Academic literature on the topic 'Probability theory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Probability theory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Probability theory"

1

Thun, M. von. "Probability Theory and Probability Semantics." Australasian Journal of Philosophy 79, no. 4 (2001): 570–71. http://dx.doi.org/10.1080/713659287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kiessler, Peter C. "Measure Theory and Probability Theory." Journal of the American Statistical Association 102, no. 479 (2007): 1078. http://dx.doi.org/10.1198/jasa.2007.s207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Berckmoes, B., R. Lowen, and J. Van Casteren. "Approach theory meets probability theory." Topology and its Applications 158, no. 7 (2011): 836–52. http://dx.doi.org/10.1016/j.topol.2011.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lindley, D. V., and Harold Jeffreys. "Theory of Probability." Mathematical Gazette 83, no. 497 (1999): 372. http://dx.doi.org/10.2307/3619118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guionnet, Alice, Roland Speicher, and Dan-Virgil Voiculescu. "Free Probability Theory." Oberwolfach Reports 12, no. 2 (2015): 1571–629. http://dx.doi.org/10.4171/owr/2015/28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guionnet, Alice, Roland Speicher, and Dan-Virgil Voiculescu. "Free Probability Theory." Oberwolfach Reports 15, no. 4 (2019): 3147–215. http://dx.doi.org/10.4171/owr/2018/53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bhat, B. R. "Modern Probability Theory." Biometrics 42, no. 4 (1986): 1007. http://dx.doi.org/10.2307/2530732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jeffreys, H., P. A. P. Moran, and C. Chatfield. "Theory of Probability." Biometrics 41, no. 2 (1985): 597. http://dx.doi.org/10.2307/2530899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Speicher, Roland. "Free Probability Theory." Jahresbericht der Deutschen Mathematiker-Vereinigung 119, no. 1 (2016): 3–30. http://dx.doi.org/10.1365/s13291-016-0150-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MTW and Harold Jeffreys. "Theory of Probability." Journal of the American Statistical Association 94, no. 448 (1999): 1389. http://dx.doi.org/10.2307/2669965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Probability theory"

1

Halliwell, Joe. "Linguistic probability theory." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/29135.

Full text
Abstract:
A theory of linguistic probabilities as is patterned after the standard Kolmogorov axioms of probability theory. Since fuzzy numbers lack algebraic inverses, the resulting theory is weaker than, but generalizes its classical counterpart. Nevertheless, it is demonstrated that analogues for classical probabilistic concepts such as conditional probability and random variables can be constructed. In the classical theory, representation theorems mean that most of the time the distinction between mass/density distributions and probability measures can be ignored. Similar results are proven for lingu
APA, Harvard, Vancouver, ISO, and other styles
2

Youmbi, Norbert. "Probability theory on semihypergroups." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sorokin, Yegor. "Probability theory, fourier transform and central limit theorem." Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johns, Richard. "A theory of physical probability." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0027/NQ38907.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Perlin, Alex 1974. "Probability theory on Galton-Watson trees." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/8673.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001.<br>Includes bibliographical references (p. 91).<br>By a Galton-Watson tree T we mean an infinite rooted tree that starts with one node and where each node has a random number of children independently of the rest of the tree. In the first chapter of this thesis, we prove a conjecture made in [7] for Galton-Watson trees where vertices have bounded number of children not equal to 1. The conjecture states that the electric conductance of such a tree has a continuous distribution. In the second chapter, we study ra
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Jiun-Chau. "Limit theorems in noncommutative probability theory." [Bloomington, Ind.] : Indiana University, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3331258.

Full text
Abstract:
Thesis (Ph.D.)--Indiana University, Dept. of Mathematics, 2008.<br>Title from PDF t.p. (viewed on Jul 27, 2009). Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6852. Adviser: Hari Bercovici.
APA, Harvard, Vancouver, ISO, and other styles
7

Burns, Jonathan. "Recursive Methods in Number Theory, Combinatorial Graph Theory, and Probability." Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5193.

