor time of designing can be formulated as a problem of time minimization for transitional process of dynamic system. A special control vector that changes the internal structure of the equations of optimization procedure serves as a principal tool for searching the best strategies with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical approach for finding of the optimum structure of control vector. Practical approach for realization of the maximum principle is based on the analysis of behavior of a Hamiltonian for various strategies of optimization. The possibility of applying the maximum principle to the problem of optimization of electronic circuits is analyzed. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the best strategy found by means of maximum principle compared with the traditional approach is equal two to three orders of magnitude.
APA, Harvard, Vancouver, ISO, and other styles
34

Artstein, Zvi. "Pontryagin Maximum Principle Revisited with Feedbacks." European Journal of Control 17, no. 1 (January 2011): 46–54. http://dx.doi.org/10.3166/ejc.17.46-54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Avakov, E., and G. Magaril-Ilyayev. "Generalized Maximum Principle in Optimal Control." Доклады академии наук 483, no. 3 (November 2018): 237–40. http://dx.doi.org/10.31857/s086956520003235-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

PETROVICI, M. A., C. DAMIAN, and D. COLTUC. "Maximum Entropy Principle in Image Restoration." Advances in Electrical and Computer Engineering 18, no. 2 (2018): 77–84. http://dx.doi.org/10.4316/aece.2018.02010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fattorini, H. "The maximum principle in infinite dimension." Discrete and Continuous Dynamical Systems 6, no. 3 (April 2000): 557–74. http://dx.doi.org/10.3934/dcds.2000.6.557.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Darooneh, Amir. "Utility Function from Maximum Entropy Principle." Entropy 8, no. 1 (January 31, 2006): 18–24. http://dx.doi.org/10.3390/e8010018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Chunjie. "Some results on Korenblum's maximum principle." Journal of Mathematical Analysis and Applications 373, no. 2 (January 2011): 393–98. http://dx.doi.org/10.1016/j.jmaa.2010.07.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Jakob, Ruben. "A “quasi maximum principle” forI-surfaces." Annales de l'Institut Henri Poincare (C) Non Linear Analysis 24, no. 4 (July 2007): 549–61. http://dx.doi.org/10.1016/j.anihpc.2006.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Nazarov, A. I. "The A. D. Aleksandrov maximum principle." Journal of Mathematical Sciences 142, no. 3 (April 2007): 2154–71. http://dx.doi.org/10.1007/s10958-007-0126-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Golubkin, Valerii Nikolaevich, and Grigorii Borisovich Sizykh. "MAXIMUM PRINCIPLE FOR THE BERNOULLI FUNCTION." TsAGI Science Journal 46, no. 5 (2015): 485–90. http://dx.doi.org/10.1615/tsagiscij.v46.i5.50.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gedalin, M. "Maximum entropy principle for anisotropic plasma." Physics of Fluids B: Plasma Physics 3, no. 8 (August 1991): 2149. http://dx.doi.org/10.1063/1.859627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Boltyansky, V. G. "Robust maximum principle in minimax control." International Journal of Control 72, no. 4 (January 1999): 305–14. http://dx.doi.org/10.1080/002071799221118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

LI, XIANG, and BAODING LIU. "MAXIMUM ENTROPY PRINCIPLE FOR FUZZY VARIABLES." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 15, supp02 (April 2007): 43–52. http://dx.doi.org/10.1142/s0218488507004595.

Full text
Abstract:
The concept of fuzzy entropy is used to provide a quantitative measure of the uncertainty associated with every fuzzy variable. This paper proposes the maximum entropy principle for fuzzy variables, that is, out of all the membership functions satisfying given constraints, choose the one that has maximum entropy. The problem is what is the specific formulation of the maximum entropy membership function. The purpose of this paper is to solve this problem by Euler–Lagrange equation.
APA, Harvard, Vancouver, ISO, and other styles
46

Lim, A. E. B., and Xun Yu Zhou. "A new risk-sensitive maximum principle." IEEE Transactions on Automatic Control 50, no. 7 (July 2005): 958–66. http://dx.doi.org/10.1109/tac.2005.851441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Avakov, E. R., and G. G. Magaril-Il’yaev. "Pontryagin maximum principle, relaxation, and controllability." Doklady Mathematics 93, no. 2 (March 2016): 193–96. http://dx.doi.org/10.1134/s1064562416020216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Avakov, E. R., and G. G. Magaril-Il’yaev. "Generalized Maximum Principle in Optimal Control." Doklady Mathematics 98, no. 3 (November 2018): 575–78. http://dx.doi.org/10.1134/s1064562418070116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Grigor'yan, Alexander. "Integral maximum principle and its applications." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 124, no. 2 (1994): 353–62. http://dx.doi.org/10.1017/s0308210500028511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Ren-hong, and Zhou Heng. "Chebyshev's maximum principle in several variables." Journal of Approximation Theory 123, no. 2 (August 2003): 276–79. http://dx.doi.org/10.1016/s0021-9045(03)00115-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography