Dissertations / Theses on the topic 'Problèmes aux limites – Solutions numériques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Problèmes aux limites – Solutions numériques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
El, Maliki Abderrahman. "Résolution de problèmes aux limites à l'aide de méthodes itératives hiérarchiques à préconditionneur variable." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24692/24692.pdf.
Full textMondoloni, Antoine. "Existence d'une solution faible d'une équation d'onde quasi-linéaire avec conditions aux limites." Corte, 2000. http://www.theses.fr/2000CORT3052.
Full textKarimou, Gazibo Mohamed. "Etudes mathématiques et numériques des problèmes paraboliques avec des conditions aux limites." Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-00950759.
Full textPacaud, Damien. "Développement de techniques différences finies-volumes finis performantes en électromagnétisme." Bordeaux 1, 2001. http://www.theses.fr/2001BOR12356.
Full textLE, BRIZAUT Jean-Sébastien. "Méthodes fonctionnelles et numériques pour l'approche de problèmes aux limites non linéaires mixtes elliptiques / hyperboliques." Habilitation à diriger des recherches, Université de Nantes, 2004. http://tel.archives-ouvertes.fr/tel-00005350.
Full textMancip, Martial. "Couplage de méthodes numériques pour les lois de conservation : application au calcul de l'injection." Toulouse, INSA, 2001. https://tel.archives-ouvertes.fr/tel-00001960v2.
Full textThis thesis deals with numerical methods for solving systems of conservative partial differential equations. When the flow is a complex one, we need many physical models without known boundaries. We can use different numerical schemes for different domains, with some overlap of the domains. We present here a new and efficient algorithm to compute the solution on these overlaps. It needs a conservative projection of the numerical solution from one scheme to the other one. There is no artificial condition on the boundary of the coupling domain. To do so we use a regularization of the Heaviside function on this domain. Thus the whole algorithm is conservative and is adapted for Conservative Laws. The mathematical analysis has been done for scalar hyperbolic equations in any dimension. It is based on the convergence of Finite Volume Methods. We prove the convergence of the measure solution with Diperna's theorem, and then we give an error estimation in order of hơ. We did so by using a new estimation of the type weak H1 to deal with the new coupling error terms. A lot of numerical applications in Fluid Mechanics such as shock tube show that the method is stable and conservative. We use also the meshless method called Smooth Particle Hydrodynamics, in its renormalized form, to compute the birth of a jet by coupling a Finite Volumes with a Particle Method. It shows the stiffness of the algorithm and its efficiency with complex flows. This study was done in collaboration with the team of Pr. D. Kröner from the Institute Applied Mathematics of Frieburg University of Germany
Videcoq, Etienne. "Problèmes inverses en diffusion thermique instationnaire : résolution par représentation d'état et apport de la réduction de modèle." Poitiers, 1999. http://www.theses.fr/1999POIT2355.
Full textBrada, Alain. "Comportement asymptotique de solutions d'équations elliptiques semi-linéaires dans un cylindre." Tours, 1987. http://www.theses.fr/1987TOUR4010.
Full textVovelle, Julien. "Prise en compte des conditions aux limites dans les équations hyperboliques non-linéaires." Aix-Marseille 1, 2002. http://www.theses.fr/2002AIX11059.
Full textMéchain-Renaud, Christine. "Une nouvelle stratégie numérique pour les problèmes de contact unilatéral - influence d'une discontinuité de courbure." Poitiers, 1998. http://www.theses.fr/1998POIT2311.
Full textNicolopoulos-Salle, Anouk. "Formulations variationnelles d'équations de Maxwell résonantes et problèmes aux coins en propagation d'ondes." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS276.
Full textIn 1st part, variational formulations associated with resonant Maxwell equations are constructed. The equations degenerate in the domain, leading to the non-unicity and singularity of the solutions. Adding viscosity desingularizes the equations, and a limiting absorption process, when this viscosity parameter goes to zero, allows to identify the physical solution. The degeneracy separates the problem at the limit into two equations on different domains coupled by their interface, along which the solutions blow up. This work explicitly characterizes the limit solution as a solution of a well-posed formulation, which allows the numerical approximation of the physical solution to the resonant Maxwell equations. The study is motivated by the modeling of hybrid resonances in fusion plasma. A 2nd part concerns numerical domain decomposition methods (DDM). In the presence of corners and cross points, when using an automatic mesher for example, it is necessary to treat these points to obtain absorption (ABC) or transmission (TC) conditions of order higher than 1. We define ABCs of order 2 for the Helmholtz equation on a polygonal domain, with the further intention of deriving TCs treating cross points. Each algorithm presented is endowed with a decreasing energy and is convergent
Ramière, Isabelle. "Méthodes de domaine fictif pour des problèmes elliptiques avec conditions aux limites générales en vue de la simulation numérique d'écoulements diphasiques." Phd thesis, Université de Provence - Aix-Marseille I, 2006. http://tel.archives-ouvertes.fr/tel-00122916.
