Dissertations / Theses on the topic 'Processus de Markov déterministe par morceaux'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 30 dissertations / theses for your research on the topic 'Processus de Markov déterministe par morceaux.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Brandejsky, Adrien. "Méthodes numériques pour les processus markoviens déterministes par morceaux." Phd thesis, Bordeaux 1, 2012. http://tel.archives-ouvertes.fr/tel-00733731.
Full textJoubaud, Maud. "Processus de Markov déterministes par morceaux branchants et problème d’arrêt optimal, application à la division cellulaire." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS031/document.
Full textPiecewise deterministic Markov processes (PDMP) form a large class of stochastic processes characterized by a deterministic evolution between random jumps. They fall into the class of hybrid processes with a discrete mode and an Euclidean component (called the state variable). Between the jumps, the continuous component evolves deterministically, then a jump occurs and a Markov kernel selects the new value of the discrete and continuous components. In this thesis, we extend the construction of PDMPs to state variables taking values in some measure spaces with infinite dimension. The aim is to model cells populations keeping track of the information about each cell. We study our measured-valued PDMP and we show their Markov property. With thoses processes, we study a optimal stopping problem. The goal of an optimal stopping problem is to find the best admissible stopping time in order to optimize some function of our process. We show that the value fonction can be recursively constructed using dynamic programming equations. We construct some $epsilon$-optimal stopping times for our optimal stopping problem. Then, we study a simple finite-dimension real-valued PDMP, the TCP process. We use Euler scheme to approximate it, and we estimate some types of errors. We illustrate the results with numerical simulations
Azaïs, Romain. "Estimation non paramétrique pour les processus markoviens déterministes par morceaux." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00844395.
Full textLagasquie, Gabriel. "Etude du comportement en temps long de processus de markov déterministes par morceaux." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4004/document.
Full textThe objective of this thesis is to study the long time behaviour of some piecewise deterministic Markov processes (PDMP). The flow followed by the spatial component of these processes switches randomly between several flow converging towards an equilibrium point (not necessarily the same for each flow). We will first give an example of such a process built in the plan from two linear stable differential equations and we will see that its stability depends strongly on the switching times. The second part of this thesis is dedicated to the study and comparison of two competition models in a heterogeneous environment. The first model is a probabilistic model where we build a PDMP simulating the effect of the temporal heterogeneity of an environment over the species in competition. Its study uses classical tools in this field. The second model is a deterministic model simulating the effect of the spatial heterogeneity of an environment over the same species. Despite the fact that the nature of the two models is very different, we will see that their long time behavior is very similar. We define for both model several quantities called invasion rates modelizing the growth (or decreasing) rate speed of a species when it is near to extinction and we will see that the signs of these invasion rates fully describes the long time behavior for both systems
Bouguet, Florian. "Étude quantitative de processus de Markov déterministes par morceaux issus de la modélisation." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S040/document.
Full textThe purpose of this Ph.D. thesis is the study of piecewise deterministic Markov processes, which are often used for modeling many natural phenomena. Precisely, we shall focus on their long time behavior as well as their speed of convergence to equilibrium, whenever they possess a stationary probability measure. Providing sharp quantitative bounds for this speed of convergence is one of the main orientations of this manuscript, which will usually be done through coupling methods. We shall emphasize the link between Markov processes and mathematical fields of research where they may be of interest, such as partial differential equations. The last chapter of this thesis is devoted to the introduction of a unified approach to study the long time behavior of inhomogeneous Markov chains, which can provide functional limit theorems with the help of asymptotic pseudotrajectories
Geeraert, Alizée. "Contrôle optimal stochastique des processus de Markov déterministes par morceaux et application à l’optimisation de maintenance." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0602/document.
