Academic literature on the topic 'Probabilistic regional envelope curves'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Probabilistic regional envelope curves.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Probabilistic regional envelope curves"

1

Guse, Björn, Annegret H. Thieken, Attilio Castellarin, and Bruno Merz. "Deriving probabilistic regional envelope curves with two pooling methods." Journal of Hydrology 380, no. 1-2 (2010): 14–26. http://dx.doi.org/10.1016/j.jhydrol.2009.10.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guse, B., Th Hofherr, and B. Merz. "Introducing empirical and probabilistic regional envelope curves into a mixed bounded distribution function." Hydrology and Earth System Sciences 14, no. 12 (2010): 2465–78. http://dx.doi.org/10.5194/hess-14-2465-2010.

Full text
Abstract:
Abstract. A novel approach to consider additional spatial information in flood frequency analyses, especially for the estimation of discharges with recurrence intervals larger than 100 years, is presented. For this purpose, large flood quantiles, i.e. pairs of a discharge and its corresponding recurrence interval, as well as an upper bound discharge, are combined within a mixed bounded distribution function. The large flood quantiles are derived using probabilistic regional envelope curves (PRECs) for all sites of a pooling group. These PREC flood quantiles are introduced into an at-site flood frequency analysis by assuming that they are representative for the range of recurrence intervals which is covered by PREC flood quantiles. For recurrence intervals above a certain inflection point, a Generalised Extreme Value (GEV) distribution function with a positive shape parameter is used. This GEV asymptotically approaches an upper bound derived from an empirical envelope curve. The resulting mixed distribution function is composed of two distribution functions which are connected at the inflection point. This method is applied to 83 streamflow gauges in Saxony/Germany. Our analysis illustrates that the presented mixed bounded distribution function adequately considers PREC flood quantiles as well as an upper bound discharge. The introduction of both into an at-site flood frequency analysis improves the quantile estimation. A sensitivity analysis reveals that, for the target recurrence interval of 1000 years, the flood quantile estimation is less sensitive to the selection of an empirical envelope curve than to the selection of PREC discharges and of the inflection point between the mixed bounded distribution function.
APA, Harvard, Vancouver, ISO, and other styles
3

Guse, B., T. Hofherr, and B. Merz. "Introducing empirical and probabilistic regional envelope curves into a mixed bounded distribution function." Hydrology and Earth System Sciences Discussions 7, no. 4 (2010): 4253–90. http://dx.doi.org/10.5194/hessd-7-4253-2010.

Full text
Abstract:
Abstract. A novel approach to consider additional spatial information in flood frequency analyses, especially for the estimation of discharges with recurrence intervals larger than 100 years, is presented. For this purpose, large flood quantiles, i.e. pairs of a discharge and its corresponding recurrence interval, as well as an upper bound discharge, are combined within a mixed bounded distribution function. Large flood quantiles are derived using probabilistic regional envelope curves (PRECs) for all sites of a pooling group. These PREC flood quantiles are introduced into an at-site flood frequency analysis by assuming that they are representative for the range of recurrence intervals which is covered by PREC flood quantiles. For recurrence intervals above a certain inflection point, a Generalised Extreme Value (GEV) distribution function with a positive shape parameter is used. This GEV asymptotically approaches an upper bound derived from an empirical envelope curve. The resulting mixed distribution function is composed of two distribution functions, which are connected at the inflection point. This method is applied to 83 streamflow gauges in Saxony/Germany. Our analysis illustrates that the presented mixed bounded distribution function adequately considers PREC flood quantiles as well as an upper bound discharge. The introduction of both into an at-site flood frequency analysis improves the quantile estimation. A sensitivity analysis reveals that, for the target recurrence interval of 1000 years, the flood quantile estimation is less sensitive to the selection of an empirical envelope curve than to the selection of PREC discharges and of the inflection point between the mixed bounded distribution function.
APA, Harvard, Vancouver, ISO, and other styles
4

Guse, B., A. Castellarin, A. H. Thieken, and B. Merz. "Effects of intersite dependence of nested catchment structures on probabilistic regional envelope curves." Hydrology and Earth System Sciences Discussions 6, no. 2 (2009): 2845–92. http://dx.doi.org/10.5194/hessd-6-2845-2009.

