Academic literature on the topic 'Processus de Jacobi'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processus de Jacobi.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processus de Jacobi"
Gruet, Jean-Claude. "Jacobi radial stable processes." Annales mathématiques Blaise Pascal 5, no. 2 (1998): 39–48. http://dx.doi.org/10.5802/ambp.109.
Full textDung, Nguyen Tien. "JACOBI PROCESSES DRIVEN BY FRACTIONAL BROWNIAN MOTION." Taiwanese Journal of Mathematics 18, no. 3 (May 2014): 835–48. http://dx.doi.org/10.11650/tjm.18.2014.3288.
Full textЕжова, Н. А., and Л. Б. Соколинский. "Scalability evaluation of iterative algorithms for supercomputer simulation of physical processes." Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), no. 4 (December 18, 2018): 416–30. http://dx.doi.org/10.26089/nummet.v19r437.
Full textCHOU, C. I., and C. L. HO. "GENERALIZED RAYLEIGH AND JACOBI PROCESSES AND EXCEPTIONAL ORTHOGONAL POLYNOMIALS." International Journal of Modern Physics B 27, no. 24 (September 11, 2013): 1350135. http://dx.doi.org/10.1142/s021797921350135x.
Full textFink, Holger, and Georg Schlüchtermann. "Fractional Lévy Cox–Ingersoll–Ross and Jacobi processes." Statistics & Probability Letters 142 (November 2018): 84–91. http://dx.doi.org/10.1016/j.spl.2018.07.004.
Full textGorin, Vadim, and Lingfu Zhang. "Interlacing adjacent levels of $$\beta $$–Jacobi corners processes." Probability Theory and Related Fields 172, no. 3-4 (January 4, 2018): 915–81. http://dx.doi.org/10.1007/s00440-017-0823-8.
Full textHari, V. "On the convergence of cyclic Jacobi-like processes." Linear Algebra and its Applications 81 (September 1986): 105–27. http://dx.doi.org/10.1016/0024-3795(86)90252-1.
Full textTang, Bo, Yingzhe Fan, Jixiu Wang, and Shijun Chen. "Exact Solutions for N-Coupled Nonlinear Schrödinger Equations With Variable Coefficients." Zeitschrift für Naturforschung A 71, no. 7 (July 1, 2016): 665–72. http://dx.doi.org/10.1515/zna-2016-0128.
Full textSander, Leonard M. "Kurt Jacobs: Stochastic Processes for Physicists." Journal of Statistical Physics 146, no. 4 (January 10, 2012): 880–81. http://dx.doi.org/10.1007/s10955-012-0419-8.
Full textKvasnička, Vladimír. "Special kinetic models of selection processes in biomacromolecular systems." Collection of Czechoslovak Chemical Communications 53, no. 12 (1988): 3220–39. http://dx.doi.org/10.1135/cccc19883220.
Full textDissertations / Theses on the topic "Processus de Jacobi"
Herrmann, Samuel. "Etude de processus de diffusion." Nancy 1, 2001. http://docnum.univ-lorraine.fr/public/SCD_T_2001_0026_HERRMANN.pdf.
Full textDoumerc, Yan. "Matrices aléatoires, processus stochastiques et groupes de réflexions." Toulouse 3, 2005. http://www.theses.fr/2005TOU30121.
Full textThe following thesis falls into three parts. Although they are all closely related to random matrix theory, each of these possesses its own particular concern. The first part deals with some of the existing links between eigenvalues of Gaussian random matrices, non-colliding processes and the Robinson-Schensted-Knuth correspondence. The second part tackles the subject of extensions to symmetric matrices of some classical one-dimensional diffusion processes, namely the Bessel squared processes and the Jacobi processes. Then, the third part hinges round the exit time of Brownian motion from regions which are the fundamental domains associated with finite or affine reflection groups in Euclidian space
Bandini, Elena. "Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005/document.
Full textIn the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE
Pourzandi, Makan. "Etude de l'impact des recouvrements calcul-communication sur des algorithmes parallèles de calcul matriciel." Lyon 1, 1995. http://www.theses.fr/1995LYO19001.
Full textGentil, Ivan. "Inégalités de Sobolev logarithmiques et hypercontractivité en mécanique statistique et en E. D. P." Toulouse 3, 2001. https://tel.archives-ouvertes.fr/tel-00001145.