Full textWe are interested in a discounted impulse control problem with infinite horizon forpiecewise deterministic Markov processes (PDMPs). In the first part, we model the evolutionof an optronic system by PDMPs. To optimize the maintenance of this equipment, we study animpulse control problem where both maintenance costs and the unavailability cost for the clientare considered. We next apply a numerical method for the approximation of the value function associated with the impulse control problem, which relies on quantization of PDMPs. The influence of the parameters on the numerical results is discussed. In the second part, we extendthe theoretical study of the impulse control problem by explicitly building a family of є-optimalstrategies. This approach is based on the iteration of a single-jump-or-intervention operator associatedto the PDMP and relies on the theory for optimal stopping of a piecewise-deterministic Markov process by U.S. Gugerli. In the present situation, the main difficulty consists in approximating the best position after the interventions, which is done by introducing a new operator.The originality of the proposed approach is the construction of є-optimal strategies that areexplicit, since they do not require preliminary resolutions of complex problems
Lorton, Ariane. "Contribution aux approches hybrides pour le pronostic à l'aide de processus de Markov déterministes par morceaux." Troyes, 2012. http://www.theses.fr/2012TROY0022.
Full textWe propose an approach to prognosis for condition-based maintenance using the reliability theory. Prognosis consists in computing the remaining useful life (RUL), or the time before a dread event (e. G. Failure or performance lost). The industrial context of this thesis (complex system, uncertainties) justifies a probabilistic model-based approach. This work deals with three problems : to establish a link between reliability and prognosis, to define a modeling framework which takes physical models into account and to develop a method of computation of the RUL which incorporates data from the monitoring of the item. The first question is addressed by giving a formal definition of the RUL. The prognosis appears to be a conditional and staggered reliability. We consider a modeling through piecewise deterministic Markov processes (PDMP). It allows a wide range of models, as required by the second question. We develop two new methods of computation of reliability for this process, using Monte-Carlo techniques. Then, we propose a two-steps method to compute the RUL of a Markov process. It includes a computation of a conditional distribution and a reliability. To approximate the first step, we consider an interacting particle system. We study the convergence of the joint approximation of the two steps. We proove an almost sure convergence, and a central limit theorem. This work is illustrated by several examples, especially by an example considering the use of the RUL in the maintenance decision process
Crudu, Alina. "Approximations hybrides de processus de Markov à sauts multi-échelles : applications aux modèles de réseaux de gènes en biologie moléculaire." Phd thesis, Université Rennes 1, 2009. http://tel.archives-ouvertes.fr/tel-00454886.
Full textBaysse, Camille. "Analyse et optimisation de la fiabilité d'un équipement opto-électrique équipé de HUMS." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00986112.
Full textMalrieu, Florent. "Inégalités fonctionnelles et comportement en temps long de quelques processus de Markov." Habilitation à diriger des recherches, Université Rennes 1, 2010. http://tel.archives-ouvertes.fr/tel-00542278.
Full textChiquet, Julien. "Modélisation et estimation des processus de dégradation avec application en fiabilité des structures." Phd thesis, Université de Technologie de Compiègne, 2007. http://tel.archives-ouvertes.fr/tel-00165782.
Full textNous étudions la fiabilité du système en considérant la défaillance de la structure lorsque le processus de dégradation dépasse un seuil fixe. Nous obtenons la fiabilité théorique à l'aide de la théorie du renouvellement markovien.
Puis, nous proposons une procédure d'estimation des paramètres des processus aléatoires du système différentiel. Les méthodes d'estimation et les résultats théoriques de la fiabilité, ainsi que les algorithmes de calcul associés, sont validés sur des données simulés.
Notre méthode est appliquée à la modélisation d'un mécanisme réel de dégradation, la propagation des fissures, pour lequel nous disposons d'un jeu de données expérimental.
Renault, Vincent. "Contrôle optimal de modèles de neurones déterministes et stochastiques, en dimension finie et infinie. Application au contrôle de la dynamique neuronale par l'Optogénétique." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066471/document.