Full text
Abstract:
Abstract. Regional flood quantile estimates are affected by intersite correlation between flood sequences observed at different discharge gauges. This study analyses the intersite dependence of nested catchment structures and investigates the possibility of improving the accuracy of regional flood quantiles, by modelling cross-correlations for pairs of nested and unnested catchments separately. Probabilistic Regional Envelope Curves are utilised to derive regional flood quantiles for 89 catchments belonging to Saxony, in the Southeast of Germany. The study area has a nested structure and a definitely stronger intersite correlation for nested pairs of catchments than for unnested ones. Probabilistic Regional Envelope Curves are constructed on the basis of flood flows observed within pooling groups of sites (regions). Their recurrence intervals are based on the number of effective sample-years of data (i.e., equivalent number of uncorrelated data). The evaluation of the effective sample-years of data required the modelling of intersite dependence, which we performed globally, using a cross-correlation formula identified for the whole study area, and by using two different cross-correlation formulas, one for nested pairs and another for unnested pairs. These two modelling approaches returned significantly different effective sample-years of data estimates, and therefore also recurrence intervals, in the majority of the cases. The differences result from various assumptions of the size and homogeneity degree of the pooling group. The reduction of the recurrence interval, when using two different cross-correlation functions, is larger for higher recurrence intervals and for a higher fraction of nested catchment within the pooling group. A separation into nested and unnested pairs of catchments gives a more realistic representation of the characteristic river network structure and improves the accuracy of the estimation of regional information content. Hence, applying two different cross-correlation functions is recommended.
APA, Harvard, Vancouver, ISO, and other styles
5

Guse, B., A. Castellarin, A. H. Thieken, and B. Merz. "Effects of intersite dependence of nested catchment structures on probabilistic regional envelope curves." Hydrology and Earth System Sciences 13, no. 9 (2009): 1699–712. http://dx.doi.org/10.5194/hess-13-1699-2009.

Full text
Abstract:
Abstract. This study analyses the intersite dependence of nested catchment structures by modelling cross-correlations for pairs of nested and unnested catchments separately. Probabilistic regional envelope curves are utilised to derive regional flood quantiles for 89 catchments located in Saxony, in the Southeast of Germany. The study area has a nested structure and the intersite correlation is much stronger for nested pairs of catchments than for unnested ones. Pooling groups of sites (regions) are constructed based on several candidate sets of catchment descriptors using the Region of Influence method. Probabilistic regional envelope curves are derived on the basis of flood flows observed within the pooling groups. Their estimated recurrence intervals are based on the number of effective sample years of data (i.e. equivalent number of uncorrelated data). The evaluation of the effective sample years of data requires the modelling of intersite dependence. We perform this globally, using a cross-correlation function for the whole study area as well as by using two different cross-correlation functions, one for nested pairs and another for unnested pairs. In the majority of the cases, these two modelling approaches yield significantly different estimates for the effective sample years of data, and therefore also for the recurrence intervals. The reduction of the recurrence interval when using two different cross-correlation functions is larger for larger pooling groups and for pooling groups with a higher fraction of nested catchments. A separation into nested and unnested pairs of catchments gives a more realistic representation of the characteristic river network structure and improves the estimation of regional information content. Hence, applying two different cross-correlation functions is recommended.
APA, Harvard, Vancouver, ISO, and other styles
6

Lam, Daryl, Chris Thompson, and Jacky Croke. "Improving at-site flood frequency analysis with additional spatial information: a probabilistic regional envelope curve approach." Stochastic Environmental Research and Risk Assessment 31, no. 8 (2016): 2011–31. http://dx.doi.org/10.1007/s00477-016-1303-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Castellarin, Attilio, Ralf Merz, and Günter Blöschl. "Probabilistic envelope curves for extreme rainfall events." Journal of Hydrology 378, no. 3-4 (2009): 263–71. http://dx.doi.org/10.1016/j.jhydrol.2009.09.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

De Angelis, Alessandra, Fabrizio Ascione, Rosa Francesca De Masi, Maria Rosaria Pecce, and Giuseppe Peter Vanoli. "A Novel Contribution for Resilient Buildings. Theoretical Fragility Curves: Interaction between Energy and Structural Behavior for Reinforced Concrete Buildings." Buildings 10, no. 11 (2020): 194. http://dx.doi.org/10.3390/buildings10110194.

