Dissertations / Theses on the topic 'Processus de Markov à sauts'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Processus de Markov à sauts.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Joulin, Aldéric Privault Nicolas. "Concentration et fluctuations de processus stochastiques avec sauts." [S. l.] : [s. n.], 2006. http://tel.archives-ouvertes.fr.
Full textYang, Xiaochuan. "Etude dimensionnelle de la régularité de processus de diffusion à sauts." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1073/document.
Full textIn this dissertation, we study various dimension properties of the regularity of jump di usion processes, solution of a class of stochastic di erential equations with jumps. In particular, we de- scribe the uctuation of the Hölder regularity of these processes and that of the local dimensions of the associated occupation measure by computing their multifractal spepctra. e Hausdor dimension of the range and the graph of these processes are also calculated.In the last chapter, we use a new notion of “large scale” dimension in order to describe the asymptotics of the sojourn set of a Brownian motion under moving boundaries
Joulin, Aldéric. "Concentration et fluctuations de processus stochastiques avec sauts." Phd thesis, Université de La Rochelle, 2006. http://tel.archives-ouvertes.fr/tel-00115724.
Full textDans la première partie de la thèse, nous explorons le
phénomène de concentration des processus de naissance et de mort. Les différentes approches considérées sont d'une part les inégalités fonctionnelles ainsi que la méthode de
Herbst, et d'autre part l'étude des propriétés du semigroupe associé et des techniques de martingales. En particulier, nous
sommes amenés à introduire diverses notions de courbures de ces processus, analogues discrets du critère de courbure de Bakry-Emery dans le cadre des processus de diffusion.
Dans la deuxième partie de la thèse, nous étudions le
comportement du processus supremum d'une intégrale stable stochastique en établissant des inégalités maximales que nous appliquons à des problèmes de temps de passage de
processus symétriques stables. Enfin, nous démontrons un principe de domination convexe pour des intégrales stochastiques brownienne et stable corrélées.
Ait, Rami Mustapha. "Approche LMI pour l'analyse et la commande des systèmes à sauts markoviens." Paris 9, 1997. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=1997PA090026.
Full textMariton, Michel. "Les systèmes linéaires à sauts markoviens." Paris 11, 1986. http://www.theses.fr/1986PA112288.
Full textCrudu, Alina. "Approximations hybrides de processus de Markov à sauts multi-échelles : applications aux modèles de réseaux de gènes en biologie moléculaire." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00454886.
Full textBect, Julien. "Processus de Markov diffusifs par morceaux : outils analytiques et numériques." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00169791.
Full textNous introduisons dans la première partie du mémoire la notion de processus diffusif par morceaux, qui fournit un cadre théorique général qui unifie les différentes classes de modèles "hybrides" connues dans la littérature. Différents aspects de ces modèles sont alors envisagés, depuis leur construction mathématique (traitée grâce au théorème de renaissance pour les processus de Markov) jusqu'à l'étude de leur générateur étendu, en passant par le phénomène de Zénon.
La deuxième partie du mémoire s'intéresse plus particulièrement à la question de la "propagation de l'incertitude", c'est-à-dire à la manière dont évolue la loi marginale de l'état au cours du temps. L'équation de Fokker-Planck-Kolmogorov (FPK) usuelle est généralisée à diverses classes de processus diffusifs par morceaux, en particulier grâce aux notions d'intensité moyenne de sauts et de courant de probabilité. Ces résultats sont illustrés par deux exemples de modèles multidimensionnels, pour lesquels une résolution numérique de l'équation de FPK généralisée a été effectuée grâce à une discrétisation en volumes finis. La comparaison avec des méthodes de type Monte-Carlo est également discutée à partir de ces deux exemples.
Rabiet, Victor. "Une équation stochastique avec sauts censurés liée à des PDMP à plusieurs régimes." Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1031/document.