Full textThe aim of this thesis is to propose different mathematical neuron models that take into account Optogenetics, and study their optimal control. We first define a controlled version of finite-dimensional, deterministic, conductance based neuron models. We study a minimal time problem for a single-input affine control system and we study its singular extremals. We implement a direct method to observe the optimal trajectories and controls. The optogenetic control appears as a new way to assess the capability of conductance-based models to reproduce the characteristics of the membrane potential dynamics experimentally observed. We then define an infinite-dimensional stochastic model to take into account the stochastic nature of the ion channel mechanisms and the action potential propagation along the axon. It is a controlled piecewise deterministic Markov process (PDMP), taking values in an Hilbert space. We define a large class of infinite-dimensional controlled PDMPs and we prove that these processes are strongly Markovian. We address a finite time optimal control problem. We study the Markov decision process (MDP) embedded in the PDMP. We show the equivalence of the two control problems. We give sufficient conditions for the existence of an optimal control for the MDP, and thus, for the initial PDMP as well. The theoretical framework is large enough to consider several modifications of the infinite-dimensional stochastic optogenetic model. Finally, we study the extension of the model to a reflexive Banach space, and then, on a particular case, to a nonreflexive Banach space
Gonzalez, Karen. "Contribution à l’étude des processus markoviens déterministes par morceaux : étude d’un cas-test de la sûreté de fonctionnement et problème d’arrêt optimal à horizon aléatoire." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14139/document.
Full textPiecewise Deterministic Markov Processes (PDMP's) have been introduced inthe literature by M.H.A. Davis as a general class of stochastics models. PDMP's area family of Markov processes involving deterministic motion punctuated by randomjumps. In a first part, PDMP's are used to compute probabilities of top eventsfor a case-study of dynamic reliability (the heated tank system) with two di#erentmethods : the first one is based on the resolution of the differential system giving thephysical evolution of the tank and the second uses the computation of the functionalof a PDMP by a system of integro-differential equations. In the second part, wepropose a numerical method to approximate the value function for the optimalstopping problem of a PDMP. Our approach is based on quantization of the post-jump location and inter-arrival time of the Markov chain naturally embedded in thePDMP, and path-adapted time discretization grids. It allows us to derive boundsfor the convergence rate of the algorithm and to provide a computable ε-optimalstopping time
Wu, Chang-Ye. "Acceleration Strategies of Markov Chain Monte Carlo for Bayesian Computation." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED019/document.
Full textMCMC algorithms are difficult to scale, since they need to sweep over the whole data set at each iteration, which prohibits their applications in big data settings. Roughly speaking, all scalable MCMC algorithms can be divided into two categories: divide-and-conquer methods and subsampling methods. The aim of this project is to reduce the computing time induced by complex or largelikelihood functions
Gegout-Petit, Anne. "Contribution à la statistique des processus : modélisation et applications." Habilitation à diriger des recherches, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00762189.
Full textHerbach, Ulysse. "Modélisation stochastique de l'expression des gènes et inférence de réseaux de régulation." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1155/document.
Full textGene expression in a cell has long been only observable through averaged quantities over cell populations. The recent development of single-cell transcriptomics has enabled gene expression to be measured in individual cells: it turns out that even in an isogenic population, the molecular variability can be very important. In particular, an averaged description is not sufficient to account for cell differentiation. In this thesis, we are interested in the emergence of such cell decision-making from underlying gene regulatory networks, which we would like to infer from data. The starting point is the construction of a stochastic gene network model that is able to explain the data using physical arguments. Genes are then seen as an interacting particle system that happens to be a piecewise-deterministic Markov process, and our aim is to derive a tractable statistical model from its stationary distribution. We present two approaches: the first one is a popular field approximation, for which we obtain a concentration result, and the second one is based on an analytically tractable particular case, which provides a hidden Markov random field with interesting properties
Lin, Yanhui. "A holistic framework of degradation modeling for reliability analysis and maintenance optimization of nuclear safety systems." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC002/document.
