Academic literature on the topic 'Problème spectral de Nevanlinna-Pick'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Problème spectral de Nevanlinna-Pick.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Problème spectral de Nevanlinna-Pick"
Nikolov, Nikolai, Peter Pflug, and Pascal J. Thomas. "Spectral Nevanlinna-Pick and Caratheodory-Fejer problems for $n\geq3$." Indiana University Mathematics Journal 60, no. 3 (2011): 883–94. http://dx.doi.org/10.1512/iumj.2011.60.4310.
Full textCostara, Constantin. "On the spectral Nevanlinna–Pick problem." Studia Mathematica 170, no. 1 (2005): 23–55. http://dx.doi.org/10.4064/sm170-1-2.
Full textGeorgiou, Tryphon T., and Pramod P. Khargonekar. "Spectral Factorization and Nevanlinna–Pick Interpolation." SIAM Journal on Control and Optimization 25, no. 3 (May 1987): 754–66. http://dx.doi.org/10.1137/0325043.
Full textBercovici, Hari, Ciprian Foias, and Allen Tannenbaum. "On spectral tangential Nevanlinna-Pick interpolation." Journal of Mathematical Analysis and Applications 155, no. 1 (February 1991): 156–76. http://dx.doi.org/10.1016/0022-247x(91)90033-v.
Full textAgler, J., and N. J. Young. "The two-point spectral Nevanlinna-Pick problem." Integral Equations and Operator Theory 37, no. 4 (December 2000): 375–85. http://dx.doi.org/10.1007/bf01192826.
Full textAgler, Jim, and N. J. Young. "The two-by-two spectral Nevanlinna-Pick problem." Transactions of the American Mathematical Society 356, no. 2 (September 22, 2003): 573–85. http://dx.doi.org/10.1090/s0002-9947-03-03083-6.
Full textCOSTARA, CONSTANTIN. "THE $2\times 2$ SPECTRAL NEVANLINNA–PICK PROBLEM." Journal of the London Mathematical Society 71, no. 03 (May 24, 2005): 684–702. http://dx.doi.org/10.1112/s002461070500640x.
Full textBaribeau, Line, and Adama S. Kamara. "A Refined Schwarz Lemma for the Spectral Nevanlinna-Pick Problem." Complex Analysis and Operator Theory 8, no. 2 (May 16, 2013): 529–36. http://dx.doi.org/10.1007/s11785-013-0306-6.
Full textLiu, Bin, Chang-Hong Wang, Wei Li, and Zhuo Li. "Robust Controller Design Using the Nevanlinna-Pick Interpolation in Gyro Stabilized Pod." Discrete Dynamics in Nature and Society 2010 (2010): 1–16. http://dx.doi.org/10.1155/2010/569850.
Full textPruckner, Raphael, and Harald Woracek. "Estimates for the order of Nevanlinna matrices and a Berezanskii-type theorem." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 149, no. 6 (January 26, 2019): 1637–61. http://dx.doi.org/10.1017/prm.2018.56.
Full textDissertations / Theses on the topic "Problème spectral de Nevanlinna-Pick"
Rivard, Patrice. "Un lemme de Schwartz-Pick à points multiples." Master's thesis, Université Laval, 2007. http://hdl.handle.net/20.500.11794/19410.
Full textBeaulieu, Marie-Ailan. "Problèmes de Schwarz-Pick sur le bidisque symétrisé." Master's thesis, Université Laval, 2015. http://hdl.handle.net/20.500.11794/26203.
Full textLes systèmes de Schwarz-Pick sont de puissants outils qui permettent d'enrichir l'étude de la géométrie des domaines de l'espace à plusieurs variables complexes. Plus particulièrement, les pseudodistances de Carathéodory et de Kobayashi forment respectivement le plus grand et le plus petit système. L'objet de cet ouvrage consiste à regrouper et synthétiser les recherches autour du calcul de ces pseudodistances sur le bidisque symétrisé. Il s'agit d'un domaine de l'espace à deux variables complexes qui possède une géométrie riche et qui joue un rôle clé dans la résolution du problème de Nevanlinna-Pick spectral. Sur le bidisque symétrisé, il est possible de calculer explicitement la pseudodistance de Carathéodory par le biais de la théorie des opérateurs. Le calcul de la pseudodistance de Kobayashi, se fera elle à travers un problème d'interpolation du disque unité avec des valeurs cibles dans le bidisque symétrisé, résolu à l'aide du théorème de Nevanlinna-Pick classique.
Karlsson, Johan. "Inverse Problems in Analytic Interpolation for Robust Control and Spectral Estimation." Doctoral thesis, Stockholm : Matematik, Mathematics, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9248.
Full textBlomqvist, Anders. "A convex optimization approach to complexity constrained analytic interpolation with applications to ARMA estimation and robust control." Doctoral thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-117.
