Academic literature on the topic 'Problème de Calderon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Problème de Calderon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Problème de Calderon"
Abraham, Kweku, and Richard Nickl. "On statistical Calderón problems." Mathematical Statistics and Learning 2, no. 2 (July 16, 2020): 165–216. http://dx.doi.org/10.4171/msl/14.
Full textAndrieux, S., and H. D. Bui. "On some nonlinear inverse problems in elasticity." Theoretical and Applied Mechanics 38, no. 2 (2011): 125–54. http://dx.doi.org/10.2298/tam1102125a.
Full textByun, Sun-Sig, and Jehan Oh. "Global gradient estimates for asymptotically regular problems of p(x)-Laplacian type." Communications in Contemporary Mathematics 20, no. 08 (December 2018): 1750079. http://dx.doi.org/10.1142/s0219199717500791.
Full textMingione, Giuseppe. "Calderón–Zygmund estimates for measure data problems." Comptes Rendus Mathematique 344, no. 7 (April 2007): 437–42. http://dx.doi.org/10.1016/j.crma.2007.02.005.
Full textRüland, Angkana, and Mikko Salo. "Quantitative Runge Approximation and Inverse Problems." International Mathematics Research Notices 2019, no. 20 (January 19, 2018): 6216–34. http://dx.doi.org/10.1093/imrn/rnx301.
Full textErvedoza, S., and F. de Gournay. "Uniform stability estimates for the discrete Calderón problems." Inverse Problems 27, no. 12 (November 24, 2011): 125012. http://dx.doi.org/10.1088/0266-5611/27/12/125012.
Full textBaasandorj, Sumiya, Sun-Sig Byun, and Jehan Oh. "Calderón-Zygmund estimates for generalized double phase problems." Journal of Functional Analysis 279, no. 7 (October 2020): 108670. http://dx.doi.org/10.1016/j.jfa.2020.108670.
Full textXiao, Gaobiao. "Applying Loop-Flower Basis Functions to Analyze Electromagnetic Scattering Problems of PEC Scatterers." International Journal of Antennas and Propagation 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/905935.
Full textJourné, Jean-Lin. "Two problems of Calderón-Zygmund theory on product-spaces." Annales de l’institut Fourier 38, no. 1 (1988): 111–32. http://dx.doi.org/10.5802/aif.1125.
Full textTzou, Leo. "The reflection principle and Calderón problems with partial data." Mathematische Annalen 369, no. 1-2 (February 27, 2017): 913–56. http://dx.doi.org/10.1007/s00208-017-1525-3.
Full textDissertations / Theses on the topic "Problème de Calderon"
Santacesaria, Matteo. "Unicité, reconstruction, stabilité pour des problèmes inverses bidimensionnels." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00759992.
Full textCOSTA, Filipe Andrade da. "O Problema de Calderón." Universidade Federal de Pernambuco, 2012. https://repositorio.ufpe.br/handle/123456789/11684.
Full textMade available in DSpace on 2015-03-10T16:57:49Z (GMT). No. of bitstreams: 2 filipe_andrade_da costa.pdf: 572238 bytes, checksum: e3bc965f8575d7925d51220ac40be73b (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2012-07-30
CNPq
Na presente dissertação, estaremos interessados em abordar algunas questões relacionadas a unicidade do problema de Calderón.
Cekić, Mihajlo. "The Calderón problem for connections." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267829.
Full textLytle, George H. "APPROXIMATIONS IN RECONSTRUCTING DISCONTINUOUS CONDUCTIVITIES IN THE CALDERÓN PROBLEM." UKnowledge, 2019. https://uknowledge.uky.edu/math_etds/61.
Full textDarbas, Marion. "Préconditionneurs analytiques de type Calderon pour les formulations intégrales des problèmes de diffraction d'ondes." Toulouse, INSA, 2004. http://www.theses.fr/2004ISAT0028.