Full textClaisse, Julien. "Dynamique des populations : contrôle stochastique et modélisation hybride du cancer." Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01066020.
Full textBerdjane, Belkacem. "Consommation et investissement optimaux dans des marchés financiers à coefficients aléatoires." Rouen, 2012. http://www.theses.fr/2012ROUES029.
Full textWe consider an optimal investment and consumption problem for a Black-Scholes financial market with stochastic coefficients driven by a diffusion process. We assume that an agent makes consumption and investment decisions based on a constant relative risk aversion (CRRA) utility functions. The dynamical programming approach leads to an investigation of the Hamilton Jacobi Bellman (HJB) equation which is a highly non linear partial differential equation (PDE) of the second order. By using the Feynman-Kac representation we prove uniqueness and smoothness of the solution. Moreover, we study the optimal convergence rate of the iterative numerical schemes for both the value function and the optimal portfolio. We show, that in this case, the optimal convergence rate is super geometrical, i. E. Is more rapid than any geometrical one. We apply our results to a stochastic volatility financial market. We consider the same consumption and investment problem but we consider a Black-Scholes financial market with stochastic volatility and unknown stock appreciation rate. The volatility parameter is driven by an external economic factor modeled as a diffusion process, of Ornstein-Uhlenbeck type with unknown drift. We use the dynamical programming approach and find an optimal financial strategy which depends on the drift parameter. To estimate the drift coefficient we observe the economic factor Y in the interval [0, T0] with fixed T0 > 0, and use a fixed-accuracy sequential estimation. Moreover, we consider the optimal consumption and investment problem on the finite interval [T0, T] under the estimated parameter. We show that the expected absolute deviation of the objective function from the optimal one, is less than some fixed positive small parameter δ, i. E. The strategy calculated through the sequential procedure is δ-optimal
Gradinaru, Mihai. "Applications du calcul stochastique à l'étude de certains processus." Habilitation à diriger des recherches, Université Henri Poincaré - Nancy I, 2005. http://tel.archives-ouvertes.fr/tel-00011826.
Full textentre 1996 et 2005, après la thèse de doctorat de l'auteur, et concerne l'étude fine de
certains processus stochastiques : mouvement brownien linéaire ou plan, processus de diffusion,
mouvement brownien fractionnaire, solutions d'équations différentielles stochastiques ou
d'équations aux dérivées partielles stochastiques.
La thèse d'habilitation s'articule en six chapitres correspondant aux thèmes
suivants : étude des intégrales par rapport aux temps locaux de certaines diffusions,
grandes déviations pour un processus obtenu par perturbation brownienne d'un système
dynamique dépourvu de la propriété d'unicité des solutions, calcul stochastique
pour le processus gaussien non-markovien non-semimartingale mouvement brownien fractionnaire,
étude des formules de type Itô et Tanaka pour l'équation de la chaleur stochastique,
étude de la durée de vie du mouvement brownien plan réfléchi dans un domaine à
frontière absorbante et enfin, estimation non-paramétrique et construction d'un
test d'adéquation à partir d'observations discrètes pour le coefficient de diffusion d'une
équation différentielle stochastique.
Les approches de tous ces thèmes sont probabilistes et basées sur l'analyse stochastique.
On utilise aussi des outils d'équations différentielles, d'équations aux dérivées partielles
et de l'analyse.
Liu, Dayan. "Analyse d'erreurs d'estimateurs des dérivées de signaux bruités et applications." Thesis, Lille 1, 2011. http://www.theses.fr/2011LIL10027/document.
Full textThis thesis concerns the construction and analysis of robust estimators for the numerical calculations of the derivatives of noisy signals and the parameters of noisy sinusoidal signals. In the first part of this thesis, we study some families of derivative estimators obtained by the algebraic methods. We show that a class of them can be directly obtained by truncating the Jacobi orthogonal series. This consideration allows us to extend the set of the parameters defining these estimators to IR. Then, we analyze the influence of these extended parameters on the truncation error which produces a time-delay estimation in causal case, on the error due to noises considered as stochastic processes, and finally on the error due to numerical integration methods. Thus, we show how to reduce the time-delay and the noise effect. A validation of this approach is achieved by constructing a non-asymptotic observer of the state variables of a nonlinear system. In the second part of this thesis, by using the algebraic method we construct estimators of the parameters of a noisy sinusoidal signal the amplitude of which varies with time. Moreover, we show that the modulating functions method has a link to the algebraic method. We then study the influence of parameters defining the estimators on the noise error contribution and the numerical integration error. In particular, some error bounds of these errors are given for a class of parameter estimators. Finally, a comparison between these estimators and the classical synchronous detection method is performed so as to demonstrate the effectiveness of our approach on such signals
Zhao, Xuzhe. "Problèmes de switching optimal, équations différentielles stochastiques rétrogrades et équations différentielles partielles intégrales." Thesis, Le Mans, 2014. http://www.theses.fr/2014LEMA1008/document.