Full textL'originalité de ces méthodes consiste à utiliser le maillage du domaine fictif, généralement non adapté à la géométrie du domaine physique, pour définir une frontière immergée approchée sur laquelle seront appliquées les conditions aux limites immergées. Un même schéma numérique générique permet de traiter toutes les conditions aux limites générales. Ainsi, contrairement aux approches classiques de domaine fictif, ces méthodes ne nécessitent ni l'introduction d'un maillage surfacique de la frontière immergée ni la modification locale du schéma numérique. Deux modélisations de la frontière immergée sont étudiées. Dans la première modélisation, appelée interface diffuse, la frontière immergée approchée est l'union des mailles traversées par la frontière originelle. Dans la deuxième modélisation, la frontière immergée est approchée par une interface dite fine s'appuyant sur les faces de cellules du maillage. Des conditions de transmissions algébriques combinant les sauts de la solution et du flux sont introduites sur cette interface fine. Pour ces deux modélisations, le problème fictif à résoudre ainsi que le traitement des conditions aux limites immergées sont détaillés. Un schéma aux éléments finis Q1 est utilisé pour valider numériquement le modèle à interface diffuse alors qu'un nouveau schéma aux volumes finis est développé pour le modèle à interface fine et sauts immergés. Chaque méthode est combinée avec un algorithme de raffinement de maillage multi-niveaux (avec résidu de solution ou du flux) autour de la frontière immergée afin d'améliorer la précision de la solution obtenue.
Parallèlement, une analyse théorique de convergence en maillage non adapté au domaine physique a été effectuée pour une méthode d'éléments finis Q1. Cette étude démontre l'ordre de convergence des méthodes de domaine fictif mises en place.
Parmi les nombreuses applications industrielles possibles, une simulation sur une maquette d'échangeur de chaleur dans les centrales nucléaires permet d'apprécier la performance des méthodes mises en oeuvre.
Moutoussamy, Isabelle. "Symétries et singularités de solutions d'équations paraboliques semi-linéaires." Tours, 1987. http://www.theses.fr/1987TOUR4009.
Full textAriguel, Sophie. "Contribution à l'étude de circuits planaires par une méthode de segmentation." Toulouse, ENSAE, 1994. http://www.theses.fr/1994ESAE0015.
Full textSimo, Tao Lee Walter Cédric. "On the variational approach to mollification in the theory of ill-posed problems and applications." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30130.
Full textInverse problems is a fast growing area in applied mathematics which has gained a great attention in the last decades due to its ubiquity in several fields of sciences and technology. Yet, most often, inverse problems result in mathematical equation which are unstable. That is, the solutions do not continuously depend on the data. As a matter of fact, very little perturbations on the data might cause arbitrary large errors on the solutions. Therefore, given that the noise is generally unavoidable in the data, direct attempts to solve the problem fail and one needs to apply a regularization method in order to recover stable approximates of the unknown solutions. In this respect, several regularization techniques have been developed in the literature. Globally, all these regularization methods can be split into two classes: A class of methods which attempt to reconstruct the unknown solutions and a class of methods which try to recover smooth versions of the unknown solutions. The aim of this thesis is to contribute to the promotion of the second class of regularization method via the study and application of the variational formulation of mollification. In this work, we show that the variational approach can be extended to the regularization of ill-posed problems involving non-compact operators. In this respect, we study and successfully apply the method to a problem coming from statistics namely the nonparametric instrumental regression. An additional contribution of this thesis is the design and study of a novel regularization method suitable for linear exponentially ill-posed problems. A numerical comparison of the new method to classical regularization methods such as Tikhonov, spectral cut-off, asymptotic regularization and conjugate gradient is carried out on three test problems from literature. The practical aspect of selection of the regularization parameter without knowledge of the noise level is also considered. Apart from the study and application of regularization methods, this thesis also focuses on the application of a very popular parameter selection rule known as the Morozov principle. Using Lagrange duality, we provide a simple and rapid algorithm for the computation of the regularization parameter corresponding to this rule for Tikhonov-like regularization methods. A relevance of this study is that it highlights a poorly known regularization method which yet has a great potential and is able to provide comparatively better approximate solutions compared to well-known classical regularization techniques. Another benefit of this thesis is the design of a new regularization method which, we believe, is promising in the regularization of exponentially ill-posed problems, especially for inverse heat conduction problems
Seloula, Nour El Houda. "Mathematical analysis and numerical approximation of the Stokes and Navier-Stokes equations with non standard boundary conditions." Pau, 2010. http://www.theses.fr/2010PAUU3030.