Full text
Abstract:
The paper introduces a new semi-probabilistic methodology for the definition of energy fragility curves suitable for a macro-classification of building stock inspired to and coupled with the widely adopted method of seismic fragility curves. The approach is applied to the reinforced concrete residential buildings of the Italian stock. Starting from a classification according to the climatic zone and the construction period, some reference buildings in terms of building envelope typologies have been defined and simulated by means of dynamic modeling tools. Then, cumulative distributions of the probability that the primary energy consumption for heating was comparable with certain threshold values are defined according to the climatic conditions expressed with the heating degree days, which constitute the intensity measure for the fragility curves. Finally, by focusing on the interaction points between structural and energetic aspects, it is shown how these curves can be useful for decision-makers with regards to definition of importance and or the level of intervention to be made to the building envelope for improving its seismic safety and the energy quality. Indeed, non-integrated interventions are more expensive and less efficient.
APA, Harvard, Vancouver, ISO, and other styles
9

Manzour, Hasan, Rachel A. Davidson, Nick Horspool, and Linda K. Nozick. "Seismic Hazard and Loss Analysis for Spatially Distributed Infrastructure in Christchurch, New Zealand." Earthquake Spectra 32, no. 2 (2016): 697–712. http://dx.doi.org/10.1193/041415eqs054m.

Full text
Abstract:
The new Extended Optimization-Based Probabilistic Scenario method produces a small set of probabilistic ground motion maps to represent the seismic hazard for analysis of spatially distributed infrastructure. We applied the method to Christchurch, New Zealand, including a sensitivity analysis of key user-specified parameters. A set of just 124 ground motion maps were able to match the hazard curves based on a million-year Monte Carlo simulation with no error at the four selected return periods, mean spatial correlation errors of 0.03, and average error in the residential loss exceedance curves of 2.1%. This enormous computational savings in the hazard has substantial implications for regional-scale, policy decisions affecting lifelines or building inventories since it can allow many more downstream analyses and/or doing them using more sophisticated, computationally intensive methods. The method is robust, offering many equally good solutions and it can be solved using free open source optimization solvers.
APA, Harvard, Vancouver, ISO, and other styles
10

Rollo, Fabio, and Sebastiano Rampello. "Probabilistic assessment of seismic-induced slope displacements: an application in Italy." Bulletin of Earthquake Engineering 19, no. 11 (2021): 4261–88. http://dx.doi.org/10.1007/s10518-021-01138-5.

Full text
Abstract:
AbstractEarthquake-induced slope instability is one of the most important hazards related to ground shaking, causing damages to the environment and, often, casualties. Therefore, it is important to assess the seismic performance of slopes, especially in the near fault regions, evaluating the permanent displacements induced by seismic loading. This paper applies a probabilistic approach to evaluate the seismic performance of slopes using an updated database of ground motions recorded during the earthquakes occurred in Italy. The main advantage of this approach is that of accounting for the aleatory variability of both ground motions and prediction of seismic-induced displacements of slopes. The results are presented in terms of hazard curves, showing the annual rate of exceedance of permanent slope displacement evaluated using ground motion data provided by a standard probabilistic hazard analysis and a series of semi-empirical relationships linking the permanent displacements of slopes to one or more ground motion parameters. The procedure has been implemented on a regional scale to produce seismic landslide hazard maps for the Irpinia district, in Southern Italy, characterised by a severe seismic hazard. Seismic landslide hazard maps represent a useful tool for practitioners and government agencies for a regional planning to identify and monitor zones that are potentially susceptible to earthquake-induced slope instability, thus requiring further detailed, site-specific studies.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Probabilistic regional envelope curves"

1

Guse, Björn Felix. "Improving flood frequency analysis by integration of empirical and probabilistic regional envelope curves." Phd thesis, Universität Potsdam, 2010. http://opus.kobv.de/ubp/volltexte/2010/4926/.