Full textThis work is dedicated to the study of some properties concerning the d-dimensional jump type diffusion X = (Xt) with infinitesimal generator given by Lψ(x) = 1/2 ∑ aᵤᵥ(x)∂²ψ(x)/∂xᵤ∂xᵥ + g(x)∇ψ(x) + ∫ (ψ(x + c(z, x)) − ψ(x))γ(z, x)µ(dz) where µ is of infinite total mass. If γ did not depend on x, we would be in a classical situation where the process X could be represented as the solution of a stochastic equation driven by a Poisson point measure with intensity measure γ(z)µ(dz) ; when γ depends on x, we may have the heuristic idea that, if we were to imagine the process as a trajectory of a particle, the law of the jumps may depend on the position of the particle. In the first part, we give some conditions to obtain existence and uniqueness of such processes. Then, we consider this type of processes as a generalization of Piecewise Deterministic Markov Processes (PDMP) ; we show that they can be seen as a limit of a sequence (Xᵣ(t)) of standard PDMP's for which the intensity of the jumps tends to infinity as r tends to infinity, following two regimes: a slow one, which leads to a jump component with finite variation, and a rapid one which, supposing that the processes at hand are centered and renormalized in a convenient way, produces the diffusion component in the limit. Finally, we prove Harris recurrence of X using a regeneration scheme which is entirely based on the jumps of the process. Moreover we state explicit conditions in terms of the coefficients of the process allowing to control the speed of convergence to equilibrium in terms of deviation inequalities for integrable additive functionals. In the second part, we consider again the same type of process X = (Xt(x)) starting from x. Using an approach based on a finite dimensional Malliavin Calculus, we study the joint regularity of this process in the following sense : we fix b≥1 and p>1, K a compact set of Rᵈ, and we give sufficient conditions in order to have P(Xt(x)∈dy)=pt(x,y)dy with (x,y)↦pt(x,y) in Wᵇᵖ(K×Rᵈ)
Abbassi, Noufel. "Chaînes de Markov triplets et filtrage optimal dans les systemes à sauts." Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00873630.
Full textMurr, Rüdiger. "Les classes réciproques des processus de Markov : une approche avec des formules de dualité." Thesis, Paris 10, 2012. http://www.theses.fr/2012PA100124/document.
Full textThis work is concerned with the characterization of certain classes of stochastic processes via duality formulae. In particular we consider reciprocal processes with jumps, a subject up to now neglected in the literature. In the first part we introduce a new formulation of a characterization of processes with independent increments. This characterization is based on a duality formula satisfied by processes with infinitely divisible increments, in particular Lévy processes, which is well known in Malliavin calculus. We obtain two new methods to prove this duality formula, which are not based on the chaos decomposition of the space of square-integrable functionals. One of these methods uses a formula of partial integration that characterizes infinitely divisible random vectors. In this context, our characterization is a generalization of Stein's lemma for Gaussian random variables and Chen's lemma for Poisson random variables. The generality of our approach permits us to derive a characterization of infinitely divisible random measures.The second part of this work focuses on the study of the reciprocal classes of Markov processes with and without jumps and their characterization. We start with a resume of already existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. Thus we are able to connect the results of characterizations via duality formulae with the theory of stochastic mechanics by our interpretation, and to stochastic optimal control theory by the mathematical approach. As an application we are able to prove an invariance property of the reciprocal class of a Brownian diffusion under time reversal.In the context of pure jump processes we derive the following new results. We describe the reciprocal classes of Markov counting processes, also called unit jump processes, and obtain a characterization of the associated reciprocal class via a duality formula. This formula contains as key terms a stochastic derivative, a compensated stochastic integral and an invariant of the reciprocal class. Moreover we present an interpretation of the characterization of a reciprocal class in the context of stochastic optimal control of unit jump processes. As a further application we show that the reciprocal class of a Markov counting process has an invariance property under time reversal. Some of these results are extendable to the setting of pure jump processes, that is, we admit different jump-sizes. In particular, we show that the reciprocal classes of Markov jump processes can be compared using reciprocal invariants. A characterization of the reciprocal class of compound Poisson processes via a duality formula is possible under the assumption that the jump-sizes of the process are incommensurable
Suparman, Suparman. "Problèmes de choix de modèles par simulation de type Monte Carlo par chaînes de Markov à sauts réversibles." Toulouse 3, 2003. http://www.theses.fr/2003TOU30005.
Full textBandini, Elena. "Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005/document.
Full textIn the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE
Cloez, Bertrand. "Comportement asymptotique de processus avec sauts et applications pour des modèles avec branchement." Phd thesis, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00862913.
Full textRao, Zusheng. "Etude asymptotique d'un modèle de propagation aléatoire de fissure et filtrage d'une diffusion réfléchie à sauts, observée à travers un processus ponctuel marqué." Aix-Marseille 1, 1993. http://www.theses.fr/1993AIX11030.