Full textThis work of thesis deals with the solving of the Stokes problem, first with boundary conditions on the normal component of the velocity field and the tangential component of the vorticity, next with boundary conditions on the pressure and the tangential component of the velocity field. In each case, we give existence, uniqueness and regularity of solutions. The case of very weak solutions is also treated by using a duality argument. The functional framework that we have choosed is that of Banach spaces of type H(div) and H(rot) or their intersection based on the space Lp, with 1 < p < 1. In particular, we suppose that is multiply connected and that the boundary R is not connexe. We are interested in a first time by some Sobolev inequality for vector fields u 2 Lp(). In a second time, we give some results concerning vector potentials with different boundary conditions. This allow to establish Helmholtz decompositions and Inf-Sup condition when the bilinear form is a rotational product. Due to these non standard boundary conditions, the pressure is decoupled from the system. It is the reason whay we are naturally reduced to solving elliptic problems which are the Stokes equations without the pressure term. For this, we use the Inf-Sup conditions, which plays a crutial role in the existence and uniqueness of solutions. We give an application to the Navier-Stokes equations where the proof of solutions is obtained by applying a fixed point theorem over the Oseen equations. Finally, two numerical methods are proposed inorder to approximate the Stokes problem. First, by means of the Nitsche method and next by means of the iscontinuous Galerkin method. Some numerical results of convergence verifying the theoretical predictions are given
Saouri, Fatima-Zahra. "Stabilisation de quelques systèmes élastiques : analyse spectrale et comportement asymptotique." Nancy 1, 2000. http://docnum.univ-lorraine.fr/public/SCD_T_2000_0279_SAOURI.pdf.
Full textDevys, Anne. "Modélisation, analyse mathématique et simulation numérique de problèmes issus de la biologie." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10087/document.
Full textWe investigate four models coming from biological contexts. The first one concerns a model describing the growth of a population of tumors. This model leads to a McKendrick–Von Foerster equation : a conservation law with a non–local boundary condition. We prove the existence and unicity of a solution, then we study, using the general relative entropy, its asymptotic behavior. We provide numerical simulations using WENO scheme. The second part concerns the modelisation of the respiration. First we study the air flux in the bronchial tree using a mulstiscale model. The system present non–usual dissipative boundary conditions. The numerical scheme we use is based on a decomposition idea that reduce the system to the resolution of Stokes problems with standard Dirichlet–Neumann conditions. Then, we propose a model concerning the gas exchanges bringing to light the heterogeneity of the absorption of oxygen along the bronchial tree. The third part concerns the MAPK cascade in Xenopus oocytes. The modelisation leads to an equation of KPP type. A mathematical study shows the existence of travelling waves. Then we provide a detailed numerical study of the system. Finally, the last part, concerns the system of Patlak–Keller–Segel 1D after blow–up. The mathematical study provide a description of the system after blow–up, based on the notion of default meausure. Then we propose a numerical scheme, adopting the optimal transport viewpoint and allowing to simulate the system after blow–up
Saidi, Fouad. "Sur quelques problèmes de lubrification par des fluides newtoniens non isothermes avec des conditions aux bords non linéaires. Etude mathématique et numérique." Phd thesis, Université Jean Monnet - Saint-Etienne, 2004. http://tel.archives-ouvertes.fr/tel-00008745.
Full textTa, Thanh Thuy Tien. "New single machine scheduling problems with deadline for the characterization of optimal solutions." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4015/document.
Full textWe consider a single machine scheduling problem with deadlines and we want to characterise the set of optimal solutions, without enumerating them. We assume that jobs are numbered in EDD order and that this sequence is feasible. The key idea is to use the lattice of permutations and to associate to the supremum permutation the EDD sequence. In order to characterize a lot of solutions, we search for a feasible sequence, as far as possible to the supremum. The distance is the level of the sequence in the lattice, which has to be minimum. This new objective function is investigated. Some polynomially particular cases are identified, but the complexity of the general case problem remains open. Some resolution methods, polynomial and exponential, are proposed and evaluated. The level of the sequence being related to the positions of jobs in the sequence, new objective functions related to the jobs positions are identified and studied. The problem of minimizing the total weighted positions of jobs is proved to be strongly NP-hard. Some particular cases are investigated, resolution methods are also proposed and evaluated
Fino, Ahmad. "Contributions aux problèmes d'évolution." Phd thesis, Université de La Rochelle, 2010. http://tel.archives-ouvertes.fr/tel-00437141.
Full textNovo, Sébastien. "Quelques problèmes aux limites pour des équations de Navier-Stokes compressibles et isentropiques." Phd thesis, Université du Sud Toulon Var, 2002. http://tel.archives-ouvertes.fr/tel-00004012.
Full textGirinon, Vincent. "Quelques problèmes aux limites pour les équations de Navier-Stokes." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/239/.
Full textThis thesis, divided in four chapters, deals with the existence of solutions to the Navier-Stokes equations modelling the isentropic flow of a perfect gas. In the first chapter, classical theorems used to study the Navier-Stokes equations are collected. Some results, specifically developed for this work and concerning the mass conservation equation, have been added. In the second chapter, we consider a two dimensional flow between parallel walls. The domain in which the equations are stated is a rectangle and the system is completed by initial and boundary conditions for the gas density and its velocity. The existence of solutions to this problem is established by defining a suitable extension of the boundary conditions. In chapter three, based on the ideas developed in the previous chapter, we study two other examples. The first one corresponds to a flow around a plane wing and the second one takes up again the problem of chapter two by modifying the boundary conditions for the velocity. The last chapter deals with the existence of solutions to the Navier-Stokes equations linearized about a stationary solution. Such a result is proved in the case of a domain and boundary conditions similar to the ones studied in chapter two. Finally, we end this chapter by proving the exponential stability of the corresponding one dimensional system
Migot, Tangi. "Contributions aux méthodes numériques pour les problèmes de complémentarité et problèmes d'optimisation sous contraintes de complémentarité." Thesis, Rennes, INSA, 2017. http://www.theses.fr/2017ISAR0026/document.
