Academic literature on the topic 'Processus de Lévy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processus de Lévy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processus de Lévy"
Fourati, S. "Points de croissance des processus de Lévy et théorie générale des processus." Probability Theory and Related Fields 110, no. 1 (January 16, 1998): 13–49. http://dx.doi.org/10.1007/s004400050143.
Full textSimon, Thomas. "Petites déviations et support d'un processus de Lévy." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no. 4 (August 1999): 331–34. http://dx.doi.org/10.1016/s0764-4442(00)88576-6.
Full textFourati, Sonia. "Fluctuation des processus de Lévy et dispersion ( « scattering »)." Comptes Rendus Mathematique 342, no. 2 (January 2006): 135–39. http://dx.doi.org/10.1016/j.crma.2005.11.012.
Full textPinhas, Max. "Critères macroéconomiques actuariels et processus de Paul Lévy." Rivista di Matematica per le Scienze Economiche e Sociali 9, no. 2 (September 1986): 143–47. http://dx.doi.org/10.1007/bf02086872.
Full textChaumont, L. "Sur certains processus de lévy conditionnés à rester positifs." Stochastics and Stochastic Reports 47, no. 1-2 (March 1994): 1–20. http://dx.doi.org/10.1080/17442509408833880.
Full textCarmona, P., F. Petit, and M. Yor. "Sur les fonctionnelles exponentielles de certains processus de lévy." Stochastics and Stochastic Reports 47, no. 1-2 (March 1994): 71–101. http://dx.doi.org/10.1080/17442509408833883.
Full textAbbassi, Mohamed. "Processus de Lévy autosimilaires sur les groupes de Lie." Comptes Rendus Mathematique 348, no. 21-22 (November 2010): 1207–10. http://dx.doi.org/10.1016/j.crma.2010.10.014.
Full textAlili, Larbi, and Loïc Chaumont. "Quelques nouvelles identités de fluctuation pour les processus de Lévy." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 7 (April 1999): 613–16. http://dx.doi.org/10.1016/s0764-4442(99)80256-0.
Full textLouhichi, Sana, and Emmanuel Rio. "Convergence du processus de sommes partielles vers un processus de Lévy pour les suites associées." Comptes Rendus Mathematique 349, no. 1-2 (January 2011): 89–91. http://dx.doi.org/10.1016/j.crma.2010.12.001.
Full textFourati, S. "Inversion de l'espace et du temps des processus de Lévy stables." Probability Theory and Related Fields 135, no. 2 (November 10, 2005): 201–15. http://dx.doi.org/10.1007/s00440-005-0455-2.
Full textDissertations / Theses on the topic "Processus de Lévy"
Chaumont, Loïc. "Processus de Lévy et conditionnement." Paris 6, 1994. http://www.theses.fr/1994PA066085.
Full textBouselmi, Aych. "Options américaines et processus de Lévy." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00944239.
Full textMikou, Mohammed. "Options américaines dans les modèles exponentiels de Lévy." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00628448.
Full textBartholme, Carine. "Self-similarity and exponential functionals of Lévy processes." Doctoral thesis, Universite Libre de Bruxelles, 2014. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209256.
Full textDans la première partie, le principal objet d’intérêt est la soi-disant fonctionnelle exponentielle de processus de Lévy. La loi de cette variable aléatoire joue un rôle primordial dans de nombreux domaines divers tant sur le plan théorique que dans des domaines appliqués. Doney dérive une factorisation de la loi arc-sinus en termes de suprema de processus stables indépendants et de même index. Une factorisation similaire de la loi arc-sinus en termes de derniers temps de passage au niveau 1 de processus de Bessel peut aussi être établie en utilisant un résultat dû à Getoor. Des factorisations semblables d’une variable de Pareto en termes des mêmes objets peut également être obtenue. Le but de cette partie est de donner une preuve unifiée et une généralisation de ces factorisations qui semblent n’avoir aucun lien à première vue. Même s’il semble n’y avoir aucune connexion entre le supremum d’un processus stable et le dernier temps de passage d’un processus de Bessel, il peut être montré que ces variables aleatoires sont liées à des fonctionnelles exponentielles de processus de Lévy spécifiques. Notre contribution principale dans cette partie et aussi au niveau de caractérisations de la loi de la fonctionnelle exponentielle sont des factorisations de la loi arc-sinus et de variables de Pareto généralisées. Notre preuve s’appuie sur une factorisation de Wiener-Hopf récente de Patie et Savov.