Full text
Abstract:
Recursion is a fundamental tool of mathematics used to define, construct, and analyze mathematical objects. This work employs induction, sieving, inversion, and other recursive methods to solve a variety of problems in the areas of algebraic number theory, topological and combinatorial graph theory, and analytic probability and statistics. A common theme of recursively defined functions, weighted sums, and cross-referencing sequences arises in all three contexts, and supplemented by sieving methods, generating functions, asymptotics, and heuristic algorithms. In the area of number theory, this
APA, Harvard, Vancouver, ISO, and other styles
8

Christopher, Fisher Ryan. "Are people naive probability theorists? An examination of the probability theory + variation model." Miami University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=miami1406657670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tarrago, Pierre. "Non-commutative generalization of some probabilistic results from representation theory." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1123/document.

Full text
Abstract:
Le sujet de cette thèse est la généralisation non-commutative de résultats probabilistes venant de la théorie des représentations. Les résultats obtenus se divisent en trois parties distinctes. Dans la première partie de la thèse, le concept de groupe quantique easy est étendu au cas unitaire. Tout d'abord, nous donnons une classification de l'ensemble des groupes quantiques easy unitaires dans le cas libre et classique. Nous étendons ensuite les résultats probabilistes de au cas unitaire. La deuxième partie de la thèse est consacrée à une étude du produit en couronne libre. Dans un premier te
APA, Harvard, Vancouver, ISO, and other styles
10

McGillivray, Ivor Edward. "Some applications of Dirichlet forms in probability theory." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Probability theory"

1

Meyer, Paul André. Quantum probability for probabilists. Springer-Verlag, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Louis H. Y., Kwok P. Choi, Kaiyuan Hu, and Lou Jiann-Hua, eds. Probability Theory. DE GRUYTER, 1992. http://dx.doi.org/10.1515/9783110862829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rudas, Tamás. Probability Theory. SAGE Publications, Inc., 2004. http://dx.doi.org/10.4135/9781412985482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sinai, Yakov G. Probability Theory. Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-662-02845-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chow, Yuan Shih, and Henry Teicher. Probability Theory. Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-0504-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hendricks, Vincent F., Stig Andur Pedersen, and Klaus Frovin Jørgensen, eds. Probability Theory. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9648-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Klenke, Achim. Probability Theory. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56402-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pakshirajan, R. P. Probability Theory. Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-54-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chow, Yuan Shih, and Henry Teicher. Probability Theory. Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1950-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borkar, Vivek S. Probability Theory. Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-0791-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Probability theory"

1

O’Hagan, Anthony. "Distribution theory." In Probability. Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1211-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cohn, Donald L. "Probability." In Measure Theory. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6956-8_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lynch, Scott M. "Probability Theory." In Using Statistics in Social Research. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8573-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Koch, Karl-Rudolf. "Probability Theory." In Parameter Estimation and Hypothesis Testing in Linear Models. Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-02544-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Čepin, Marko. "Probability Theory." In Assessment of Power System Reliability. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-688-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lista, Luca. "Probability Theory." In Statistical Methods for Data Analysis in Particle Physics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62840-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Durrett, Rick. "Probability Theory." In Mathematics Unlimited — 2001 and Beyond. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Stroock, Daniel W. "Probability Theory." In Mathematics Unlimited — 2001 and Beyond. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56478-9_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sucar, Luis Enrique. "Probability Theory." In Probabilistic Graphical Models. Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6699-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yao, Kai. "Probability Theory." In Uncertain Renewal Processes. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9345-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Probability theory"