Full textIn this thesis, we studied the regularization methods for the numerical resolution of problems with equilibria. In the first part, we focused on the complementarity problems through two applications that are the absolute value equation and the sparse optimization problem. In the second part, we concentrated on optimization problems with complementarity constraints. After studying the optimality conditions of this problem, we proposed a new regularization method, so-called butterfly relaxation. Then, based on an analysis of the regularized sub-problems we defined an algorithm with strong convergence property. Throughout the manuscript, we concentrated on the theoretical properties of the algorithms as well as their numerical applications. In the last part of this document, we presented numerical results using the regularization methods for the mathematical programs with complementarity constraints
Lantos, Nicolas. "Méthodes numériques avancées appliquées à l'évaluation d'options financières." Paris 6, 2010. http://www.theses.fr/2010PA066295.
Full textKasakova, Maria. "Modèles dispersifs de propagation de vagues : problèmes numériques et modélisation." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30130.
Full textWater waves propagation is a complex physical process. The direct numerical simulation using Navier-Stokes/Euler equations is a time-consuming and mathematically complicated solution. A good description of large-scale phenomena can be obtained by using relatively simple approximate models. However, if we are interested in a precise description of wave profiles, advanced modelling approaches are required. Once the model is derived, it needs to be solved numerically, and one faces another kind of challenges related to numerical simulations. The first part of the present thesis is devoted to the modelling of surface and internal ocean waves propagation, including dispersive effect and dynamics of the vorticity. In the framework of shallow water hypothesis, two models are derived. Both models involve additional equations for the vorticity evolution. To include the internal waves propagation, first, we consider a system of two immiscible fluids with constant densities. It represents a simple model of the ocean where the upper layer corresponds to the (thin) layer of fluid above the thermocline whereas the lower layer is under the thermocline. The second model includes a surf zone phenomenon. Shearing and turbulence effects in breaking waves are taken into account by a vorticity generation. Both models are governed by dispersive systems and reduce to a classical Green-Naghdi model in the case of vanishing vorticity. Additionally, an algorithm for the numerical resolution of the second model is proposed, and the validation by experimental results is performed. When dispersive/non-hydrostatic effects are taken into account, this usually leads to more accurate models of wave propagation like Green-Naghdi equations, or the two models derived in the first part, for example. The counterpart is that such a type of models requires advanced numerical techniques. In particular, one of the main issues is to define boundary conditions allowing the simulation of wave propagation in infinite physical space but on bounded numerical domains. In the second part of the present research, we focus on a definition of such boundary conditions for the Green-Naghdi equations. Artificial boundary conditions are first proposed for the linearised system. Then we address a hyperbolic system recently proposed to approximate the Green-Naghdi equations. A relatively simple structure of this new hyperbolic system allows for successful applications of Perfect Matched Layer (PML) techniques in order to deal with artificial numerical boundaries. Numerical tests are performed to validate the proposed approaches. In result, we have a correct description of numerical boundaries for non-linear cases. We have shown that the PML equations can be applied to the nonlinear system. Both approaches are then reformulated to solve the problem of injecting propagating waves in a computational domain
Chalindar, Bruno. "Conditions aux limites absorbantes appliquées à des problèmes hyperboliques intervenant en sismique." Saint-Etienne, 1988. http://www.theses.fr/1988STET4013.
Full textPincet, Mailly Gaëlle. "Explosion des solutions de problèmes paraboliques sous conditions au bord dynamiques." Littoral, 2001. http://www.theses.fr/2001DUNK0062.
Full textThis thesis deals with blow up phenomena for parabolic problems in a bounded domain under a dissipative dynamical boundary condition. Several problems are studied as well as reaction-diffusion equations and degenerate equations. The aim of this work is to establish the occurence of finite time blow up. So we are interested in various aspects. The comparison of solutions satisfying different boundary conditions as dynamical, Neumann and Dirichlet conditions underscores the monotonically dependance of the blow up time on the dynamical boundary condition and the damping of solutions. Thanks to comparison techniques, energy methods and spectral comparison, we obtain some lower and upper bounds of the blow up time, and sufficient conditions of finite time blow up. On the other hand, we study the asymptotic behaviour of solutions of some non-degenerate problems : we specify the growth order when approaching the blow up time. Then we caracterize the blow up set and we prove that it consists at most of a single point in the one-dimensional case
Kachmar, Ayman. "Problèmes aux limites issus de la supraconductivité : estimations semi-classiques et comportement asymptotique des solutions." Paris 11, 2007. http://www.theses.fr/2007PA112070.