Dans la deuxième partie, motivée par le fait que la dérivée fractionnaire de Caputo et d’autres opérateurs fractionnaires classiques coïncident avec le générateur de processus de Markov auto-similaires positifs particuliers, nous introduisons des opérateurs généralisés de Caputo et nous étudions certaines propriétés. Nous nous intéressons particulièrement aux conditions sous lesquelles ces opérateurs coïncident avec les générateurs infinitésimaux de processus de Markov auto-similaires positifs généraux. Dans ce cas, nous étudions les fonctions invariantes de ces opérateurs qui admettent une représentation en termes de séries entières. Nous précisons que cette classe de fonctions contient les fonctions de Bessel modifiées, les fonctions de Mittag-Leffler ainsi que plusieurs fonctions hypergéométriques. Nous proposons une étude unifiant et en profondeur de cette classe de fonctions.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Richard, Mathieu. "Arbres, Processus de branchement non markoviens et Processus de Lévy." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00649235.
Full textDuquesne, Thomas. "Arbres aléatoires, processus de Lévy et superprocessus." Paris 6, 2001. http://www.theses.fr/2001PA066549.
Full textDávila-Felipe, Miraine. "Pathwise decompositions of Lévy processes : applications to epidemiological modeling." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066651.
Full textThis dissertation is devoted to the study of some pathwise decompositions of spectrally positive Lévy processes, and duality relationships for certain (possibly non-Markovian) branching processes, driven by the use of the latter as probabilistic models of epidemiological dynamics. More precisely, we model the transmission tree of a disease as a splitting tree, i.e. individuals evolve independently from one another, have i.i.d. lifetimes (periods of infectiousness) that are not necessarily exponential, and give birth (secondary infections) at a constant rate during their lifetime. The incidence of the disease under this model is a Crump-Mode-Jagers process (CMJ); the overarching goal of the two first chapters is to characterize the law of this incidence process through time, jointly with the partially observed (inferred from sequence data) transmission tree. In Chapter I we obtain a description, in terms of probability generating functions, of the conditional likelihood of the number of infectious individuals at multiple times, given the transmission network linking individuals that are currently infected. In the second chapter, a more elegant version of this characterization is given, passing by a general result of invariance under time reversal for a class of branching processes. Finally, in Chapter III we are interested in the law of the (sub)critical branching process seen from its extinction time. We obtain a duality result that implies in particular the invariance under time reversal from their extinction time of the (sub)critical CMJ processes and the excursion away from 0 of the critical Feller diffusion (the width process of the continuum random tree)
Lambert, Amaury. "Arbres, excursions et processus de Lévy complètement asymétriques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2001. http://tel.archives-ouvertes.fr/tel-00252150.
Full textLes deux suivants sont consacrés aux processus de branchement à espace d'états continu, qui sont des processus de Lévy sans saut négatif changés de temps : généalogie (deuxième chapitre), dont nous dérivons des théorèmes de type Ray-Knight, et conditionnement à ne jamais s'éteindre (troisième chapitre).
Enfin, le dernier chapitre traite de théorie du renouvellement multivariée dans deux cas naturels d'ensembles aléatoires emboîtés.
Haugomat, Tristan. "Localisation en espace de la propriété de Feller avec application aux processus de type Lévy." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S046/document.
