Journal articles on the topic 'Probabilistic deep models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Probabilistic deep models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Masegosa, Andrés R., Rafael Cabañas, Helge Langseth, Thomas D. Nielsen, and Antonio Salmerón. "Probabilistic Models with Deep Neural Networks." Entropy 23, no. 1 (2021): 117. http://dx.doi.org/10.3390/e23010117.
Full textVillanueva Llerena, Julissa, and Denis Deratani Maua. "Efficient Predictive Uncertainty Estimators for Deep Probabilistic Models." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 10 (2020): 13740–41. http://dx.doi.org/10.1609/aaai.v34i10.7142.
Full textKarami, Mahdi, and Dale Schuurmans. "Deep Probabilistic Canonical Correlation Analysis." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 8055–63. http://dx.doi.org/10.1609/aaai.v35i9.16982.
Full textLu, Ming, Zhihao Duan, Fengqing Zhu, and Zhan Ma. "Deep Hierarchical Video Compression." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 8 (2024): 8859–67. http://dx.doi.org/10.1609/aaai.v38i8.28733.
Full textSerpell, Cristián, Ignacio A. Araya, Carlos Valle, and Héctor Allende. "Addressing model uncertainty in probabilistic forecasting using Monte Carlo dropout." Intelligent Data Analysis 24 (December 4, 2020): 185–205. http://dx.doi.org/10.3233/ida-200015.
Full textJiang, Yiyang. "Research on Denoising Diffusion Probabilistic Models." Highlights in Science, Engineering and Technology 107 (August 15, 2024): 560–72. http://dx.doi.org/10.54097/sxd49274.
Full textMaroñas, Juan, Roberto Paredes, and Daniel Ramos. "Calibration of deep probabilistic models with decoupled bayesian neural networks." Neurocomputing 407 (September 2020): 194–205. http://dx.doi.org/10.1016/j.neucom.2020.04.103.
Full textLi, Zhenjun, Xi Liu, Dawei Kou, Yi Hu, Qingrui Zhang, and Qingxi Yuan. "Probabilistic Models for the Shear Strength of RC Deep Beams." Applied Sciences 13, no. 8 (2023): 4853. http://dx.doi.org/10.3390/app13084853.
Full textZhang, Ruqi. "Scalable and Efficient Probabilistic Inference for Bayesian Deep Learning and Generative Modeling." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 27 (2025): 28737. https://doi.org/10.1609/aaai.v39i27.35129.
Full textZheng, Chenyiqiu. "A comprehensive review of probabilistic and statistical methods in social network sentiment analysis." Advances in Engineering Innovation 16, no. 3 (2025): 38–43. https://doi.org/10.54254/2977-3903/2025.21918.
Full textZuidberg Dos Martires, Pedro. "Probabilistic Neural Circuits." Proceedings of the AAAI Conference on Artificial Intelligence 38, no. 15 (2024): 17280–89. http://dx.doi.org/10.1609/aaai.v38i15.29675.
Full textBoursin, Nicolas, Carl Remlinger, and Joseph Mikael. "Deep Generators on Commodity Markets Application to Deep Hedging." Risks 11, no. 1 (2022): 7. http://dx.doi.org/10.3390/risks11010007.
Full textTomczak, Jakub M. "Deep Generative Modeling: From Probabilistic Framework to Generative AI." Entropy 27, no. 3 (2025): 238. https://doi.org/10.3390/e27030238.
Full textSinha, Mourani, Mrinmoyee Bhattacharya, M. Seemanth, and Suchandra A. Bhowmick. "Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards." Geosciences 13, no. 12 (2023): 380. http://dx.doi.org/10.3390/geosciences13120380.
Full textAndrianomena, Sambatra. "Probabilistic learning for pulsar classification." Journal of Cosmology and Astroparticle Physics 2022, no. 10 (2022): 016. http://dx.doi.org/10.1088/1475-7516/2022/10/016.
Full textKarimanzira, Divas, Lucas Richter, Desiree Hilbring, Michaela Lödige, and Jonathan Vogl. "Probabilistic multi-step ahead streamflow forecast based on deep learning." at - Automatisierungstechnik 72, no. 6 (2024): 518–27. http://dx.doi.org/10.1515/auto-2024-0033.
Full textAdams, Jadie. "Probabilistic Shape Models of Anatomy Directly from Images." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 13 (2023): 16107–8. http://dx.doi.org/10.1609/aaai.v37i13.26914.
Full textRavuri, Suman, Karel Lenc, Matthew Willson, et al. "Skilful precipitation nowcasting using deep generative models of radar." Nature 597, no. 7878 (2021): 672–77. http://dx.doi.org/10.1038/s41586-021-03854-z.
Full textD’Andrea, Fabio, Pierre Gentine, Alan K. Betts, and Benjamin R. Lintner. "Triggering Deep Convection with a Probabilistic Plume Model." Journal of the Atmospheric Sciences 71, no. 11 (2014): 3881–901. http://dx.doi.org/10.1175/jas-d-13-0340.1.