Full textThis thesis is devoted to the study of various models for the `proximity effect' in the frame work of the Ginzburg-Landau theory of superconductivity. These models arise in the situation when a superconductor is adjacent to a normal metal. In a first part of this thesis, we estimate in the semi-classical limit the ground state energy of a magnetic Schrôdinger operator associated to a Fourier (Robin) type boundary condition, called in this context the de Gennes boundary condition, and we study the localization of the ground states. We exhibit cases when the de Gennes boundary condition has strong effects on this localization. In another part, we formulate a spectral problem related to the onset of superconductivity for a generalized Ginzburg-Landau functional having discontinuous coefficients, where the order parameter and the magnetic potential are defined in the whole space In the regime when the Ginzburg-Landau parameter (of the superconducting material) is large, we estimate the critical applied magnetic field for which the normal state will lose its stability. In some asymptotic situations, we recover results related to the `standard' Ginzburg-Landau model. In the final part, we study again a generalized Ginzburg-Landau functional in the case without an applied magnetic field. We determine in this case the asymptotic behavior of the order parameter in the regime when the Ginzburg-Landau parameter is large. This shows in particular that the superconductivity persists in a thin boundary sheath of the normal material, near the boundary of the superconductor
Marmin, Fabienne. "Contribution à l'étude des erreurs numériques dues à la méthode des éléments finis : application aux problèmes statiques d'électromagnétisme 2D." Lille 1, 1998. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/1998/50376-1998-89.pdf.
Full textCes derniers presentent l'avantage de pouvoir etablir un lien avec la solution exacte mais necessitent la connaissance d'un couple de solutions admissibles, qui peut etre obtenu en resolvant les deux problemes complementaires par la methode des elements finis. Afin de contourner l'inconvenient de deux resolutions, nous avons applique les travaux developpes par monsieur p. Ladeveze en elastoplasticite. En effet, p. Ladeveze a montre qu'il est possible a partir d'une seule resolution elements finis de construire un couple de solutions admissibles. Cette construction s'effectue en resolvant des problemes elementaires en chaque noeud et sur chaque arete du maillage, ce qui assure l'efficacite de la methode
Mrad, Moez. "Méthodes numériques probabilistes pour la résolution de certains problèmes non-linéaires multidimensionnels en finance." Paris 1, 2004. http://www.theses.fr/2004PA010015.
Full textLamarque, Nicolas. "Schémas numériques et conditions limites pour la simulation aux grandes échelles de la combustion diphasique dans les foyers d'hélicoptère." Phd thesis, Toulouse, INPT, 2007. http://oatao.univ-toulouse.fr/7661/1/lamarque1.pdf.
Full textBen, Zitoun Feyed. "Une nouvelle méthode pour la résolution d'équations fonctionnelles non linéaires et résolution d'un problème issu de la microscopie électronique." Lorient, 2010. http://www.theses.fr/2010LORIS185.
Full textThis thesis is composed of two parts. In the first part, we present a new method allowing to resolve a wide variety of functional equations. This method reduce a nonlinear functional equation (in constant and\or variable coefficients and with or without initial conditions and in the limits) to a system of algebraic equations. The problem consisting in resolving a nonlinear functional equation is so simplified and returned to the resolution of a system of algebraic equations. The resolution of this system allows to obtain Solution of the nonlinear functional equation under the shape of a truncated series. Our method makes no discrétisation what allows to obtain a value approached the exact solution of the functional equation completely of the domain. Having exposed our method in a general frame, the resolution of some problems tests brings to light the simplicity of the effective implementation of our technique The flexibility and the efficiency of our method and the precision of our results. In the second part, we approach a problem stemming from the electronic microscopy. We show that we can find the speed of an image supplies by an electron microscope with sweeping and stemming from the interaction of an electron beam with the surface of a sample of composite material by an approach of modelling of the potential of surface and an estimate of the value of the potential of surface. We observe an analogy between the digital mapping of the potential of surface at differents points of the sample and the contrasted image obtained with the scanning electron microscope
Shahzadeh, Fazeli Seyed Abolfazi. "Stratégies de redémarrage des méthodes itératives d'algèbre linéaire pour le calcul global." Versailles-St Quentin en Yvelines, 2005. http://www.theses.fr/2005VERS0011.