Full textIn this PhD thesis, we give a space localisation for the theory of Feller processes. A first objective is to obtain simple and precise results on the convergence of Markov processes. A second objective is to study the link between the notions of Feller property, martingale problem and Skorokhod topology. First we give a localised version of the Skorokhod topology. We study the notions of compactness and tightness for this topology. We make the connexion between localised and unlocalised Skorokhod topologies, by using the notion of time change. In a second step, using the localised Skorokhod topology and the time change, we study martingale problems. We show the equivalence between, on the one hand, to be solution of a well-posed martingale problem, on the other hand, to satisfy a localised version of the Feller property, and finally, to be a Markov process weakly continuous with respect to the initial condition. We characterise the weak convergence for solutions of martingale problems in terms of convergence of associated operators and give a similar result for discrete time approximations. Finally, we apply the theory of locally Feller process to some examples. We first apply it to the Lévy-type processes and obtain convergence results for discrete and continuous time processes, including simulation methods and Euler’s schemes. We then apply the same theory to one-dimensional diffusions in a potential and we obtain convergence results of diffusions or random walks towards singular diffusions. As a consequences, we deduce the convergence of random walks in random environment towards diffusions in random potential
Véchambre, Grégoire. "Fonctionnelles de processus de Lévy et diffusions en milieux aléatoires." Thesis, Orléans, 2016. http://www.theses.fr/2016ORLE2038/document.
Full textFor V a random càd-làg process, we call diffusion in the random medium V the formal solution of thestochastic differential equation \[ dX_t = - \frac1{2} V'(X_t) dt + dB_t, \] where B is a brownian motion independent of V . The local time at time t and at the position x of thediffusion, denoted by LX(t, x), gives a measure of the amount of time spent by the diffusion at point x,before instant t. In this thesis we consider the case where the medium V is a spectrally negative Lévyprocess converging almost surely toward −∞, and we are interested in the asymptotic behavior, whent goes to infinity, of $\mathcal{L}_X^*(t) := \sup_{\mathbb{R}} \mathcal{L}_X(t, .)$ the supremum of the local time of the diffusion. We arealso interested in the localization of the point most visited by the diffusion. We notably establish theconvergence in distribution and the almost sure behavior of the supremum of the local time. This studyreveals that the asymptotic behavior of the supremum of the local time is deeply linked to the propertiesof the exponential functionals of Lévy processes conditioned to stay positive and this brings us to studythem. If V is a Lévy process, V ↑ denotes the process V conditioned to stay positive. The exponentialfunctional of V ↑ is the random variable $\int_0^{+ \infty} e^{- V^{\uparrow} (t)}dt$ . For this object, we study in particular finiteness
Books on the topic "Processus de Lévy"
Øksendal, B. K. (Bernt Karsten), 1945-, Proske Frank, and SpringerLink (Online service), eds. Malliavin Calculus for Lévy Processes with Applications to Finance. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
Find full textBarndorff-Nielsen, Ole E., Sidney I. Resnick, and Thomas Mikosch, eds. Lévy Processes. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7.
Full textE, Barndorff-Nielsen O., Mikosch Thomas, and Resnick Sidney I, eds. Lévy processes: Theory and applications. Boston: Birkhäuser, 2001.
Find full textPicard, Jean, ed. Fluctuation Theory for Lévy Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-48511-7.
Full textSchoutens, Wim, and Jessica Cariboni, eds. Lévy Processes in Credit Risk. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781119206521.
Full textLévy processes and stochastic calculus. 2nd ed. Cambridge: Cambridge University Press, 2009.
Find full textBarndorff-Nielsen, O. E. Lévy Processes: Theory and Applications. Boston, MA: Birkhäuser Boston, 2001.
Find full textApplebaum, David. Lévy processes and stochastic calculus. 2nd ed. Cambridge: Cambridge University Press, 2009.
Find full textApplebaum, David. Lévy processes and stochastic calculus. 2nd ed. Cambridge: Cambridge University Press, 2009.