Full text
Abstract:
Flood design necessitates discharge estimates for large recurrence intervals. However, in a flood frequency analysis, the uncertainty of discharge estimates increases with higher recurrence intervals, particularly due to the small number of available flood data. Furthermore, traditional distribution functions increase unlimitedly without consideration of an upper bound discharge. Hence, additional information needs to be considered which is representative for high recurrence intervals. Envelope curves which bound the maximum observed discharges of a region are an adequate regionalisation method to provide additional spatial information for the upper tail of a distribution function. Probabilistic regional envelope curves (PRECs) are an extension of the traditional empirical envelope curve approach, in which a recurrence interval is estimated for a regional envelope curve (REC). The REC is constructed for a homogeneous pooling group of sites. The estimation of this recurrence interval is based on the effective sample years of data considering the intersite dependence among all sites of the pooling group. The core idea of this thesis was an improvement of discharge estimates for high recurrence intervals by integrating empirical and probabilistic regional envelope curves into the flood frequency analysis. Therefore, the method of probabilistic regional envelope curves was investigated in detail. Several pooling groups were derived by modifying candidate sets of catchment descriptors and settings of two different pooling methods. These were used to construct PRECs. A sensitivity analysis shows the variability of discharges and the recurrence intervals for a given site due to the different assumptions. The unit flood of record which governs the intercept of PREC was determined as the most influential aspect. By separating the catchments into nested and unnested pairs, the calculation algorithm for the effective sample years of data was refined. In this way, the estimation of the recurrence intervals was improved, and therefore the use of different parameter sets for nested and unnested pairs of catchments is recommended. In the second part of this thesis, PRECs were introduced into a distribution function. Whereas in the traditional approach only discharge values are used, PRECs provide a discharge and its corresponding recurrence interval. Hence, a novel approach was developed, which allows a combination of the PREC results with the traditional systematic flood series while taking the PREC recurrence interval into consideration. An adequate mixed bounded distribution function was presented, which in addition to the PREC results also uses an upper bound discharge derived by an empirical envelope curve. By doing so, two types of additional information which are representative for the upper tail of a distribution function were included in the flood frequency analysis. The integration of both types of additional information leads to an improved discharge estimation for recurrence intervals between 100 and 1000 years.<br>Abschätzungen von Abflüssen mit hohen Wiederkehrintervallen werden vor allem für die Bemessung von Extremhochwässern benötigt. In der Hochwasserstatistik bestehen insbesondere für hohe Wiederkehrintervalle große Unsicherheiten, da nur eine geringe Anzahl an Messwerten für Hochwasserereignisse verfügbar ist. Zudem werden zumeist Verteilungsfunktionen verwendet, die keine obere Grenze beinhalten. Daher müssen zusätzliche Informationen zu den lokalen Pegelmessungen berücksichtigt werden, die den Extrembereich einer Verteilungsfunktion abdecken. Hüllkurven ermitteln eine obere Grenze von Hochwasserabflüssen basierend auf beobachteten maximalen Abflusswerten. Daher sind sie eine geeignete Regionalisierungsmethode. Probabilistische regionale Hüllkurven sind eine Fortentwicklung des herkömmlichen Ansatzes der empirischen Hüllkurven. Hierbei wird einer Hüllkurve einer homogenen Region von Abflusspegeln ein Wiederkehrintervall zugeordnet. Die Berechnung dieses Wiederkehrintervalls basiert auf der effektiven Stichprobengröße und berücksichtigt die Korrelationsbeziehungen zwischen den Pegeln einer Region. Ziel dieser Arbeit ist eine Verbesserung der Abschätzung von Abflüssen mit großen Wiederkehrintervallen durch die Integration von empirischen und probabilistischen Hüllkurven in die Hochwasserstatistik. Hierzu wurden probabilistische Hüllkurven detailliert untersucht und für eine Vielzahl an homogenen Regionen konstruiert. Hierbei wurden verschiedene Kombinationen von Einzugsgebietsparametern und Variationen von zwei Gruppierungsmethoden verwendet. Eine Sensitivitätsanalyse zeigt die Variabilität von Abfluss und Wiederkehrintervall zwischen den Realisationen als Folge der unterschiedlichen Annahmen. Die einflussreichste Größe ist der maximale Abfluss, der die Höhe der Hüllkurve bestimmt. Eine Einteilung in genestete und ungenestete Einzugsgebiete führt zu einer genaueren Ermittlung der effektiven Stichprobe und damit zu einer verbesserten Abschätzung des Wiederkehrintervalls. Daher wird die Verwendung von zwei getrennten Parametersätzen für die Korrelationsfunktion zur Abschätzung des Wiederkehrintervalls empfohlen. In einem zweiten Schritt wurden die probabilistischen Hüllkurven in die Hochwasserstatistik integriert. Da in traditionellen Ansätzen nur Abflusswerte genutzt werden, wird eine neue Methode präsentiert, die zusätzlich zu den gemessenen Abflusswerten die Ergebnisse der probabilistischen Hüllkurve – Abfluss und zugehöriges Wiederkehrintervall - berücksichtigt. Die Wahl fiel auf eine gemischte begrenzte Verteilungsfunktion, die neben den probabilistischen Hüllkurven auch eine absolute obere Grenze, die mit einer empirischen Hüllkurve ermittelt wurde, beinhaltet. Damit werden zwei Arten von zusätzlichen Informationen verwendet, die den oberen Bereich einer Verteilungsfunktion beschreiben. Die Integration von beiden führt zu einer verbesserten Abschätzung von Abflüssen mit Wiederkehrintervallen zwischen 100 und 1000 Jahren.
APA, Harvard, Vancouver, ISO, and other styles
2