Full textThis thesis deals with fast numerical processes to solve scattering problems of acoustic or electromagnetic waves. The essential used technique consists in coupling the integral equations method with the On-Surface Radiation Conditions (OSRC) method deriving microlocal approximations of the Dirichlet-Neumann operator in the high frequency regime. More particularly, we use OSRC to accelerate the convergence of the iterative methods considered to solve integral equations. We develop two studies : open surfaces and closed surfaces. In the case of open surfaces, OSRC represent some efficient analytic Calderon-type preconditioners. In the case of closed surfaces, OSRC designate some regularizing operators and lead to the construction of second-kind Fredholm integral equations. These equations are well-adapted to an iterative solution. Their construction is based on obtaining an excellent eigenvalues clustering of the associated operators. Two-dimensional and three-dimensional numerical tests confirm the theoritical analysis. They show that good convergence rates of the iterative solvers are attained. The convergence is independent of the mesh refinement and of the wave number
Niino, Kazuki. "On fast methods for periodic wave scattering problems with the Calderón preconditioning and the Müller formulation." 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174843.
Full textSchulze, Bert-Wolfgang, Boris Sternin, and Victor Shatalov. "On general boundary value problems for elliptic equations." Universität Potsdam, 1997. http://opus.kobv.de/ubp/volltexte/2008/2513/.
Full textLaborda, Ramos Camilo Eduardo. "Identificación de un cuerpo inmerso en un fluido usando el método level set." Tesis, Universidad de Chile, 2014. http://www.repositorio.uchile.cl/handle/2250/116854.
Full textEl objetivo central de esta memoria es estudiar un problema inverso geométrico en mecánica de fluidos y realizar un procedimiento de reconstrucción numérica que permita recuperar distintos cuerpos rígidos inmersos en un fluido viscoso, siendo de especial interés el caso de cuerpos no convexos. Para llevar a cabo esta reconstrucción numérica se utiliza el llamado método level set. El método level set fue introducido por S. Osher y J. A. Sethian como un método simple y versátil para calcular y analizar el movimiento de una interface Γ bajo un campo de velocidades V, en dos y tres dimensiones, donde Γ es la frontera de una región Ω. Por otra parte en los problemas inversos geométricos, es decir, problemas donde la incógnita es una forma geométrica, el enfoque estándar para la solución de estos consiste en parametrizar la forma geométrica y aplicar métodos de regularización directamente a la parametrización. Este enfoque sufre de la limitación que para obtener aproximaciones convergentes se tiene que tener un conocimiento a priori de la estructura y topología de la forma geométrica buscada. Por esta razón, recientemente se han considerado enfoques alternativos para la solución de problemas de reconstrucción de formas geométricas, entre ellos el método level set, el cual fue utilizado inicialmente en el procesamiento de imágenes digitales. La presente memoria esta estructurada de la siguiente manera. En el Capítulo 1 se realiza una introducción al trabajo realizado. En el Capítulo 2 se hace una introducción a los problemas inversos, se define el problema inverso geométrico de detección de obstáculos dentro de un fluido y se muestran los resultados de identificabilidad y estabilidad para este problema. En el Capítulo 3 se estudia el método de los elementos finitos y la resolución del problema de Stokes usando dicho método, en donde se muestran el algoritmo de Uzawa y el algoritmo numérico para Stokes usado en esta memoria. En el Capítulo 4 se presenta el método de diferenciación con respecto al dominio, el cual resulta fundamental para posteriormente realizar el cálculo de la primera derivada local del funcional de costo asociado al problema inverso geométrico en estudio. En el Capítulo 5 se presenta el método level set, estudiando los movimientos por curvatura media y en dirección normal, la ecuación de reinicialización y la extensión del campo de velocidades. Además, se muestra su aplicación a la optimización de formas y se utiliza la diferenciación con respecto al dominio para deducir la expansión de primer orden del funcional de costo asociado al problema. En el Capítulo 6 se muestran los principales resultados numéricos obtenidos al usar el método level set, recuperando diferentes obstáculos (incluyendo algunos de geometría no convexa), para lo cual se ha utilizado el programa FreeFem. Finalmente, se presentan las principales conclusiones obtenidas de este trabajo de título.
Hong, Guixiang. "Quelques problèmes en analyse harmonique non commutative." Phd thesis, Université de Franche-Comté, 2012. http://tel.archives-ouvertes.fr/tel-00979472.
Full textAxelsson, Andreas, and kax74@yahoo se. "Transmission problems for Dirac's and Maxwell's equations with Lipschitz interfaces." The Australian National University. School of Mathematical Sciences, 2002. http://thesis.anu.edu.au./public/adt-ANU20050106.093019.
Full textBooks on the topic "Problème de Calderon"
Multilayer Potentials And Boundary Problems For Higher Order Elliptic Systems In Lipschitz Domains. Springer-Verlag Berlin and Heidelberg GmbH &, 2013.