Full textComponents of nuclear safety systems are in general highly reliable, which leads to a difficulty in modeling their degradation and failure behaviors due to the limited amount of data available. Besides, the complexity of such modeling task is increased by the fact that these systems are often subject to multiple competing degradation processes and that these can be dependent under certain circumstances, and influenced by a number of external factors (e.g. temperature, stress, mechanical shocks, etc.). In this complicated problem setting, this PhD work aims to develop a holistic framework of models and computational methods for the reliability-based analysis and maintenance optimization of nuclear safety systems taking into account the available knowledge on the systems, degradation and failure behaviors, their dependencies, the external influencing factors and the associated uncertainties.The original scientific contributions of the work are: (1) For single components, we integrate random shocks into multi-state physics models for component reliability analysis, considering general dependencies between the degradation and two types of random shocks. (2) For multi-component systems (with a limited number of components):(a) a piecewise-deterministic Markov process modeling framework is developed to treat degradation dependency in a system whose degradation processes are modeled by physics-based models and multi-state models; (b) epistemic uncertainty due to incomplete or imprecise knowledge is considered and a finite-volume scheme is extended to assess the (fuzzy) system reliability; (c) the mean absolute deviation importance measures are extended for components with multiple dependent competing degradation processes and subject to maintenance; (d) the optimal maintenance policy considering epistemic uncertainty and degradation dependency is derived by combining finite-volume scheme, differential evolution and non-dominated sorting differential evolution; (e) the modeling framework of (a) is extended by including the impacts of random shocks on the dependent degradation processes.(3) For multi-component systems (with a large number of components), a reliability assessment method is proposed considering degradation dependency, by combining binary decision diagrams and Monte Carlo simulation to reduce computational costs
Mercier, Sophie. "Modèles stochastiques et méthodes numériques pour la fiabilité." Habilitation à diriger des recherches, Université Paris-Est, 2008. http://tel.archives-ouvertes.fr/tel-00368100.
Full textNous nous intéressons ensuite au remplacement préventif de composants devenus obsolescents, du fait de l'apparition de nouveaux composants plus performants. Le problème est ici de déterminer la stratégie optimale de remplacement des anciens composants par les nouveaux. Les résultats obtenus conduisent à des stratégies très différentes selon que les composants ont des taux de panne constants ou non.
Les travaux suivants sont consacrés à l'évaluation numérique de différentes quantités fiabilistes, les unes liées à des sommes de variables aléatoires indépendantes, du type fonction de renouvellement par exemple, les autres liées à des systèmes markoviens ou semi-markoviens. Pour chacune de ces quantités, nous proposons des bornes simples et aisément calculables, dont la précision peut être ajustée en fonction d'un pas de temps. La convergence des bornes est par ailleurs démontrée, et des algorithmes de calcul proposés.
Nous nous intéressons ensuite à des systèmes hybrides, issus de la fiabilité dynamique, dont l'évolution est modélisée à l'aide d'un processus de Markov déterministe par morceaux (PDMP). Pour de tels systèmes, les quantités fiabilistes usuelles ne sont généralement pas atteignables analytiquement et doivent être calculées numériquement. Ces quantités s'exprimant à l'aide des lois marginales du PDMP (les lois à t fixé), nous nous attachons plus spécifiquement à leur évaluation. Pour ce faire, nous commençons par les caractériser comme unique solution d'un système d'équations intégro-différentielles. Puis, partant de ces équations, nous proposons deux schémas de type volumes finis pour les évaluer, l'un explicite, l'autre implicite, dont nous démontrons la convergence. Nous étudions ensuite un cas-test issu de l'industrie gazière, que nous modélisons à l'aide d'un PDMP, et pour lequel nous calculons différentes quantités fiabilistes, d'une part par méthodes de volumes finis, d'autre part par simulations de Monte-Carlo. Nous nous intéressons aussi à des études de sensibilité : les caractéristiques d'un PDMP sont supposées dépendre d'une famille de paramètres et le problème est de comparer l'influence qu'ont ces différents paramètres sur un critère donné, à horizon fini ou infini. Cette étude est faite au travers des dérivées du critère d'étude par rapport aux paramètres, dont nous démontrons l'existence et que nous calculons.
Enfin, nous présentons rapidement les travaux effectués par Margot Desgrouas lors de sa thèse consacrée au comportement asymptotique des PDMP, et nous donnons un aperçu de quelques travaux en cours et autres projets.
Roussel, Julien. "Analyse théorique et numérique de dynamiques non-réversibles en physique statistique computationnelle." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1115/document.