Find full textBook chapters on the topic "Processus de Lévy"
Sato, Ken-iti. "Basic Results on Lévy Processes." In Lévy Processes, 3–37. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_1.
Full textHolevo, Alexander S. "Lévy Processes and Continuous Quantum Measurements." In Lévy Processes, 225–39. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_10.
Full textWoyczyński, Wojbor A. "Lévy Processes in the Physical Sciences." In Lévy Processes, 241–66. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_11.
Full textBertoin, Jean. "Some Properties of Burgers Turbulence with White or Stable Noise Initial Data." In Lévy Processes, 267–79. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_12.
Full textBarndorff-Nielsen, Ole E., and Neil Shephard. "Modelling by Lévy Processess for Financial Econometrics." In Lévy Processes, 283–318. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_13.
Full textEberlein, Ernst. "Application of Generalized Hyperbolic Lévy Motions to Finance." In Lévy Processes, 319–36. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_14.
Full textMa, Jin, Philip Protter, and Jianfeng Zhang. "Explicit Form and Path Regularity of Martingale Representations." In Lévy Processes, 337–60. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_15.
Full textYor, Marc. "Interpretations in Terms of Brownian and Bessel Meanders of the Distribution of a Subordinated Perpetuity." In Lévy Processes, 361–75. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_16.
Full textNolan, John P. "Maximum Likelihood Estimation and Diagnostics for Stable Distributions." In Lévy Processes, 379–400. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_17.
Full textRosiński, Jan. "Series Representations of Lévy Processes from the Perspective of Point Processes." In Lévy Processes, 401–15. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0197-7_18.
Full textConference papers on the topic "Processus de Lévy"
LYTVYNOV, E. "LÉVY PROCESSES AND JACOBI FIELDS." In From Foundations to Applications. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702104_0023.
Full textStoynov, Pavel. "Lévy processes for financial modeling." In EIGHTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0084005.
Full textLee, Yuh-Jia, and Hsin-Hung Shih. "A Quantum Decomposition of Lévy Processes." In Stochastic Analysis: Classical and Quantum - Perspectives of White Noise Theory. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701541_0008.
Full textFRANZ, UWE, and NAOFUMI MURAKI. "MARKOV PROPERTY OF MONOTONE LÉVY PROCESSES." In Proceedings of the Third German-Japanese Symposium. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701503_0003.
Full textOBATA, NOBUAKI, and KIMIAKI SAITÔ. "CAUCHY PROCESSES AND THE LÉVY LAPLACIAN." In Proceedings of the RIMS Workshop on Infinite-Dimensional Analysis and Quantum Probability. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705242_0015.
Full textSCHÜRMANN, MICHAEL. "LÉVY PROCESSES ON DEFORMATIONS OF HOPF ALGEBRAS." In Proceedings of the Third German-Japanese Symposium. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701503_0018.
Full textDHAHRI, AMEUR, and UWE FRANZ. "LÉVY PROCESSES ON THE LORENTZ-LIE ALGEBRA." In International Conference on Infinite Dimensional Analysis, Quantum Probability and Related Topics, QP38. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811275999_0003.
Full textFranz, Uwe. "Lévy process on real Lie algebras." In Proceedings of the First Sino-German Conference on Stochastic Analysis (A Satellite Conference of ICM 2002). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702241_0011.
Full textJiang, Guangxin, Michael C. Fu, and Chenglong Xu. "Optimal importance sampling for simulation of Lévy processes." In 2015 Winter Simulation Conference (WSC). IEEE, 2015. http://dx.doi.org/10.1109/wsc.2015.7408538.
Full textJeanblanc, M., S. Kloeppel, and Y. Miyahara. "Minimal Variance Martingale Measures for Geometric Lévy Processes." In Proceedings of the 6th Ritsumeikan International Symposium. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770448_0011.
Full text