Find full textStreet, Brian. Multi-parameter Singular Integrals. (AM-189). Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691162515.001.0001.
Full textBook chapters on the topic "Problème de Calderon"
Booß-Bavnbek, Bernhelm, and Krzysztof P. Wojciechowski. "Calderón Projector for Dirac Operators." In Elliptic Boundary Problems for Dirac Operators, 75–94. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0337-7_12.
Full textKislyakov, Sergey, and Natan Kruglyak. "Classical Calderón–Zygmund decomposition and real interpolation." In Extremal Problems in Interpolation Theory, Whitney-Besicovitch Coverings, and Singular Integrals, 23–45. Basel: Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-0348-0469-1_1.
Full textRyaben’kii, Viktor S. "Reduction of Boundary-Value Problems for the Laplace Equation to Boundary Equations of Calderón—Seeley Type." In Method of Difference Potentials and Its Applications, 81–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56344-7_4.
Full textMonk, Peter. "THE SCATTERING PROBLEM USING CALDERON MAPS." In Finite Element Methods for Maxwell's Equations, 261–79. Oxford University Press, 2003. http://dx.doi.org/10.1093/acprof:oso/9780198508885.003.0010.
Full textGadjiev, Tair, and Konul Suleymanova. "The Uniformly Parabolic Equations of Higher Order with Discontinuous Data in Generalized Morrey Spaces and Elliptic Equations in Unbounded Domains." In Recent Developments in the Solution of Nonlinear Differential Equations. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96781.
Full text"Fate and human responsibility (1): the problem." In The Mind and Art of Calderón, 107–13. Cambridge University Press, 1989. http://dx.doi.org/10.1017/cbo9780511897917.012.
Full text"UN PROBLEMA DE RECEPCIÓN. CALDERÓN Y LO CÓMICO." In El escenario cósmico, 155–56. Vervuert Verlagsgesellschaft, 2006. http://dx.doi.org/10.31819/9783865279545-008.
Full textMarcello, Elena. "Pietro Monti y el teatro del Siglo de Oro Estrategias de traducción del humor." In Biblioteca di Rassegna iberistica. Venice: Fondazione Università Ca’ Foscari, 2020. http://dx.doi.org/10.30687/978-88-6969-490-5/018.
Full text"Complex interpolation, Hardy space, and Calder on-Zygmund operators." In Recent developments in the Navier-Stokes problem. CRC Press, 2002. http://dx.doi.org/10.1201/9781420035674.ch6.
Full textSuryanarayanan, Sainath. "On an Economic Treadmill of Agriculture: Efforts to Resolve Pollinator Decline." In Controversies in Science and Technology. Oxford University Press, 2014. http://dx.doi.org/10.1093/oso/9780199383771.003.0024.
Full textConference papers on the topic "Problème de Calderon"
Xu, Hongdan, Yaming Bo, and Ming Zhang. "Combining Calderon preconditioner and H2-matrix method for solving electromagnetic scattering problems." In 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE, 2016. http://dx.doi.org/10.1109/iwem.2016.7504952.
Full textChen, H., J. Zhu, R. S. Chen, and Z. H. Fan. "Calderon multiplicative preconditioner for acceleration of fast direction multilevel algorithm for scattering problem." In 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT). IEEE, 2010. http://dx.doi.org/10.1109/icmmt.2010.5524915.
Full textCalderon-Sanchez, Javier, Daniel Duque, and Jesus Gómez-Goñi. "Modeling the Effect of Phase Change on LNG Impact With Open-Source CFD." In ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77990.
Full textOrtiz Guzman, J. E., A. Pillain, L. Rahmouni, and F. P. Andriulli. "On the preconditioning of the symmetric formulation for the EEG forward problem by leveraging on calderon formulas." In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, 2016. http://dx.doi.org/10.1109/isbi.2016.7493376.
Full textChen, Yongpin P., Lijun Jiang, Sheng Sun, and Weng Cho Chew. "Calderón preconditioned PMCHWT equation for layered medium problems." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6905419.
Full textMarshall, Leandra, and Philip Stokes. "The Tucson Mountains Caldera: Using Gravity and Magnetic Anomalies to Test Trapdoor Subsidence and Locate Subsurface Plutonic Bodies." In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2012. Environment and Engineering Geophysical Society, 2012. http://dx.doi.org/10.4133/1.4721894.
Full text