Full textThere are three main results in this thesis. The first is existence and uniqueness of the solution in viscosity sense for a system of nonlinear m variational integral-partial differential equations with interconnected obstacles. From the probabilistic point of view, this system is related to optimal stochastic switching problem when the noise is driven by a Lévy process. As a by-product we obtain that the value function of the switching problem is continuous and unique solution of its associated Hamilton-Jacobi-Bellman system of equations. Next, we study a general class of min-max and max-min nonlinear second-order integral-partial variational inequalities with interconnected bilateralobstacles, related to a multiple modes zero-sum switching game with jumps. Using Perron’s method and by the help of systems of penalized unilateral reflected backward SDEs with jumps, we construct a continuous with polynomial growth viscosity solution, and a comparison result yields the uniqueness of the solution. At last, we deal with the solutions of systems of PDEs with bilateral inter-connected obstacles of min-max and max-min types in the Brownian framework. These systems arise naturally in stochastic switching zero-sum game problems. We show that when the switching costs of one side are smooth, the solutions of the min-max and max-min systems coincide. Furthermore, this solution is identified as the value function of the zero-sum switching game
Books on the topic "Processus de Jacobi"
Fine, Alain. Jacob, un processus analytique au risque du désordre somatique. Paris: Presses universitaires de France, 1999.
Find full textStochastic control of hereditary systems and applications. New York: Springer, 2008.
Find full textUnited States. Congress. House. Committee on Foreign Affairs. Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations. Advocating for American Jacob Ostreicher's freedom after two years in Bolivian detention: Hearing before the Subcommittee on Africa, Global Health, Global Human Rights, and International Organizations of the Committee on Foreign Affairs, House of Representatives, One Hundred Thirteenth Congress, first session, May 20, 2013. Washington: U.S. Government Printing Office, 2013.
Find full textThe U.S. State Department's inadequate response to human rights concerns in Bolivia: The case of American Jacob Osreicher [sic] : hearing before the Subcommittee on Africa, Global Health, and Human Rights of the Committee on Foreign Affairs, House of Representatives, One Hundred Twelfth Congress, second session, June 6, 2012. Washington: U.S. G.P.O., 2012.
Find full textWilliams, Kenneth S., Ronald J. Evans, and Bruce C. Berndt. Gauss and Jacobi Sums. Wiley & Sons, Incorporated, John, 2011.
Find full textChang, Mou-Hsiung. Stochastic Control of Hereditary Systems and Applications. Springer, 2010.
Find full textM, Bardi, Raghavan T. E. S, and Parthasarathy T, eds. Stochastic and differential games: Theory and numerical methods. Boston: Birkhäuser, 1998.
Find full textM, Bardi, Raghavan T. E. S, and Parthasarathy T, eds. Stochastic and differential games: Theory and numerical methods. Boston: Birkhäuser, 1999.
Find full text(Editor), Martino Bardi, T.E.S. Raghavan (Editor), and T. Parthasarathy (Editor), eds. Stochastic and Differential Games: Theory and Numerical Methods (Annals of the International Society of Dynamic Games). Birkhäuser Boston, 1999.
Find full textPasquier, Romain. Regional and Local Government. Edited by Robert Elgie, Emiliano Grossman, and Amy G. Mazur. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199669691.013.13.
Full textBook chapters on the topic "Processus de Jacobi"
Ye, J. J. "Generalized Bellman-Hamilton-Jacobi equations for piecewise deterministic Markov processes." In System Modelling and Optimization, 539–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0035503.
Full textJanas, Jan, and Serguei Naboko. "Spectral properties of selfadjoint Jacobi matrices coming from birth and death processes." In Recent Advances in Operator Theory and Related Topics, 387–97. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8374-0_21.
