Academic literature on the topic 'Processing window'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processing window.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processing window"
Pachauri, Rahul, Rajiv Saxena, and Sanjeev N. Sharma. "Studies on Z-Window Based FIR Filters." ISRN Signal Processing 2013 (September 1, 2013): 1–8. http://dx.doi.org/10.1155/2013/148646.
Full textMbachu, C. B. "Height Adjustable Sine (HAS) Window Function for Impulse Response Modification of Signal Processing Systems." European Journal of Engineering Research and Science 5, no. 3 (March 27, 2020): 367–74. http://dx.doi.org/10.24018/ejers.2020.5.3.1443.
Full textMbachu, C. B. "Height Adjustable Triangular (HAT) Window Function for Impulse Response Modification of Signal Processing Systems." European Journal of Engineering Research and Science 5, no. 3 (March 27, 2020): 358–66. http://dx.doi.org/10.24018/ejers.2020.5.3.1442.
Full textWu, Yu-Bin, and Ping Ji. "Due-Window Assignment Scheduling with Variable Job Processing Times." Scientific World Journal 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/740750.
Full textLal, Devesh Kumar, and Ugrasen Suman. "SBASH Stack Based Allocation of Sheer Window Architecture for Real Time Stream Data Processing." International Journal of Data Analytics 1, no. 1 (January 2020): 1–21. http://dx.doi.org/10.4018/ijda.2020010101.
Full textShaikh, Salman Ahmed, Akiyoshi Matono, and Kyoung-Sook Kim. "A Distance-Window Approach for the Continuous Processing of Spatial Data Streams." International Journal of Multimedia Data Engineering and Management 11, no. 2 (April 2020): 16–30. http://dx.doi.org/10.4018/ijmdem.2020040102.
Full textLuo, Cheng Xin, and En Min Feng. "Multiple Common Due-Window Assignment Based on Common Flow Allowance and Resource-Dependent Processing Times." Applied Mechanics and Materials 644-650 (September 2014): 2026–29. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.2026.
Full textFoster, James, Michael Bevis, and Steven Businger. "GPS Meteorology: Sliding-Window Analysis*." Journal of Atmospheric and Oceanic Technology 22, no. 6 (June 1, 2005): 687–95. http://dx.doi.org/10.1175/jtech1717.1.
Full textWise, Kevin, Saleem Alhabash, and Petya Eckler. "“Window” Shopping Online: Cognitive Processing of General and Specific Product Windows." Journal of Interactive Advertising 13, no. 2 (July 3, 2013): 88–96. http://dx.doi.org/10.1080/15252019.2013.826550.
Full textDong, Yanping, and Ping Li. "Interpreting: A window into bilingual processing." Bilingualism: Language and Cognition 23, no. 4 (May 22, 2020): 703–5. http://dx.doi.org/10.1017/s1366728920000346.
Full textDissertations / Theses on the topic "Processing window"
Schultz, Steven Peter. "Attentional Window and Global/Local Processing." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6383.
Full textGolab, Lukasz. "Sliding Window Query Processing over Data Streams." Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2930.
Full textThis dissertation begins with the observation that the two fundamental requirements of a DSMS are dealing with transient (time-evolving) rather than static data and answering persistent rather than transient queries. One implication of the first requirement is that data maintenance costs have a significant effect on the performance of a DSMS. Additionally, traditional query processing algorithms must be re-engineered for the sliding window model because queries may need to re-process expired data and "undo" previously generated results. The second requirement suggests that a DSMS may execute a large number of persistent queries at the same time, therefore there exist opportunities for resource sharing among similar queries.
The purpose of this dissertation is to develop solutions for efficient query processing over sliding windows by focusing on these two fundamental properties. In terms of the transient nature of streaming data, this dissertation is based upon the following insight. Although the data keep changing over time as the windows slide forward, the changes are not random; on the contrary, the inputs and outputs of a DSMS exhibit patterns in the way the data are inserted and deleted. It will be shown that the knowledge of these patterns leads to an understanding of the semantics of persistent queries, lower window maintenance costs, as well as novel query processing, query optimization, and concurrency control strategies. In the context of the persistent nature of DSMS queries, the insight behind the proposed solution is that various queries may need to be refreshed at different times, therefore synchronizing the refresh schedules of similar queries creates more opportunities for resource sharing.