Full textL'objectif de ce travail est de contribuer à la résolution des grands problèmes de valeur propre et/ou des grands systèmes linéaires en utilisant des ressources partagées sur des réseaux plus ou moins larges. La résolution de grands systèmes d'algèbre linéaire s'effectue, à l'aide des méthodes itératives hybrides. Une méthode hybride combine plusieurs méthodes numériques différentes ou bien plusieurs copy d'une même méthode numérique paramétrées différemment afin d'accélérer la convergence de l'une de ces méthodes. L'amélioration de la vitesse de convergence et d'exécution des méthodes hybrides par des méthodologies numériques et/ou des techniques de calcul parallèle et distribué constitue l'objectif principal de cette thèse. La vitesse de convergence de ces méthodes est dépendante de l'approche utilisée lors du redémarrage du processus itératif. Nous présentons une étude sur une méthode hybride appelée Multiple Explicitly Restarted Arnoldi Method (MERAM), et nous proposons deux approches synchrones pour sa mise en oeuvre. Nous proposons également un nouvel algorithme hybride synchrone pour la méthode Implicitly Restarted Arnoldi Method. Des environnements de calcul global basés sur une approche Grid-RPC constituent un bon choix pour élaborer des programmes de résolution de problèmes sur les grilles de calcul. Un exemple typique de tels environnements est le système NetSolve. L'utilisation de ce type d'architectures nécessite la définition de nouveaux algorithmes. Une adaptation de MERAM asynchrone au système de calcul global NetSolve a été conçue. Nous avons montré que les algorithmes asynchrones de type MERAM sont très bien adaptés au calcul global. Nous avons mis en évidence un certain nombre de problèmes ouverts concernant la programmation des algorithmes hybrides en calcul global
Faraj, Ali. "Méthodes asymptotiques et numériques pour le transport quantique résonant." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/363/.
Full textNumerical methods to simulate resonant tunneling diodes are proposed. A decomposition of the wave functions, solution of the Schrödinger equation, in a resonant part and a non -resonant part gives, with a large frequency mesh, results in agreement with a nig number of frequency points computation. The real improvement was to adapt the algorithm to the unsteady case. An asymptotic analysis is performed on a steady Schrödinger-Poisson system. The semi-classical limit leads to different behaviours understood with the help of a spectral renormalisation and depending on the dimension of the space variable
Bogosel, Beniamin. "Optimisation de formes et problèmes spectraux." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAM066/document.
Full textWe study some shape optimization problems associated to spectral and geometric functionals from both theoretical and numerical points of view. One of the main ideas is to provide Gamma-convergence frameworks allowing the construction of numerical approximation methods for the quantities we wish to optimize. In particular, these numerical methods are applied to the study of the Dirichlet-Laplace eigenvalues under perimeter constraint in two and three dimensions and to optimization problems concerning multiphase configurations and partitions in the plane and on three dimensional surfaces.As well, we focus on the analysis of the Steklov spectrum in different geometric classes of domains. Together with the study of existence of extremal domains and the spectral stability under geometric perturbations, we develop methods based on fundamental solutions in order to compute numerically the spectrum. A detailed analysis of the numerical method shows that we get an important precision, while the computation time is significantly decreased compared to mesh-based methods. This approach is extended to the computation of Wentzell and Laplace-Beltrami eigenvalues
Diaz, Julien. "Approches analytiques et numériques de problèmes de transmission en propagation d'ondes en régime transitoire : application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées." Phd thesis, Paris 6, 2005. http://tel.archives-ouvertes.fr/tel-00008708.
Full textGradinaru, Mihai. "Applications du calcul stochastique à l'étude de certains processus." Habilitation à diriger des recherches, Université Henri Poincaré - Nancy I, 2005. http://tel.archives-ouvertes.fr/tel-00011826.
Full textentre 1996 et 2005, après la thèse de doctorat de l'auteur, et concerne l'étude fine de
certains processus stochastiques : mouvement brownien linéaire ou plan, processus de diffusion,
mouvement brownien fractionnaire, solutions d'équations différentielles stochastiques ou
d'équations aux dérivées partielles stochastiques.
La thèse d'habilitation s'articule en six chapitres correspondant aux thèmes
suivants : étude des intégrales par rapport aux temps locaux de certaines diffusions,
grandes déviations pour un processus obtenu par perturbation brownienne d'un système
dynamique dépourvu de la propriété d'unicité des solutions, calcul stochastique
pour le processus gaussien non-markovien non-semimartingale mouvement brownien fractionnaire,
étude des formules de type Itô et Tanaka pour l'équation de la chaleur stochastique,
étude de la durée de vie du mouvement brownien plan réfléchi dans un domaine à
frontière absorbante et enfin, estimation non-paramétrique et construction d'un
test d'adéquation à partir d'observations discrètes pour le coefficient de diffusion d'une
équation différentielle stochastique.
Les approches de tous ces thèmes sont probabilistes et basées sur l'analyse stochastique.
On utilise aussi des outils d'équations différentielles, d'équations aux dérivées partielles
et de l'analyse.
Nabet, Flore. "Schémas volumes finis pour des problèmes multiphasiques." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4359/document.