Full textQian, Weizhu, Fabrice Lauri, and Franck Gechter. "Supervised and semi-supervised deep probabilistic models for indoor positioning problems." Neurocomputing 435 (May 2021): 228–38. http://dx.doi.org/10.1016/j.neucom.2020.12.131.
Full textMurad, Abdulmajid, Frank Alexander Kraemer, Kerstin Bach, and Gavin Taylor. "Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting." Sensors 21, no. 23 (2021): 8009. http://dx.doi.org/10.3390/s21238009.
Full textBuda-Ożóg, Lidia. "Probabilistic assessment of load-bearing capacity of deep beams designed by strut-and-tie method." MATEC Web of Conferences 262 (2019): 08001. http://dx.doi.org/10.1051/matecconf/201926208001.
Full textDuan, Yun. "A Novel Interval Energy-Forecasting Method for Sustainable Building Management Based on Deep Learning." Sustainability 14, no. 14 (2022): 8584. http://dx.doi.org/10.3390/su14148584.
Full textZheng, Zhuo, Yanfei Zhong, Ji Zhao, Ailong Ma, and Liangpei Zhang. "Unifying remote sensing change detection via deep probabilistic change models: From principles, models to applications." ISPRS Journal of Photogrammetry and Remote Sensing 215 (September 2024): 239–55. http://dx.doi.org/10.1016/j.isprsjprs.2024.07.001.
Full textLiu, Mao-Yi, Zheng Li, and Hang Zhang. "Probabilistic Shear Strength Prediction for Deep Beams Based on Bayesian-Optimized Data-Driven Approach." Buildings 13, no. 10 (2023): 2471. http://dx.doi.org/10.3390/buildings13102471.
Full textNye, Logan, Hamid Ghaednia, and Joseph H. Schwab. "Generating synthetic samples of chondrosarcoma histopathology with a denoising diffusion probabilistic model." Journal of Clinical Oncology 41, no. 16_suppl (2023): e13592-e13592. http://dx.doi.org/10.1200/jco.2023.41.16_suppl.e13592.
Full textMashlakov, Aleksei, Toni Kuronen, Lasse Lensu, Arto Kaarna, and Samuli Honkapuro. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting." Applied Energy 285 (March 2021): 116405. http://dx.doi.org/10.1016/j.apenergy.2020.116405.
Full textBentivoglio, Roberto, Elvin Isufi, Sebastian Nicolaas Jonkman, and Riccardo Taormina. "Deep learning methods for flood mapping: a review of existing applications and future research directions." Hydrology and Earth System Sciences 26, no. 16 (2022): 4345–78. http://dx.doi.org/10.5194/hess-26-4345-2022.
Full textGayathri, G. Roopa. "Benchmarking Probabilistic Deep Learning Methods for License Plate Recognition." INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 09, no. 05 (2025): 1–9. https://doi.org/10.55041/ijsrem47103.
Full textEdie, Stewart M., Peter D. Smits, and David Jablonski. "Probabilistic models of species discovery and biodiversity comparisons." Proceedings of the National Academy of Sciences 114, no. 14 (2017): 3666–71. http://dx.doi.org/10.1073/pnas.1616355114.
Full textYM He. "Online Assessment of Mental Health Micromedia for College Students Incorporating Bayesian Network Algorithm." International Journal of Maritime Engineering 1, no. 1 (2024): 83–96. http://dx.doi.org/10.5750/ijme.v1i1.1340.
Full textHou, Yuxin, Ari Heljakka, and Arno Solin. "Gaussian Process Priors for View-Aware Inference." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7762–70. http://dx.doi.org/10.1609/aaai.v35i9.16948.
Full textAvaylon, Matthew, Robbie Sadre, Zhe Bai, and Talita Perciano. "Adaptable Deep Learning and Probabilistic Graphical Model System for Semantic Segmentation." Advances in Artificial Intelligence and Machine Learning 02, no. 01 (2022): 288–302. http://dx.doi.org/10.54364/aaiml.2022.1119.
Full textNguyen, Minh Truong, Viet-Hung Dang, and Truong-Thang Nguyen. "Applying Bayesian neural network to evaluate the influence of specialized mini projects on final performance of engineering students: A case study." Ministry of Science and Technology, Vietnam 64, no. 4 (2022): 10–15. http://dx.doi.org/10.31276/vjste.64(4).10-15.
Full textDe Smet, Lennert, Gabriele Venturato, Luc De Raedt, and Giuseppe Marra. "Relational Neurosymbolic Markov Models." Proceedings of the AAAI Conference on Artificial Intelligence 39, no. 15 (2025): 16181–89. https://doi.org/10.1609/aaai.v39i15.33777.