Wei, Mingrui. "Multi-Mode Stream Processing For Hopping Window Queries." Digital WPI, 2008. https://digitalcommons.wpi.edu/etd-theses/769.
Full textZhang, Xin. "Developing Image Processing Tools in X Window System." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4571.
Full textSilva, Asima. "Multiple continuous query processing with relative window predicates "Juggler"." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0527104-223456/.
Full textKeywords: reordering predicates; multi-join operator; sliding windows; window predicates; join algorithm; continuous queries. Includes bibliographical references (p. 101-103).
Spinosa, Vittoria. "Motor auditory interaction: a window towards associative and predictive processing." Doctoral thesis, Universitat de Barcelona, 2019. http://hdl.handle.net/10803/669916.
Full textLa percepción puede considerarse como el puente necesario para interactuar con el entorno. De hecho, estamos continuamente intercambiando información entre el mundo físico que nos rodea y nuestros modelos internos, formados a partir de creencias anteriores y expectativas, que permiten dar constantemente significado e interpretación a los sucesos causados por fuentes externas o por nosotros mismos. Por experiencia, aprendemos también a hacer asociaciones de acción-efecto y a predecir las consecuencias sensoriales de cada acto motor. Actualmente, se están estudiando los mecanismos subyacentes del procesamiento asociativo y predictivo, y la modulación de este procesamiento en la experiencia sensorial. En la presente tesis doctoral, nos centramos en los efectos de la expectativa derivados de la interacción motora-auditiva, con el fin de estudiar los procesos asociativos y predictivos entre acciones - efecto. Para alcanzar este objetivo, realizamos dos estudios independientes en los que registramos medidas de comportamiento (tiempo de acción y fuerza de la acción) y electrofisiológicas (potenciales evocados) mientras los participantes realizaron pulsaciones de botones que estaban asociadas con la presentación o la omisión de un sonido, y con las violaciones de estas asociaciones. El estudio I se centró en procesos predictivos consolidados y tuvo como objetivo investigar los efectos relacionados con la coincidencia y la falta de coincidencia entre un evento y una expectativa. Los resultados sugieren que estos efectos son manifestaciones del mismo proceso subyacente de predicción. El estudio II se centró en el procesamiento asociativo y tuvo como objetivo investigar la construcción de asociaciones de acción-efecto, en un contexto en el que no había regularidades establecidas. Los resultados sugieren que la repetición de una contingencia acción-efecto puede fomentar una expectativa, y que la consecuencia de una acción puede modificar la acción en sí. Los resultados sugieren que el procesamiento asociativo y predictivo que surge de un acto motor modula circularmente el comportamiento y la actividad neuronal. Es decir, el acto motor causa consecuencias específicas que modulan el comportamiento y el procesamiento neuronal, pero también las asociaciones de acción-efecto y las predicciones relacionadas parecen afectar el procesamiento neuronal y la acción en sí.
Li, Jin. "Window Queries Over Data Streams." PDXScholar, 2008. https://pdxscholar.library.pdx.edu/open_access_etds/2675.
Full textZahiri, Saden H. (Saden Heshmatollah) 1966. "Prediction of the processing window and austemperability for austempered ductile iron." Monash University, School of Physics and Materials Engineering, 2002. http://arrow.monash.edu.au/hdl/1959.1/8408.
Full textPaul, Devashish. "Filterbank implementations of a window based Gabor transform for SAR processing." Thesis, University of Ottawa (Canada), 1995. http://hdl.handle.net/10393/9957.
Full textHenderson, Drake Hall. "Accelerated partial window imaging in an integrated vision unit." Thesis, Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/16630.