Full textThis manuscript is devoted to the numerical analysis of finite-volume schemes for the discretization of two particular equations. First, we study the Cahn-Hilliard equation with dynamic boundary conditions whose one of the main difficulties is that this boundary condition is a non-linear parabolic equation on the boundary coupled with the interior of the domain. We propose a spatial finite-volume discretization which is well adapted to the coupling of the dynamics in the domain and those on the boundary by the flux term. Moreover this kind of scheme accounts naturally for the non-flat geometry of the boundary. We prove the existence and the convergence of the discrete solutions towards a weak solution of the system. Second, we study the Inf-Sup stability of the discrete duality finite volume (DDFV) scheme for the Stokes problem. We give a complete analysis of the unconditional Inf-Sup stability in some cases and of codimension 1 Inf-Sup stability for Cartesian meshes. We also implement a numerical method which allows us to compute the Inf-Sup constant associated with this scheme for a given mesh. Thus, we can observe the stable or unstable behaviour that can occur depending on the geometry of the meshes. In a last part we propose a DDFV scheme for a Cahn-Hilliard/Stokes phase field model that required the introduction of new discrete operators. We prove the dissipation of the energy in the discrete case and the existence of a solution to the discrete problem. All these research results are validated by extensive numerical results
Oropeza, Alip. "Sur une classe de problèmes elliptiques quasilinéaires avec conditions de Robin non linéaires et données L1 : existence et homogénéisation." Rouen, 2016. http://www.theses.fr/2016ROUES043.
Full textD'Haudt, Emmanuel. "Étude expérimentale de l'influence des conditions périphériques sur un écoulement turbulent de type rotor-stator : premières confrontations avec des résultats de simulations numériques." Lille 1, 2006. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2006/50376-2006-D_Haudt.pdf.
Full textCisternino, Marco. "A parallel second order Cartesian method for elliptic interface problems and its application to tumor growth model." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00690743.
Full textClérin, Jean-Marc. "Problèmes de contrôle optimal du type bilinéaire gouvernés par des équations aux dérivées partielles d’évolution." Thesis, Avignon, 2009. http://www.theses.fr/2009AVIG0405/document.
Full textThis thesis is devoted to the analysis of nonlinear optimal control problems governed by an evolution state equation involving a term which is bilinear in state and control. The difficulties due to nonlinearity remain, but bilinearity adds a lot of structure to the control problem under consideration. In Section 2, by using Willet and Wong inequalities we establish a priori estimates for the solutions of the state equation. These estimates allow us to prove that the state equation is well posed in the sense of Hadamard. In the case of a feedback constraint on the control, the state equation becomes a differential inclusion. Under mild assumptions, such a differential inclusion is solvable. In Section 3, we prove the existence of solutions to the optimal control problem. Section 4 is devoted to the sensitivity analysis of the optimal control problem. We obtain a formula for the directional derivative of the optimal value function. This general formula is worked out in detail for particular examples
Cheaytou, Rima. "Etude des méthodes de pénalité-projection vectorielle pour les équations de Navier-Stokes avec conditions aux limites ouvertes." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4715.
Full textMotivated by solving the incompressible Navier-Stokes equations with open boundary conditions, this thesis studies the Vector Penalty-Projection method denoted VPP, which is a splitting method in time. We first present a literature review of the projection methods addressing the issue of the velocity-pressure coupling in the incompressible Navier-Stokes system. First, we focus on the case of Dirichlet conditions on the entire boundary. The numerical tests show a second-order convergence in time for both the velocity and the pressure. They also show that the VPP method is fast and cheap in terms of number of iterations at each time step. In addition, we established for the Stokes problem optimal error estimates for the velocity and pressure and the numerical experiments are in perfect agreement with the theoretical results. However, the incompressibility constraint is not exactly equal to zero and it scales as O(varepsilondelta t) where $varepsilon$ is a penalty parameter chosen small enough and delta t is the time step. Moreover, we deal with the natural outflow boundary condition. Three types of outflow boundary conditions are presented and numerically tested for the projection step. We perform quantitative comparisons of the results with those obtained by other methods in the literature. Besides, a theoretical study of the VPP method with outflow boundary conditions is stated and the numerical tests prove to be in good agreement with the theoretical results. In the last chapter, we focus on the numerical study of the VPP scheme with a nonlinear open artificial boundary condition modelling a singular load for the unsteady incompressible Navier-Stokes problem
Abdel, Hamid Haydar. "Etude de deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient." Phd thesis, Université François Rabelais - Tours, 2009. http://tel.archives-ouvertes.fr/tel-00441100.
Full textMarcou, Alice. "Interactions d’ondes et de bord." Thesis, Bordeaux 1, 2011. http://www.theses.fr/2011BOR14267/document.
Full textWe first study surface waves, solutions of hyperbolic nonlinear boundary value problems. We construct BKW solutions in the weakly nonlinear regime with infinite expansion in powers of ε. We rigorously justify this expansion,constructing exact solutions, which admit the asymptotic expansions. We also show that the solution is not necessarily localized at the order O(ε∞) in the interior, even if the data are ; a particular case of elasticity is studied: we prove that fast oscillatory elastic surface waves can produce non trivial internal non oscillatory displacements.Afterwards, we study the reflection of non linear discontinuous waves, for weakly well-posed hyperbolic boundary value problems, satisfying the (WR) condition, which has been introduced in [1, 12], that is in a case where the IBVP is neither strongly stable, nor strongly unstable. We study how the singularities of a striated solution are reflected when the solution hits the boundary. We prove striated estimates and L∞ estimates and observe the loss of one derivative: we show that a discontinuityof the gradient of the solution across an hyperplane can be reflected in a discontinuity across an hyperplane of the solution itself
Badsi, Mehdi. "Etude mathématiques et simulations numériques de modèles de gaines bi-cinétiques." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066178.