Full textSaint, Pierre Guillaume. "Identification du nombre de composants d'un mélange gaussien par chaînes de Markov à sauts réversibles dans le cas multivarié ou par maximun de vraisemblance dans le cas univarié." Toulouse 3, 2003. http://www.theses.fr/2003TOU30128.
Full textLagache, Thibault. "Modeling the early steps of viral infection : a stochastic approach." Paris 6, 2009. http://www.theses.fr/2009PA066470.
Full textCauchemez, Simon. "Estimation des paramètres de transmission dans les modèles épidémiques par échantillonnage de Monte Carlo par chaine de Markov." Paris 6, 2005. http://www.theses.fr/2005PA066572.
Full textAzaïs, Romain. "Estimation non paramétrique pour les processus markoviens déterministes par morceaux." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00844395.
Full textGorynin, Ivan. "Bayesian state estimation in partially observable Markov processes." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLL009/document.
Full textThis thesis addresses the Bayesian estimation of hybrid-valued state variables in time series. The probability density function of a hybrid-valued random variable has a finite-discrete component and a continuous component. Diverse general algorithms for state estimation in partially observable Markov processesare introduced. These algorithms are compared with the sequential Monte-Carlo methods from a theoretical and a practical viewpoint. The main result is that the proposed methods require less processing time compared to the classic Monte-Carlo methods
Wanderley, Matos de Abreu Thiago. "Modeling and performance analysis of IEEE 802.11-based chain networks." Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10030/document.
Full textThe IEEE 802.11 protocol, based on the CMSA/CA principles, is widely deployed in current communications, mostly due to its simplicity and low cost implementation. One common usage can be found in multi-hop wireless networks, where communications between nodes may involve relay nodes. A simple topology of these networks including one source and one destination is commonly known as a chain. In this thesis, a hierarchical modeling framework, composed of two levels, is presented in order to analyze the associated performance of such chains. The upper level models the chain topology and the lower level models each of its nodes. It estimates the performance of the chain in terms of the attained throughput and datagram losses, according to different patterns of channel degradation. In terms of precision, the model delivers, in general, accurate results. Furthermore, the time needed for solving it remains very small. The proposed model is then applied to chains with 2, 3 and 4 nodes, in the presence of occasional hidden nodes, finite buffers and non-perfect physical layer. Moreover, the use of the proposed model allows us to highlight some inherent properties to such networks. For instance, it is shown that a chain presents a performance maximum (with regards to the attained throughput) according to the system workload level, and this performance collapses with the increase of the workload. This represents a non-trivial behavior of wireless networks and cannot be easily identified. However, the model captures this non-trivial effect. Finally, some of the impacts in chains performance due to the IEEE 802.11 mechanisms are analyzed and detailed. The strong synchronization among nodes of a chain is depicted and how it represents a challenge for the modeling of such networks. The proposed model overcomes this obstacle and allows an easy evaluation of the chain performance
Paroissin, Christian. "Résultats asymptotiques pour des grands systèmes réparables monotones." Phd thesis, Université Paris-Diderot - Paris VII, 2002. http://tel.archives-ouvertes.fr/tel-00002101.
Full textNguyen, Thi Thu Huong. "Estimation de processus de sauts." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1124/document.
Full textIn this thesis, we consider a stochastic differential equation driven by a truncated pure jump Lévy process with index α ∈(0,2) and observe high frequency data of the process on a fixed observation time. We first study the behavior of the density of the process in small time. Next, we prove the Local Asymptotic Mixed Normality (LAMN) property for the drift and scaling parameters from high frequency observations. Finally, we propose some estimators of the index parameter of the process.The first part deals with the asymptotic behavior of the density in small time of the process. The process is assumed to depend on a parameter β = (θ,σ) and we study, in this part, the sensitivity of the density with respect to this parameter. This extends the results of [17] which were restricted to the index α ∈ (1,2) and considered only the sensitivity with respect to the drift coefficient. By using Malliavin calculus, we obtain the representation of the density, its derivative and its logarithm derivative as an expectation and a conditional expectation. These representation formulas involve some Malliavin weights whose expressions are given explicitly and this permits to analyze the asymptotic behavior in small time of the density, using the self-similarity property of the stable process.The second part of this thesis concerns the Local Asymptotic Mixed Normality property for the parameters. Both the drift coefficient and scale coefficient depend on the unknown parameters. Extending the results of [17], we compute the asymptotic Fisher information and find that the rate in the Local Asymptotic Mixed Normality property depends on the index α.The third part proposes some estimators of the jump activity index α ∈ (0,2) based on the method of moments as in Masuda [53]. We prove the consistency and asymptotic normality of the estimators and give some simulations to illustrate the finite-sample behaviors of the estimators
Tordeux, Antoine. "Étude de processus en temps continu modélisant l'écoulement de flux de trafic routier." Phd thesis, Université Paris-Est, 2010. http://tel.archives-ouvertes.fr/tel-00596941.