Guse, Björn Felix [Verfasser], and Bruno [Akademischer Betreuer] Merz. "Improving flood frequency analysis by integration of empirical and probabilistic regional envelope curves / Björn Felix Guse ; Betreuer: Bruno Merz." Potsdam : Universität Potsdam, 2010. http://d-nb.info/1218391049/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tagliaferri, Lorenza. "Probabilistic Envelope Curves for Extreme Rainfall Events - Curve Inviluppo Probabilistiche per Precipitazioni Estreme." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amslaurea.unibo.it/99/.

Full text
Abstract:
A regional envelope curve (REC) of flood flows summarises the current bound on our experience of extreme floods in a region. RECs are available for most regions of the world. Recent scientific papers introduced a probabilistic interpretation of these curves and formulated an empirical estimator of the recurrence interval T associated with a REC, which, in principle, enables us to use RECs for design purposes in ungauged basins. The main aim of this work is twofold. First, it extends the REC concept to extreme rainstorm events by introducing the Depth-Duration Envelope Curves (DDEC), which are defined as the regional upper bound on all the record rainfall depths at present for various rainfall duration. Second, it adapts the probabilistic interpretation proposed for RECs to DDECs and it assesses the suitability of these curves for estimating the T-year rainfall event associated with a given duration and large T values. Probabilistic DDECs are complementary to regional frequency analysis of rainstorms and their utilization in combination with a suitable rainfall-runoff model can provide useful indications on the magnitude of extreme floods for gauged and ungauged basins. The study focuses on two different national datasets, the peak over threshold (POT) series of rainfall depths with duration 30 min., 1, 3, 9 and 24 hrs. obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of rainfall depths with duration spanning from 5 min. to 24 hrs. collected at 220 raingauges located in northern-central Italy. The estimation of the recurrence interval of DDEC requires the quantification of the equivalent number of independent data which, in turn, is a function of the cross-correlation among sequences. While the quantification and modelling of intersite dependence is a straightforward task for AMS series, it may be cumbersome for POT series. This paper proposes a possible approach to address this problem.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Probabilistic regional envelope curves"

1

Benedict, Stephen T. "Development of Regional Envelope Curves for Assessing Limits and Trends in Scour." In World Environmental and Water Resources Congress 2007. American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aslam, Usman, Jorge Burgos, Craig Williams, et al. "Closing the Loop on a History Match for a Permian EOR Field Using Relative Permeability Data Uncertainty." In SPE Western Regional Meeting. SPE, 2021. http://dx.doi.org/10.2118/200807-ms.