Full textTseng, WanFang, and 曾婉芳. "Minimal Realization for Two-Point Spectral Nevanlinna-Pick Problem." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/67148190034034596953.
Full text東海大學
數學系
91
Abstract Consider symmetrized bidisc int and spectral Nevanlinna-Pick Interpolation non-flat problem on it as: is an analytic such that and then is an analytic function defined on into and exist A.B.C.D matrix such that is called a realization of . In this paper,we want to find the lower order of the realization. In fact , is a matrix. Change to become In other words keywords:symmetrizrd bidisc,spectral Nevanlinna-Pick problem realization, -extremal
Lin, Chun-Ming, and 林俊銘. "Realization of Spectral Nevanlinna-Pick Interpolation Problem on Symmetrized Bidisc." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/40559244736778567050.
Full text東海大學
數學系
91
In this paper we discuss the two-point spectral Nevanlinna-Pick interpolation problem for 2 2 general case by using the previous results of T.D.Lin[13], C.T.Lin[8] and Yeh[9]: Given distinct , , , ,find an analytic function such that and it's realization.
Rivard, Patrice. "Un lemme de Schwartz-Pick à points multiples /." 2007. http://www.theses.ulaval.ca/2007/24845/24845.pdf.
Full textChen, Po-Jen, and 陳柏仁. "The Gamma(Γ)2-inner Solution of Three-point Spectral Nevanlinna-Pick Interpolation Problem:2x2case." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/16327064924593773842.
Full text東海大學
數學系
94
The spectral Nevanlinna-Pick interpolation theory is the main tool to setup the define theory for Mu-synthesis theory for robust controller design and is still under development. For 2x2 case only the solutions with 2 interpolating points is solved. In present thesis, we study how to construct the solutions corresponding to the 3 in-terpolating points with 3 cases on the symmetrized bidisc. Furthermore, the idea to solve interpolating points is also discussed.
Yang, Yu-Lung, and 楊玉龍. "Spectral versus Classical Nevanlinna-Pick Interpolation Functions." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/12930661066116662652.
Full text東海大學
數學系
96
Because The classical Nevanlinna-Pick Theorem plays a very important role in the robust control theory, we like to introduce three worth-reading proofs of the theorem. Furthermore we will develop into the area of spectral Nevanlinna-Pick problem: discuss some interpolation problems and properties on the symmetrized-bidisc , and calculate the volume and surface area of symmetrized-bidisc and symmetrized-tridisc, and gives the general integral form to represent the volume of symmetrized-n-disc.
Lin, Tien-De, and 林天得. "Spectral Nevanlinna-Pick Interpolation On Symmetrized Bidisc." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/94495204389019542431.
Full text東海大學
數學系
89
Consider symmetrized bidisc $\Gamma_{2}$:% $$\Gamma_{2}\triangleq \{(s,p):\lambda^{2}-s\lambda+p=0,~\lambda \in \mathbb{C},~|\lambda|\leq1\}$$% and spectral Nevanlinna-Pick Interpolation non-flat problem on it as:\\ % Given $\alpha_{1},~\alpha_{2} \in \mathbb{D},~(s_{1},0),~(s_{2},0) % \in {\rm Int}~\Gamma_{2} $,% $\varphi : \mathbb{D} \longrightarrow {\rm Int}~\Gamma_{2}$,is analytic,% ~such that~$\varphi(\alpha_{1}) = (s_{1},0)$,$\varphi(\alpha_{2}) = (s_{2},~0)$,% ~by the equality of Carath$\acute{e}$odory and Kobayashi distances,% ~and Schur theorem, ~we can find $\varphi$ that we want.
Book chapters on the topic "Problème spectral de Nevanlinna-Pick"
Tannenbaum, Allen R. "Spectral Nevanlinna-Pick Interpolation." In Open Problems in Mathematical Systems and Control Theory, 217–20. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0807-8_41.
Full textEllis, Michael. "Assessment and Diagnosis of Autism Spectrum Disorder." In Caring for Autism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190259358.003.0007.
Full textConference papers on the topic "Problème spectral de Nevanlinna-Pick"
Tannenbaum, Allen. "Spectral Nevanlinna-Pick interpolation theory and robust stabilization." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272721.
Full textBarnard, Cornelius J., Sébastien Briot, and Stéphane Caro. "Trajectory Generation for High Speed Pick and Place Robots." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82197.
Full textGolebiowski, Mateusz, Lorenzo Naldi, Valerio Rossi, and Stefano Ponticelli. "Train Torsional Vibrations: Monitoring System Based on Model Result." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22908.
Full textChen, Gang (Sheng), Jianfeng Xu, and J. Y. Chang. "An Insight Into the Nonlinear Touchdown Dynamics of TFC Active Slider." In ASME 2013 Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/isps2013-2803.
Full text