Full textBooks on the topic "Processing window"
Canada. Dept. of Fisheries and Oceans. An algorithm for bottom window echo processing. Halifax, N.S: Fisheries and Oceans, 1991.
Find full textClever cornices, valances, & unique window treatments. New York: Sterling Pub. Co., 1997.
Find full textInternational School of Crystallographic Computing (13th 1992 Balatonfüred, Hungary). Crystallographic computing 6: A window on modern crystallography : papers presented at the International School of Crystallographic Computing held at Balatonfüred, Hungary 31 May-6 June 1992. [Chester, England]: International Union of Crystallography, 1993.
Find full textTroop, Jane. WordPerfect for Windows. Wilsonville, Or: Franklin, Beedle & Associates, 1993.
Find full textOber, Scot. Gregg college keyboarding & document processing for Windows. 8th ed. New York: Glencoe, McGraw-Hill, 1997.
Find full textMartin, Edward G. Word processing with WordPerfect 6.1 for Windows. Fort Worth: Dryden Press, 1995.
Find full textMason, Peter. Word processing with Microsoft Word for Windows. 2nd ed. Sheffield: University of Sheffield, Computing Services, 1993.
Find full textEricksen, Linda. WordPerfect 6.1 for Windows. Danvers, Mass: Boyd & Fraser Pub. Co., 1996.
Find full textShelly, Gary B. WordPerfect 6 for Windows. Danvers, Mass: Boyd & Fraser Pub. Co., 1995.
Find full textBook chapters on the topic "Processing window"
Aref, Walid G. "Window-Based Query Processing." In Encyclopedia of Database Systems, 4695–700. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_468.
Full textAref, Walid G. "Window-based Query Processing." In Encyclopedia of Database Systems, 3533–38. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_468.
Full textAref, Walid G. "Window-Based Query Processing." In Encyclopedia of Database Systems, 1–6. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4899-7993-3_468-2.
Full textLin, Chunbo, Jingdong Li, Xiaoling Wang, Xingjian Lu, and Ji Zhang. "WFApprox: Approximate Window Functions Processing." In Database Systems for Advanced Applications, 72–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59410-7_5.
Full textChang, Chein-I. "Multiple Window Anomaly Detection." In Real-Time Progressive Hyperspectral Image Processing, 547–76. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4419-6187-7_17.
Full textKonstantopoulos, Charalampos, Andreas Svolos, and Christos Kaklamanis. "Sliding-Window Compression on the Hypercube." In Euro-Par 2000 Parallel Processing, 835–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44520-x_115.
Full textJin, Qianli, Jun Zhao, and Bo Xu. "Window-Based Method for Information Retrieval." In Natural Language Processing – IJCNLP 2004, 120–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-30211-7_13.
Full textSnytsar, Roman, and Yatish Turakhia. "Parallel Approach to Sliding Window Sums." In Algorithms and Architectures for Parallel Processing, 19–26. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38961-1_3.
Full textHou, Cuiqin, Yingju Xia, Jun Sun, Jing Shang, Ryozo Takasu, and Masao Kondo. "A Width-Variable Window Attention Model for Environmental Sensors." In Neural Information Processing, 512–20. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70096-0_53.
Full textIliopoulos, Costas S., Manal Mohamed, Solon P. Pissis, and Fatima Vayani. "Maximal Motif Discovery in a Sliding Window." In String Processing and Information Retrieval, 191–205. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00479-8_16.
Full textConference papers on the topic "Processing window"
Krutz, Andreas, Michael Frater, and Thomas Sikora. "Window-Based Image Registration using Variable Window Sizes." In 2007 IEEE International Conference on Image Processing. IEEE, 2007. http://dx.doi.org/10.1109/icip.2007.4379842.
Full textBronez, T. P., and D. S. Brown. "Alternate windows for multi-window spectral analysis." In [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1992. http://dx.doi.org/10.1109/icassp.1992.226591.