Full textSansine, Vateanui, Pascal Ortega, Daniel Hissel, and Franco Ferrucci. "Hybrid Deep Learning Model for Mean Hourly Irradiance Probabilistic Forecasting." Atmosphere 14, no. 7 (2023): 1192. http://dx.doi.org/10.3390/atmos14071192.
Full textNor, Ahmad Kamal Mohd. "Failure Prognostic of Turbofan Engines with Uncertainty Quantification and Explainable AI (XIA)." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (2021): 3494–504. http://dx.doi.org/10.17762/turcomat.v12i3.1624.
Full textLee, Taehee, Devin Rand, Lorraine E. Lisiecki, Geoffrey Gebbie та Charles Lawrence. "Bayesian age models and stacks: combining age inferences from radiocarbon and benthic δ18O stratigraphic alignment". Climate of the Past 19, № 10 (2023): 1993–2012. http://dx.doi.org/10.5194/cp-19-1993-2023.
Full textJasmin, Praful Bharadiya. "A Review of Bayesian Machine Learning Principles, Methods, and Applications." International Journal of Innovative Science and Research Technology 8, no. 5 (2023): 2033–38. https://doi.org/10.5281/zenodo.8020825.
Full textJiang, jialong. "Towards a Theoretical Framework for the Explainability of Deep Learning Models." Global Academic Frontiers 3, no. 2 (2025): 149–59. https://doi.org/10.5281/zenodo.15582910.
Full textGhobadi, Fatemeh, and Doosun Kang. "Multi-Step Ahead Probabilistic Forecasting of Daily Streamflow Using Bayesian Deep Learning: A Multiple Case Study." Water 14, no. 22 (2022): 3672. http://dx.doi.org/10.3390/w14223672.
Full textBentsen, Lars Ødegaard, Narada Dilp Warakagoda, Roy Stenbro, and Paal Engelstad. "Probabilistic Wind Park Power Prediction using Bayesian Deep Learning and Generative Adversarial Networks." Journal of Physics: Conference Series 2362, no. 1 (2022): 012005. http://dx.doi.org/10.1088/1742-6596/2362/1/012005.
Full textLi, Longyuan, Jihai Zhang, Junchi Yan, et al. "Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic Forecasting." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 10 (2021): 8420–28. http://dx.doi.org/10.1609/aaai.v35i10.17023.
Full textAulia, Hartika, Syaharuddin Syaharuddin*, Vera Mandailina, Hamenyimana Emanuel Gervas, and Hameed Ashraf. "Probabilistic Forecasting of Energy Consumption using Bayesian Dynamic Linear Models." Aceh International Journal of Science and Technology 13, no. 1 (2024): 68–78. http://dx.doi.org/10.13170/aijst.13.1.38291.
Full textLim, Heejong, Kwanghun Chung, and Sangbok Lee. "Probabilistic Forecasting for Demand of a Bike-Sharing Service Using a Deep-Learning Approach." Sustainability 14, no. 23 (2022): 15889. http://dx.doi.org/10.3390/su142315889.
Full textBillah, Muhammad Maruf, Abdullah Al Rakib, Md Shakawat Hossain, Mst Kamrun Nahar Borsha, Nazmul Nahid, and Md Nahidul Islam. "A Hybrid Approach to Brain Tumor Detection: Combining Deep Convolutional Networks with Traditional Image Processing Methods for Enhanced MRI Classification." International Journal of Multidisciplinary Research in Science, Engineering and Technology 7, no. 10 (2024): 15001–6. http://dx.doi.org/10.15680/ijmrset.2024.0710001.
Full textZhang, Fahong, Zhiyuan Leng, Lu Chen, and Yongchuan Zhang. "Joint Probabilistic Forecasting of Wind and Solar Power Exploiting Spatiotemporal Complementarity." Sustainability 17, no. 8 (2025): 3584. https://doi.org/10.3390/su17083584.
Full textT, Ermolieva, Ermoliev Y, Zagorodniy) A, et al. "Artificial Intelligence, Machine Learning, and Intelligent Decision Support Systems: Iterative “Learning” SQG-based procedures for Distributed Models’ Linkage." Artificial Intelligence 27, AI.2022.27(2) (2022): 92–97. http://dx.doi.org/10.15407/jai2022.02.092.
Full textPang, Bo, Erik Nijkamp, and Ying Nian Wu. "Deep Learning With TensorFlow: A Review." Journal of Educational and Behavioral Statistics 45, no. 2 (2019): 227–48. http://dx.doi.org/10.3102/1076998619872761.
Full textAli, Abdullah Marish, Fuad A. Ghaleb, Mohammed Sultan Mohammed, Fawaz Jaber Alsolami, and Asif Irshad Khan. "Web-Informed-Augmented Fake News Detection Model Using Stacked Layers of Convolutional Neural Network and Deep Autoencoder." Mathematics 11, no. 9 (2023): 1992. http://dx.doi.org/10.3390/math11091992.
Full text