Academic literature on the topic 'Processus de Markov à sauts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processus de Markov à sauts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processus de Markov à sauts"
Radulescu, Ovidiu, Aurélie Muller, and Alina Crudu. "Théorèmes limites pour les processus de Markov à sauts." Techniques et sciences informatiques 26, no. 3-4 (June 5, 2007): 443–69. http://dx.doi.org/10.3166/tsi.26.443-469.
Full textSimon, Thomas. "Théorème de support pour processus à sauts." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 328, no. 11 (June 1999): 1075–80. http://dx.doi.org/10.1016/s0764-4442(99)80327-9.
Full textMaaouia, Fa�za. "processus de markov." Annals of Probability 29, no. 4 (October 2001): 1859–902. http://dx.doi.org/10.1214/aop/1015345775.
Full textKermiche, Lamya. "Une modélisation de la surface de volatilité implicite par processus à sauts." Finance 29, no. 2 (2008): 57. http://dx.doi.org/10.3917/fina.292.0057.
Full textSimon, Thomas. "Fonctions de Mittag–Leffler et processus de Lévy stables sans sauts négatifs." Expositiones Mathematicae 28, no. 3 (2010): 290–98. http://dx.doi.org/10.1016/j.exmath.2009.12.002.
Full textZusheng, Rao. "Filtrage d'une diffusion reflechie a sauts, observee a travers un processus ponctuel marque." Stochastics and Stochastic Reports 51, no. 1-2 (November 1994): 51–67. http://dx.doi.org/10.1080/17442509408833944.
Full textDrougard, Nicolas, Florent Teichteil-Königsbuch, Jean-Loup Farges, and Didier Dubois. "Processus décisionnels de Markov possibilistes à observabilité mixte." Revue d'intelligence artificielle 29, no. 6 (December 28, 2015): 629–53. http://dx.doi.org/10.3166/ria.29.629-653.
Full textMa, Shuai, and Jia Yuan Yu. "State-Augmentation Transformations for Risk-Sensitive Reinforcement Learning." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4512–19. http://dx.doi.org/10.1609/aaai.v33i01.33014512.
Full textBastien Charlebois, Janik. "« L’homophobie naturelle » des garçons adolescents : essor et ressorts d’explications déterministes." Hors thème, no. 49 (March 28, 2011): 181–201. http://dx.doi.org/10.7202/1001417ar.
Full textZahid, Mehdi. "Perturbation de processus de markov par des mesures positives." Stochastics and Stochastic Reports 35, no. 4 (June 1991): 215–31. http://dx.doi.org/10.1080/17442509108833703.
Full textDissertations / Theses on the topic "Processus de Markov à sauts"
Joulin, Aldéric Privault Nicolas. "Concentration et fluctuations de processus stochastiques avec sauts." [S. l.] : [s. n.], 2006. http://tel.archives-ouvertes.fr.
Full textYang, Xiaochuan. "Etude dimensionnelle de la régularité de processus de diffusion à sauts." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1073/document.
Full textIn this dissertation, we study various dimension properties of the regularity of jump di usion processes, solution of a class of stochastic di erential equations with jumps. In particular, we de- scribe the uctuation of the Hölder regularity of these processes and that of the local dimensions of the associated occupation measure by computing their multifractal spepctra. e Hausdor dimension of the range and the graph of these processes are also calculated.In the last chapter, we use a new notion of “large scale” dimension in order to describe the asymptotics of the sojourn set of a Brownian motion under moving boundaries
Joulin, Aldéric. "Concentration et fluctuations de processus stochastiques avec sauts." Phd thesis, Université de La Rochelle, 2006. http://tel.archives-ouvertes.fr/tel-00115724.
Full textDans la première partie de la thèse, nous explorons le
phénomène de concentration des processus de naissance et de mort. Les différentes approches considérées sont d'une part les inégalités fonctionnelles ainsi que la méthode de
Herbst, et d'autre part l'étude des propriétés du semigroupe associé et des techniques de martingales. En particulier, nous
sommes amenés à introduire diverses notions de courbures de ces processus, analogues discrets du critère de courbure de Bakry-Emery dans le cadre des processus de diffusion.