Full textZhang, Ying, Gen Li, Yongjin Li, Caixia Sun, and Pingjing Lu. "The Evaluation and Optimization of 3-D Jacobi Iteration on a Stream Processor." In Grid and Pervasive Computing, 317–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38027-3_34.
Full textGiacomucci, Scott. "Conclusion—A Future Vision of Social Work with Moreno’s Methods." In Social Work, Sociometry, and Psychodrama, 423–28. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6342-7_21.
Full textWeston, J. S., M. Clint, and C. W. Bleakney. "Parallel implementations of Jacobi's algorithm for the eigensolution of large matrices using array processors." In Parallel Processing: CONPAR 92—VAPP V, 787–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55895-0_489.
Full textGebremedhin, Assefaw H., Alex Pothen, and Andrea Walther. "Exploiting Sparsity in Jacobian Computation via Coloring and Automatic Differentiation: A Case Study in a Simulated Moving Bed Process." In Advances in Automatic Differentiation, 327–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-68942-3_29.
Full textKlein, Josephine. "Processes in the intersect." In Jacob's Ladder, 159–201. Routledge, 2018. http://dx.doi.org/10.4324/9780429476297-9.
Full textSieniutycz, Stanisław, and Jacek Jeżowski. "Hamilton–Jacobi–Bellman theory of energy systems." In Energy Optimization in Process Systems, 215–36. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-08-045141-1.00006-8.
Full textCraik, Fergus I. M. "Retrieval Processes." In Remembering, 97–132. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895226.003.0005.
Full textKlein, Josephine. "Blurred boundaries and bliss, union, communion and projective processes." In Jacob's Ladder, 127–47. Routledge, 2018. http://dx.doi.org/10.4324/9780429476297-7.
Full textConference papers on the topic "Processus de Jacobi"
LYTVYNOV, E. "LÉVY PROCESSES AND JACOBI FIELDS." In From Foundations to Applications. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702104_0023.
Full textDEMNI, N. "FREE MARTINGALE POLYNOMIALS FOR STATIONARY JACOBI PROCESSES." In Proceedings of the 28th Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835277_0008.
Full textPourhaj, Peyman, Daniel H. Y. Teng, Khan Wahid, and Seok-Bum Ko. "System size independent architecture for Jacobi processor." In 2008 Canadian Conference on Electrical and Computer Engineering - CCECE. IEEE, 2008. http://dx.doi.org/10.1109/ccece.2008.4564902.
Full textVilacha, C., J. C. Moreira, E. Miguez, and Antonio F. Otero. "Massive Jacobi power flow based on SIMD-processor." In 2011 10th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, 2011. http://dx.doi.org/10.1109/eeeic.2011.5874768.
Full textHari, Vjeran. "Convergence to Diagonal Form of Block Jacobi‐type Processes." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990905.
Full textTao Wang, Yuan Yao, Lin Han, Dan Zhang, and Yuanyuan Zhang. "Implementation of Jacobi iterative method on graphics processor unit." In 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icicisys.2009.5358155.
Full textJingheng Xu, Haohuan Fu, Lin Gan, Yu Song, Hongbo Peng, Wen Shi, and Guangwen Yang. "Performance optimization of Jacobi stencil algorithms based on POWER8 architecture." In 2016 IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2016. http://dx.doi.org/10.1109/asap.2016.7760798.
Full textDeprettere, Ed F. A., Gerben J. Hekstra, and Edwin Rypkema. "Approach for the determination of a Jacobi specific dataflow processor." In Optical Science, Engineering and Instrumentation '97, edited by Franklin T. Luk. SPIE, 1997. http://dx.doi.org/10.1117/12.284190.
Full textZhang, Ying, Qiang Dou, Gen Li, Xuejun Yang, Yongjin Li, and Caixia Huang. "Mapping and Optimizing 2-D Jacobi Iteration on a Stream Processor." In 2008 10th IEEE International Conference on High Performance Computing and Communications (HPCC). IEEE, 2008. http://dx.doi.org/10.1109/hpcc.2008.72.
Full textSoliman, Mostafa I., and Fatma S. Ahmed. "Hierarchical block Jacobi on a cluster of multi-core Intel processors." In 2016 Fourth International Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC). IEEE, 2016. http://dx.doi.org/10.1109/jec-ecc.2016.7518974.
Full text