1

Temlyakov, V. N. "Optimal estimators in learning theory." In Approximation and Probability. Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Helland, Inge S. "Quantum theory as a statistical theory under symmetry." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874567.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gudder, Stan. "Fuzzy Quantum Probability Theory." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pleśniak, W. "Multivariate polynomial inequalities viapluripotential theory and subanalytic geometry methods." In Approximation and Probability. Institute of Mathematics Polish Academy of Sciences, 2006. http://dx.doi.org/10.4064/bc72-0-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chiribella, G., G. M. D'Ariano, and Paolo Perinotti. "Informational axioms for quantum theory." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pérez-Suárez, Marcos. "Bayesian Intersubjectivity and Quantum Theory." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Woesler, Richard. "Problems of Quantum Theory may be Solved by an Emulation Theory of Quantum Physics." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vacchini, B. "A Probabilistic View on Decoherence Theory." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 4. AIP, 2007. http://dx.doi.org/10.1063/1.2713491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sverdlov, Roman. "Quantum field theory without Fock space." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 6. AIP, 2012. http://dx.doi.org/10.1063/1.3688986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gregory, Lee. "Quantum Filtering Theory and the Filtering Interpretation." In FOUNDATIONS OF PROBABILITY AND PHYSICS - 3. AIP, 2005. http://dx.doi.org/10.1063/1.1874562.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Probability theory"

1

Hurley, Michael B. Track Association with Bayesian Probability Theory. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada417987.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goodman, I. R., and V. M. Bier. A Re-Examination of the Relationship between Fuzzy Set Theory and Probability Theory. Defense Technical Information Center, 1991. http://dx.doi.org/10.21236/ada240243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Steele, J. M. Probability and Statistics Applied to the Theory of Algorithms. Defense Technical Information Center, 1995. http://dx.doi.org/10.21236/ada295805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sullivan, Keith M., and Ian Grivell. QSIM: A Queueing Theory Model with Various Probability Distribution Functions. Defense Technical Information Center, 2003. http://dx.doi.org/10.21236/ada414471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oberkampf, William Louis, W. Troy Tucker, Jianzhong Zhang, et al. Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/919189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pasupuleti, Murali Krishna. Quantum Cognition: Modeling Decision-Making with Quantum Theory. National Education Services, 2025. https://doi.org/10.62311/nesx/rrvi225.

Full text
Abstract:
Abstract Quantum cognition applies quantum probability theory and mathematical principles from quantum mechanics to model human decision-making, reasoning, and cognitive processes beyond the constraints of classical probability models. Traditional decision theories, such as expected utility theory and Bayesian inference, struggle to explain context-dependent reasoning, preference reversals, order effects, and cognitive biases observed in human behavior. By incorporating superposition, interference, and entanglement, quantum cognitive models offer a probabilistic framework that better accounts
APA, Harvard, Vancouver, ISO, and other styles
7

Wise, Gary L. Some Applications of Probability and Statistics in Communication Theory and Signal Processing. Defense Technical Information Center, 1990. http://dx.doi.org/10.21236/ada226869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ilyin, M. E. The distance learning course «Theory of probability, mathematical statistics and random functions». OFERNIO, 2018. http://dx.doi.org/10.12731/ofernio.2018.23529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Budhiraja, Amarjit. Stochastic Analysis and Applied Probability(3.3.1): Topics in the Theory and Applications of Stochastic Analysis. Defense Technical Information Center, 2015. http://dx.doi.org/10.21236/ada625850.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kott, Phillip S. The Degrees of Freedom of a Variance Estimator in a Probability Sample. RTI Press, 2020. http://dx.doi.org/10.3768/rtipress.2020.mr.0043.2008.

Full text
Abstract:
Inferences from probability-sampling theory (more commonly called “design-based sampling theory”) often rely on the asymptotic normality of nearly unbiased estimators. When constructing a two-sided confidence interval for a mean, the ad hoc practice of determining the degrees of freedom of a probability-sampling variance estimator by subtracting the number of its variance strata from the number of variance primary sampling units (PSUs) can be justified by making usually untenable assumptions about the PSUs. We will investigate the effectiveness of this conventional and an alternative method fo
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!