Dans la deuxième partie de la thèse, nous étudions le
comportement du processus supremum d'une intégrale stable stochastique en établissant des inégalités maximales que nous appliquons à des problèmes de temps de passage de
processus symétriques stables. Enfin, nous démontrons un principe de domination convexe pour des intégrales stochastiques brownienne et stable corrélées.
Ait, Rami Mustapha. "Approche LMI pour l'analyse et la commande des systèmes à sauts markoviens." Paris 9, 1997. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1997PA090026.
Full textMariton, Michel. "Les systèmes linéaires à sauts markoviens." Paris 11, 1986. http://www.theses.fr/1986PA112288.
Full textCrudu, Alina. "Approximations hybrides de processus de Markov à sauts multi-échelles : applications aux modèles de réseaux de gènes en biologie moléculaire." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00454886.
Full textBect, Julien. "Processus de Markov diffusifs par morceaux : outils analytiques et numériques." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00169791.
Full textNous introduisons dans la première partie du mémoire la notion de processus diffusif par morceaux, qui fournit un cadre théorique général qui unifie les différentes classes de modèles "hybrides" connues dans la littérature. Différents aspects de ces modèles sont alors envisagés, depuis leur construction mathématique (traitée grâce au théorème de renaissance pour les processus de Markov) jusqu'à l'étude de leur générateur étendu, en passant par le phénomène de Zénon.
La deuxième partie du mémoire s'intéresse plus particulièrement à la question de la "propagation de l'incertitude", c'est-à-dire à la manière dont évolue la loi marginale de l'état au cours du temps. L'équation de Fokker-Planck-Kolmogorov (FPK) usuelle est généralisée à diverses classes de processus diffusifs par morceaux, en particulier grâce aux notions d'intensité moyenne de sauts et de courant de probabilité. Ces résultats sont illustrés par deux exemples de modèles multidimensionnels, pour lesquels une résolution numérique de l'équation de FPK généralisée a été effectuée grâce à une discrétisation en volumes finis. La comparaison avec des méthodes de type Monte-Carlo est également discutée à partir de ces deux exemples.
Rabiet, Victor. "Une équation stochastique avec sauts censurés liée à des PDMP à plusieurs régimes." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1031/document.
Full textThis work is dedicated to the study of some properties concerning the d-dimensional jump type diffusion X = (Xt) with infinitesimal generator given by Lψ(x) = 1/2 ∑ aᵤᵥ(x)∂²ψ(x)/∂xᵤ∂xᵥ + g(x)∇ψ(x) + ∫ (ψ(x + c(z, x)) − ψ(x))γ(z, x)µ(dz) where µ is of infinite total mass. If γ did not depend on x, we would be in a classical situation where the process X could be represented as the solution of a stochastic equation driven by a Poisson point measure with intensity measure γ(z)µ(dz) ; when γ depends on x, we may have the heuristic idea that, if we were to imagine the process as a trajectory of a particle, the law of the jumps may depend on the position of the particle. In the first part, we give some conditions to obtain existence and uniqueness of such processes. Then, we consider this type of processes as a generalization of Piecewise Deterministic Markov Processes (PDMP) ; we show that they can be seen as a limit of a sequence (Xᵣ(t)) of standard PDMP's for which the intensity of the jumps tends to infinity as r tends to infinity, following two regimes: a slow one, which leads to a jump component with finite variation, and a rapid one which, supposing that the processes at hand are centered and renormalized in a convenient way, produces the diffusion component in the limit. Finally, we prove Harris recurrence of X using a regeneration scheme which is entirely based on the jumps of the process. Moreover we state explicit conditions in terms of the coefficients of the process allowing to control the speed of convergence to equilibrium in terms of deviation inequalities for integrable additive functionals. In the second part, we consider again the same type of process X = (Xt(x)) starting from x. Using an approach based on a finite dimensional Malliavin Calculus, we study the joint regularity of this process in the following sense : we fix b≥1 and p>1, K a compact set of Rᵈ, and we give sufficient conditions in order to have P(Xt(x)∈dy)=pt(x,y)dy with (x,y)↦pt(x,y) in Wᵇᵖ(K×Rᵈ)
Abbassi, Noufel. "Chaînes de Markov triplets et filtrage optimal dans les systemes à sauts." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00873630.