Full text
Abstract:
Abstract Reservoir production forecasts are inherently uncertain due to the lack of quality data available to build predictive reservoir models. Multiple data types, including historical production, well tests (RFT/PLT), and time-lapse seismic data, are assimilated into reservoir models during the history matching process to improve predictability of the model. Traditionally, a ‘best estimate’ for relative permeability data is assumed during the history matching process, despite there being significant uncertainty in the relative permeability. Relative permeability governs multiphase flow in the reservoir; therefore, it has significant importance in understanding the reservoir behavior as well as for model calibration and hence for reliable production forecasts. Performing sensitivities around the ‘best estimate’ relative permeability case will cover only part of the uncertainty space, with no indication of the confidence that may be placed on these forecasts. In this paper, we present an application of a Bayesian framework for uncertainty assessment and efficient history matching of a Permian CO2 EOR field for reliable production forecast. The study field has complex geology with over 65 years of historical data from primary recovery, waterflood, and CO2 injection. Relative permeability data from the field showed significant uncertainty, so we used uncertainties in the saturation endpoints as well as in the curvature of the relative permeability in multiple zones, by employing generalized Corey functions for relative permeability parameterization. Uncertainty in the relative permeability is used through a common platform integrator. An automated workflow generates the first set of relative permeability curves sampled from the prior distribution of saturation endpoints and Corey exponents, called ‘scoping runs’. These relative permeability curves are then passed to the reservoir simulator. The assumptions of uncertainties in the relative permeability data and other dynamic parameters are quickly validated by comparing the scoping runs and historical observations. By creating a mismatch or likelihood function, the Bayesian framework generates an ensemble of history matched models calibrated to the production data which can then be used for reliable probabilistic forecasting. Several iterations during the manual history match did not yield an acceptable solution, as uncertainty in the relative permeability was ignored. An application of the Bayesian inference accelerated by a proxy model found the relative permeability data to be one of the most influential parameters during the assisted history matching exercise. Incorporating the uncertainty in relative permeability data along with other dynamic parameters not only helped speed up the model calibration process, but also led to the identification of multiple history matched models. In addition, results show that the use of the Bayesian framework significantly reduced uncertainty in the most important dynamic parameters. The proposed approach allows incorporating previously ignored uncertainty in the relative permeability data in a systematic manner. The user-defined mismatch function increases the likelihood of obtaining an acceptable match and the weights in the mismatch function allow both the measurement uncertainty and the effect of simulation model inaccuracies. The Bayesian framework considers the whole uncertainty space and not just the history match region, leading to the identification of multiple history matched models.
APA, Harvard, Vancouver, ISO, and other styles
3

Peyghaleh, Elnaz, and Tarek Alkhrdaji. "Resource Allocation Model Toward Seismic Water Pipeline Risk Mitigation Measures." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93057.

Full text
Abstract:
Abstract History of earthquake’s damages have illustrated the high vulnerability and risks associated with failure of water transfer and distribution systems. Adequate mitigation plans to reduce such seismic risks are required for sustainable development. The first step in developing a mitigation plan is prioritizing the limited available budget to address the most critical mitigation measures. This paper presents an optimization model that can be utilized for financial resource allocation towards earthquake risk mitigation measures for water pipelines. It presents a framework that can be used by decision-makers (authorities, stockholders, owners and contractors) to structure budget allocation strategy for seismic risk mitigation measures such as repair, retrofit, and/or replacement of steel and concrete pipelines. A stochastic model is presented to establish optimal mitigation measures based on minimizing repair and retrofit costs, post-earthquake replacement costs, and especially earthquake-induced large losses. To consider the earthquake induced loss on pipelines, the indirect loss due to water shortage and business interruption in the industries which needs water is also considered. The model is applied to a pilot area to demonstrate the practical application aspects of the proposed model. Pipeline exposure database, built environment occupancy type, pipeline vulnerability functions, and regional seismic hazard characteristics are used to calculate a probabilistic seismic risk for the pilot area. The Global Earthquake Model’s (GEM) OpenQuake software is used to run various seismic risk analysis. Event-based seismic hazard and risk analyses are used to develop the hazard curves and maps in terms of peak ground velocity (PGV) for the study area. The results of this study show the variation of seismic losses and mitigation costs for pipelines located within the study area based on their location and the types of repair. Performing seismic risk analysis analyses using the proposed model provides a valuable tool for determining the risk associated with a network of pipelines in a region, and the costs of repair based on acceptable risk level. It can be used for decision making and to establish type and budgets for most critical repairs for a specific region.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!