Full textThis thesis focuses on the construction and the numerical simulation theoretical models of plasmas in interaction with an absorbing wall. These models are based on two species Vlasov-Poisson or Vlasov-Ampère systems in the presence of boundary conditions. The expected stationary solutions must verify the balance of the flux of charges in the orthogonal direction to the wall. This feature is called the ambipolarity.Through the study of a non linear Poisson equation, we prove the well-posedness of 1d-1v stationary Vlasov-Poisson system, for which we determine incoming particles distributions and a wall potential that induces the ambipolarity as well as a non negative charge density hold. We also give a quantitative estimates of the thickness of the boundary layer that develops at the wall. These results are illustrated numerically. We prove the linear stability of the electronic stationary solution for a non-stationary Vlasov-Ampère system. Finally, we study a 1d-3v stationary Vlasov-Poisson system in the presence of a constant and parallel to the wall magnetic field . We determine incoming particles distributions and a wall potential so that the ambipolarity holds. We study a non linear Poisson equation through a non linear functional energy that admits minimizers. We established some bounds on the numerical parameters inside which, our model is relevant and we propose an interpretation of the results
Verhille, Emmanuel. "Méthodes d’éléments finis a posteriori pour les équations de Reissner-Mindlin." Thesis, Lille 1, 2012. http://www.theses.fr/2012LIL10032/document.
Full textThis work is devoted to the study of equilibrated fluxes and residual a posteriori error estimators for the finite element resolution of the Reissner-Mindlin system. This report begins by the introduction of the boundary value problem and of its a priori convergence analysis in the finite element method context. Then, an equilibrated fluxes a posteriori estimator is built for a conform discretization, which is proven to be reliable, efficient and robust on the plate thickness t. We finally obtain a multiplicative constant equal to 1 for the reliability. Numerical tests illustrate our results on different meshes. Then, we address the non-conforming discretization case, where a residual a posteriori estimator is proposed using a regularisation of the discrete solution. Numerical tests also illustrate our results. Next we come back to the conform discretization by building an a posteriori estimator defined from localised problems resolution on stars, leading to a consistent choice with the boundary value problem. The last chapter is devoted to an a posteriori estimation for the Reissner-Mindlin eigenvalues problem. The obtained estimator is reliable and efficient for the error norm between the eigenvectors, also allowing to evaluate the error between the eigenvalues. Numerical tests illustrate our results
Theljani, Anis. "Partial differential equations methods and regularization techniques for image inpainting." Thesis, Mulhouse, 2015. http://www.theses.fr/2015MULH0278/document.
Full textImage inpainting refers to the process of restoring a damaged image with missing information. Different mathematical approaches were suggested to deal with this problem. In particular, partial differential diffusion equations are extensively used. The underlying idea of PDE-based approaches is to fill-in damaged regions with available information from their surroundings. The first purpose of this Thesis is to treat the case where this information is not available in a part of the boundary of the damaged region. We formulate the inpainting problem as a nonlinear boundary inverse problem for incomplete images. Then, we give a Nash-game formulation of this Cauchy problem and we present different numerical which show the efficiency of the proposed approach as an inpainting method.Typically, inpainting is an ill-posed inverse problem for it most of PDEs approaches are obtained from minimization of regularized energies, in the context of Tikhonov regularization. The second part of the thesis is devoted to the choice of regularization parameters in second-and fourth-order energy-based models with the aim of obtaining as far as possible fine features of the initial image, e.g., (corners, edges, … ) in the inpainted region. We introduce a family of regularized functionals with regularization parameters to be selected locally, adaptively and in a posteriori way allowing to change locally the initial model. We also draw connections between the proposed method and the Mumford-Shah functional. An important feature of the proposed method is that the investigated PDEs are easy to discretize and the overall adaptive approach is easy to implement numerically
Laurent, Philippe. "Méthodes d'accéleration pour la résolution numérique en électrolocation et en chimie quantique." Thesis, Nantes, Ecole des Mines, 2015. http://www.theses.fr/2015EMNA0122/document.
Full textThis thesis tackle two different topics.We first design and analyze algorithms related to the electrical sense for applications in robotics. We consider in particular the method of reflections, which allows, like the Schwartz method, to solve linear problems using simpler sub-problems. These ones are obtained by decomposing the boundaries of the original problem. We give proofs of convergence and applications. In order to implement an electrolocation simulator of the direct problem in an autonomous robot, we build a reduced basis method devoted to electrolocation problems. In this way, we obtain algorithms which satisfy the constraints of limited memory and time resources. The second topic is an inverse problem in quantum chemistry. Here, we want to determine some features of a quantum system. To this aim, the system is ligthed by a known and fixed Laser field. In this framework, the data of the inverse problem are the states before and after the Laser lighting. A local existence result is given, together with numerical methods for the solving