Full textBlanchet-Scalliet, Christophette. "Processus à sauts et risque de défaut." Phd thesis, Université d'Evry-Val d'Essonne, 2001. http://tel.archives-ouvertes.fr/tel-00192209.
Full textLa seconde est consacrée à une modélisation du risque de défaut. Nous insistons sur la différence entre l'information liée au défaut de celle du marché sans défaut. Nous établissons des théorèmes de représentation prévisibles pour les martingales dans la filtration élargie.
Nicaise, Florent. "Calcul stochastique anticipant pour des processus avec sauts." Clermont-Ferrand 2, 2001. http://www.theses.fr/2001CLF2A003.
Full textKouegou, Kamen Boris. "Grandes déviations dans des modèles de biologie et des épidémies." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0619.
Full textWe are interested in large deviations principle for Markov jump processes and it applications in biology and Eepidemiology. We prove using a new approach the lower bound of the large deviations principle for such general processes and we also write the well known upper bound. We apply these result to a malaria transmission model in epidemiology and give estimate to the exit time from the domain of attraction of the endemic equilibrium. We also apply the approach to obtain large deviations estimates for a model of evolutionary biology which describes the effect of continuous environment changes on the fitness of a given population. Finally we treat a deterministic spatially explicit model of cholera epidemics, propose a stochastic modelling and establish a law of large number. We end by giving large deviations estimates for the stochastic process
El, Ouadghiri Imane. "Analyse du processus de diffusion des informations sur les marchés financiers : anticipation, publication et impact." Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100096.
Full textFinancial markets are subjected daily to the diffusion of economic indicators and their forecasts by public institutions and even private ones. These annoncements can be scheduled or unscheduled. The scheduled announcements are organized according to a specific calendar and known in advance by all operators. These news such as activity indicators, credit, export or sentiments’ surveys, are published monthly or quarterly by specialized agencies to all operators in real time. Our thesis contributes to diferent literatures and aims to thoroughly analyze the three phases of the diffusion process of new information on financial markets : anticipation of the announcement before its publication, interest that arouse its publication and impact of its publication on market dynamics. The aim of the first chapter is to investigate heterogeneity in macroeconomic news forecasts using disaggregate data of monthly expectation surveys conducted by Bloomberg on macroeconomic indicators from January 1999 to February 2013. The second chapter examines the impact of surprises associated with monthly macroeconomic news releases on Treasury-bond returns, by paying particular attention to the moment at which the information is published in the month. In the third chapter we examine the intraday effects of surprises from scheduled and unscheduled announcements on six major exchange rate returns (jumps) using an extension of the standard Tobit model with heteroskedastic and asymmetric errors
Velleret, Aurélien. "Mesures quasi-stationnaires et applications à la modélisation de l'évolution biologique." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0226.
Full textI describe the long term behavior of several processes that model the mechanisms of natural selection. In the cases under consideration, one can interpret those selective effects as a conditioning which introduces a bias on the dynamics of some « neutral » stochastic process. This process evolves in a potentially very general space, notably continuous and unbounded. By these means, one can characterize the dynamics of the whole profile of individuals in the population of study as well as the profile of an individual uniformly chosen in the population. One can naturally see in these descriptions some brutal transitions of the distribution laws as time evolves, which makes the analysis much trickier than for the models without conditioning. The first part of this thesis consists in setting the conditions under which one can prove results analogous to the notion of stationarity while taking the conditioning into account. The second part is dedicated to the application of these criteria for a diversity of models of populations under selection and their interpretation. Examples of application include the mobile optimum model for adaptation to environmental change, a group selection model and Müller's ratchet model that describes how the sub-population unaffected by deleterious mutations can maintain itself
Dufour, François. "Contribution à l'étude des systèmes linéaires à sauts markoviens." Paris 11, 1994. http://www.theses.fr/1994PA112044.