Full textXing Gao, J. Sustersic, and A. R. Hurson. "Window Query Processing with Proxy Cache." In 7th International Conference on Mobile Data Management (MDM'06). IEEE, 2006. http://dx.doi.org/10.1109/mdm.2006.166.
Full textChakraborty, Debejyo, and Narayan Kovvali. "Generalized normal window for digital signal processing." In ICASSP 2013 - 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013. http://dx.doi.org/10.1109/icassp.2013.6638833.
Full textSandsten, Maria, Johan Brynolfsson, and Isabella Reinhold. "The Matched Window Reassignment." In 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018. http://dx.doi.org/10.23919/eusipco.2018.8553204.
Full textWolf, Bernhard, and Mario Neugebauer. "Refining the window size of sliding window operations in running data processing systems." In Factory Automation (ETFA 2008). IEEE, 2008. http://dx.doi.org/10.1109/etfa.2008.4638405.
Full textGong, Yuanhao, Bozhi Liu, Xianxu Hou, and Guoping Qiu. "Sub-window Box Filter." In 2018 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2018. http://dx.doi.org/10.1109/vcip.2018.8698682.
Full textWaidelich, Wilhelm R. A., Peter J. Hutzler, and Raphaela M. Waidelich. "Detection of abnormal cells by optical image processing." In Laser Florence 2001: a Window on the Laser Medicine World, edited by Leonardo Longo, Alfons G. Hofstetter, Mihail-Lucian Pascu, and Wilhelm R. A. Waidelich. SPIE, 2002. http://dx.doi.org/10.1117/12.486607.
Full textChandrakanth, V., C. Devendranath, and A. Shamnar. "VLSI implementation of sliding window DFT." In 2013 International Conference on Signal Processing, Image Processing, and Pattern Recognition (ICSIPR). IEEE, 2013. http://dx.doi.org/10.1109/icsipr.2013.6497934.
Full textAli, Haider, Christin Seifert, Nitin Jindal, Lucas Paletta, and Gerhard Paar. "Window Detection in Facades." In 14th International Conference on Image Analysis and Processing (ICIAP 2007). IEEE, 2007. http://dx.doi.org/10.1109/iciap.2007.4362880.
Full textReports on the topic "Processing window"
Doerry, Armin Walter. Window taper functions for subaperture processing. Office of Scientific and Technical Information (OSTI), December 2013. http://dx.doi.org/10.2172/1121978.
Full textZhang, Xin. Developing Image Processing Tools in X Window System. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6455.
Full textDietz, Nikolaus. Stabilization of Indium-Rich In1-xGaxN Heterostructures: The Exploration of a Common Processing Window. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada624591.
Full textFox, K., T. Tommy Edwards, and D. David Peeler. TECHNOLOGY DEMONSTRATION OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION: GLASS FORMULATION PROCESSING WINDOW PREDICTIONS FOR SB5. Office of Scientific and Technical Information (OSTI), December 2007. http://dx.doi.org/10.2172/923829.
Full textSAGE Electrochromics, Inc. Electrochromic Windows: Advanced Processing Technology. Office of Scientific and Technical Information (OSTI), December 2006. http://dx.doi.org/10.2172/896321.
Full textBruder, Brittany L., Katherine L. Brodie, Tyler J. Hesser, Nicholas J. Spore, Matthew W. Farthing, and Alexander D. Renaud. guiBath y : A Graphical User Interface to Estimate Nearshore Bathymetry from Hovering Unmanned Aerial System Imagery. Engineer Research and Development Center (U.S.), February 2021. http://dx.doi.org/10.21079/11681/39700.
Full textCampbell, Sam, and Wiliam Dam. Evaluation of Mineral Deposits Along the Little Wind River, Riverton, WY, Processing Site. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1258486.
Full textFederal Information Processing Standards Publication: X window system version 11 release 3. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nist.fips.158.
Full textFederal Information Processing Standards Publication: X window system version 11 release 5 (X window system protocol; Xlib-C langauge X interface; X toolkit intrinsics - C language interface; bitmap distribution format 2.1). Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nist.fips.158-1.
Full text