Full textMurr, Rüdiger. "Les classes réciproques des processus de Markov : une approche avec des formules de dualité." Thesis, Paris 10, 2012. http://www.theses.fr/2012PA100124/document.
Full textThis work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature. In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular Lévy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable functionals. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein's lemma for Gaussian random variables and Chen's lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures.The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal.In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable
Books on the topic "Processus de Markov à sauts"
The construction theory of denumerable Markov processes. Changsha: Hunan Science and Technology Publishing House, 1990.
Find full textFoata, Dominique. Processus stochastiques: Processus de Poisson, chaînes de Markov et martingales : cours et exercices corrigeś. Paris: Dunod, 2004.
Find full textJ, Anderson William. Continuous-time Markov chains: An applications-oriented approach. New York: Springer-Verlag, 1991.
Find full textHidden Markov models for bioinformatics. Dordrecht: Kluwer Academic Publishers, 2001.
Find full textPrabhu, N. U. (Narahari Umanath), 1924- and Tang Loon Ching, eds. Markov-modulated processes & semiregenerative phenomena. Singapore: World Scientific, 2009.
Find full textFrom Markov chains to non-equilibrium particle systems. 2nd ed. River Edge, N.J: World Scientific, 2004.
Find full textBook chapters on the topic "Processus de Markov à sauts"
Leandre, Rémi. "Densite en temps petit d'un processus de sauts." In Lecture Notes in Mathematics, 81–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077628.
Full textCaumel, Yves. "Chaînes de Markov discrètes." In Probabilités et processus stochastiques, 149–78. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_7.
Full textel Karoui, Nicole, and Monique Jeanblanc Picque. "Controle de processus de Markov." In Lecture Notes in Mathematics, 508–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0084156.
Full textMaisonneuve, Bernard. "Processus de Markov: Naissance, retournement, regeneration." In Lecture Notes in Mathematics, 261–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/bfb0084191.
Full textCaumel, Yves. "Chaînes de Markov à temps continu et files d’attente." In Probabilités et processus stochastiques, 203–33. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_9.
Full textChafaï, Djalil, and Florent Malrieu. "Des chaînes de Markov aux processus de diffusion." In Recueil de Modèles Aléatoires, 357–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49768-5_27.
Full textFourati, S. "Une propriété de Markov pour les processus indexés par ℝ." In Lecture Notes in Mathematics, 133–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0094206.
Full textMaille, Sophie. "Sur l'utilisation de processus de markov dans le modele d'ising: attractivite et couplage." In Lecture Notes in Mathematics, 195–235. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0073848.
Full textCocozza-Thivent, C., and M. Roussignol. "Comparaison des lois stationnaire et quasi-stationnaire d’un processus de Markov et application à la fiabilité." In Lecture Notes in Mathematics, 24–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094639.
Full text"LES PROCESSUS DE SAUTS." In Finance computationnelle et gestion des risques, 427–58. Presses de l'Université du Québec, 2006. http://dx.doi.org/10.2307/j.ctv18ph6c6.17.
Full textConference papers on the topic "Processus de Markov à sauts"
Singer, Cs, R. Buck, R. Pitz-Paal, and H. Mu¨ller-Steinhagen. "Assessment of Solar Power Tower Driven Ultra Supercritical Steam Cycles Applying Tubular Central Receivers With Varied Heat Transfer Media." In ASME 2009 3rd International Conference on Energy Sustainability collocated with the Heat Transfer and InterPACK09 Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/es2009-90476.
Full textFiaschi, Daniele, Giampaolo Manfrida, Michela Massini, and Giacomo Pellegrini. "Some Innovative Readily Applicable Proposals for Chemical Separation and Sequestration of CO2 Emissions From Power Plants." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58508.
Full textConnolly, Jonathon, Peter Forsyth, Matthew McGilvray, and David Gillespie. "The Use of Fluid-Solid Cell Transformation to Model Volcanic Ash Deposition Within a Gas Turbine Hot Component." In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76683.
Full text