Full textBilodeau, Jean-François. "Analyse de processus de sauts dans le prix du pétrole brut." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0019/MQ47169.pdf.
Full textMourragui, Mustapha. "Comportement hydrodynamique des processus de sauts, de naissances et de morts." Rouen, 1993. http://www.theses.fr/1993ROUES002.
Full textJiménez, Oviedo Byron. "Processus d’exclusion avec des sauts longs en contact avec des réservoirs." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4000/document.
Full textPan-Yu, Yiyan. "Spectres de processus de Markov." Phd thesis, Université Joseph Fourier (Grenoble), 1997. http://tel.archives-ouvertes.fr/tel-00004959.
Full textSimon, Thomas. "Subordination au sens faible de processus de levy petites deviations et support de processus a sauts." Evry-Val d'Essonne, 1999. http://www.theses.fr/1999EVRY0012.
Full textBavouzet, Marie-Pierre. "Minoration de densité pour les diffusions à sauts : calcul de Malliavin pour processus de sauts purs, applications à la finance." Paris 9, 2006. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2006PA090041.
Full textThis thesis gives applications of Malliavin calculus for jump processes. In the first part, we compute lower bounds for densities of jump diffusions with a continuous part driven by a Brownian motion. For that, we use a Malliavin conditional integration by parts formula based on Brownian increments only. We then deal with the computation of financial options, when the asset price follows a pure jump process. In the second part, we develop an abstract calculus of the Malliavin type based on random variables which are not independent and have discontinuous conditional densities. We settle an integration by parts formula that we apply then to the jump times and amplitudes of pure jump processes. In the third part, we use this integration by parts formula for the computation of the Delta of European and Asian options, and we derive representation formulas for conditional expectations and their gradients in order to compute the price and the Delta of American options
Champagnat, Nicolas. "Étude mathématique de modèles stochastiques d'évolution issus de la théorie écologique des dynamiques adaptatives." Phd thesis, Université de Nanterre - Paris X, 2004. http://tel.archives-ouvertes.fr/tel-00091929.
Full textDao, Thi Thanh Binh. "Approche structurelle du risque de crédit avec des processus mixtes diffusion-sauts." Paris 9, 2005. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2005PA090006.
Full textThis thesis proposes three essays in the modelling of the firm's asset value as a jump diffusion process within the structural approach of credit risk with endogenous default barrier. The first deals with the modelling of a perpetual coupon debt structure using two different jump diffusion processes: double exponential and uniform. The second essay models a debt structure of perpetual roll-over of coupon and principal, where the firm's asset value follows a double exponential jump diffusion process. The third essay develops a structural model with zero-coupon debt structure, and takes into account a stopping time marked by a significant downward jump following important bad news of the firm. In our three essays, we obtain a level of credit spreads closer to the market data and confirm the existence of an optimal capital structure, which takes into account the risk-free rate, the firm risk, the tax rate, the default costs and the jump sizes
Gravereaux, Jean-Bernard. "Calcul stochastique et processus de Markov." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37613974b.
Full textFAR, HADDA. "Proprietes asymptotiques de modeles parametriques associes a l'observation discretisee de processus de sauts." Paris 6, 2001. http://www.theses.fr/2001PA066299.
Full textLANEUVILLE, DANN. "Processus a sauts markoviens : apport des capteurs imageurs au pistage de cibles manuvrantes." Paris 11, 1998. http://www.theses.fr/1998PA112409.
Full textHaugomat, Tristan. "Localisation en espace de la propriété de Feller avec application aux processus de type Lévy." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S046/document.
Full textIn this PhD thesis, we give a space localisation for the theory of Feller processes. A first objective is to obtain simple and precise results on the convergence of Markov processes. A second objective is to study the link between the notions of Feller property, martingale problem and Skorokhod topology. First we give a localised version of the Skorokhod topology. We study the notions of compactness and tightness for this topology. We make the connexion between localised and unlocalised Skorokhod topologies, by using the notion of time change. In a second step, using the localised Skorokhod topology and the time change, we study martingale problems. We show the equivalence between, on the one hand, to be solution of a well-posed martingale problem, on the other hand, to satisfy a localised version of the Feller property, and finally, to be a Markov process weakly continuous with respect to the initial condition. We characterise the weak convergence for solutions of martingale problems in terms of convergence of associated operators and give a similar result for discrete time approximations. Finally, we apply the theory of locally Feller process to some examples. We first apply it to the Lévy-type processes and obtain convergence results for discrete and continuous time processes, including simulation methods and Euler’s schemes. We then apply the same theory to one-dimensional diffusions in a potential and we obtain convergence results of diffusions or random walks towards singular diffusions. As a consequences, we deduce the convergence of random walks in random environment towards diffusions in random potential
Samuélidès, Yann. "Estimations par macrotiles et modele de marche a sauts." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2001EPXX0014.
Full textLachaud, Béatrice. "Détection de la convergence de processus de Markov." Phd thesis, Université René Descartes - Paris V, 2005. http://tel.archives-ouvertes.fr/tel-00010473.
Full textRIVERO, MERCADO Victor. "Recouvrements Aléatoires et Processus de Markov Auto-Similaires." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2004. http://tel.archives-ouvertes.fr/tel-00007346.
Full textAssouramou, Joseph. "Processus de Markov étiquetés et Systèmes Hybrides probabilistes." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28726/28726.pdf.
Full textWe compare two models of processes involving uncountable space. Labelled Markov processes are probabilistic transition systems that can have uncountably many states, but still make discrete time steps. The probability measures on the state space may have uncountable support and a tool has been developed for verification of such systems. Hybrid processes are a combination of a continuous space process that evolves continuously with time and of a discrete component, such as a controller. Existing extensions of Hybrid processes with probability restrict the probabilistic behavior to the discrete component. We have also shown, in a paper, how to compute for probabilistic hybrid systems, the clock approximation and linear phase-portrait approximation that have been proposed for non probabilistic processes by Henzinger et al. The techniques permit, under some conditions, to define a rectangular probabilistic process from a non rectangular one, hence allowing the model-checking of any class of systems. To highlight the differences between Labelled Markov processes and probabilistic hybrid systems, we use two examples, the ones of a boat and an aircraft, and
Rivero, Mercado Victor Manuel. "Récouvrements aléatoires et processus de Markov auto-similaires." Paris 6, 2004. https://tel.archives-ouvertes.fr/tel-00007346.
Full textDe, Almeida Rui Manuel. "Décantation dans les chaînes de Markov." Lille 1, 1986. http://www.theses.fr/1986LIL10144.
Full textBastide, Paul. "Modèles de processus stochastiques avec sauts sur arbres : application à l'évolution adaptative sur des phylogénies." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS370/document.
Full textThis project is aiming at taking a step further in the process of systematic statistical modeling that is occurring in the field of comparative ecology. A way to account for correlations between quantitative traits of a set of sampled species due to common evolutionary histories is to see the current state as the result of a stochastic process running on a phylogenetic tree. Due to environmental changes, some ecological niches can shift in time, inducing a shift in the parameters values of the stochastic process modeling trait evolution. Because we only measure the value of the process at a single time point, for extant species, some evolutionary scenarios cannot be reconstructed, or have some identifiability issues, that we carefully study. We construct an incomplete-data model for statistical inference, along with an efficient implementation. We perform an automatic shift detection, and choose the number of shifts thanks to a model selection procedure, specifically crafted to handle the special structure of the problem. Theoretical guaranties are derived in some special cases. A phylogenetic tree cannot take into account hybridization or horizontal gene transfer events, that are widely spread in some groups of species, such as plants or bacterial organisms. A phylogenetic network can be used to deal with these events. We develop a new model of trait evolution on this kind of structure, that takes non-linear effects such as heterosis into account. Heterosis, or hybrid vigor or depression, is a well studied effect, that happens when a hybrid species has a trait value that is outside of the range of its two parents
Fourati, Sonia. "Tribus homogènes, commutations des projections entre tribus du futur et tribus du passé, une application à un formalisme de processus de Markov indexes par IR." Paris 6, 1986. http://www.theses.fr/1986PA066040.
Full textDoisy, Michel. "Comparaison de processus markoviens." Pau, 1992. http://www.theses.fr/1992PAUU3012.
Full text