Full textThis thesis deals with four topics related to non-reversible dynamics. Each is the subject of a chapter which can be read independently. The first chapter is a general introduction presenting the problematics and some major results of computational statistical physics. The second chapter concerns the numerical resolution of hypoelliptic partial differential equations, i.e. involving an invertible but non-coercive differential operator. We prove the consistency of the Galerkin method as well as convergence rates for the error. The analysis is also carried out in the case of a saddle-point formulation, which is the most appropriate in the cases of interest to us. We demonstrate that our assumptions are met in a simple case and numerically check our theoretical predictions on this example. In the third chapter we propose a general strategy for constructing control variates for nonequilibrium dynamics. In particular, this method reduces the variance of transport coefficient estimators by ergodic mean. This variance reduction is quantified in a perturbative regime. The control variate is based on the solution of a partial differential equation. In the case of Langevin's equation this equation is hypoelliptic, which motivates the previous chapter. The proposed method is tested numerically on three examples. The fourth chapter is connected to the third since it uses the same idea of a control variate. The aim is to estimate the mobility of a particle in the underdamped regime, where the dynamics are close to being Hamiltonian. This work was done in collaboration with G. Pavliotis during a stay at Imperial College London. The last chapter deals with Piecewise Deterministic Markov Processes, which allow measure sampling in high-dimension. We prove the exponential convergence towards the equilibrium of several dynamics of this type under a general formalism including the Zig-Zag process (ZZP), the Bouncy Particle Sampler (BPS) and the Randomized Hybrid Monte Carlo (RHMC). The dependencies of the bounds on the convergence rate that we demonstrate are explicit with respect to the parameters of the problem. This allows in particular to control the size of the confidence intervals for empirical averages when the size of the underlying phase space is large. This work was done in collaboration with C. Andrieu, A. Durmus and N. Nüsken
Thomas, Nicolas. "Stochastic numerical methods for Piecewise Deterministic Markov Processes : applications in Neuroscience." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS385.
Full textIn this thesis, motivated by applications in Neuroscience, we study efficient Monte Carlo (MC) and Multilevel Monte Carlo (MLMC) methods based on the thinning for piecewise deterministic (Markov) processes (PDMP or PDP) that we apply to stochastic conductance-based models. On the one hand, when the deterministic motion of the PDMP is explicitly known we end up with an exact simulation. On the other hand, when the deterministic motion is not explicit, we establish strong estimates and a weak error expansion for the numerical scheme that we introduce. The thinning method is fundamental in this thesis. Beside the fact that it is intuitive, we use it both numerically (to simulate trajectories of PDMP/PDP) and theoretically (to construct the jump times and establish error estimates for PDMP/PDP)
Demgne, Jeanne Ady. "Modélisation d’actifs industriels pour l’optimisation robuste de stratégies de maintenance." Thesis, Pau, 2015. http://www.theses.fr/2015PAUU3015/document.
Full textThis work proposes new assessment methods of risk indicators associated with an investments plan in view of a robust maintenance optimization of a fleet of components. The quantification of these indicators requires a rigorous modelling of the stochastic evolution of the lifetimes of components subject to maintenance. With that aim, we propose to use Piecewise Deterministic Markov Processes which are usually used in Dynamic Reliability for the modelling of components in interaction with their environment. The comparing indicators of candidate maintenance strategies are derived from the Net Present Value (NPV). The NPV stands for the difference between the cumulated discounted cash-flows of both reference and candidate maintenance strategies. From a probabilistic point of view, the NPV is the difference between two dependent random variables, which complicates its study. In this thesis, Quasi Monte Carlo methods are used as alternatives to Monte Carlo method for the quantification of the NPV probabilistic distribution. These methods are firstly applied to illustrative examples. Then, they were adapted to the assessment of maintenance strategy of two systems of components of an electric power station. The coupling of these methods with a genetic algorithm has allowed to optimize an investments plan
Bandini, Elena. "Représentation probabiliste d'équations HJB pour le contrôle optimal de processus à sauts, EDSR (équations différentielles stochastiques rétrogrades) et calcul stochastique." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLY005/document.
Full textIn the present document we treat three different topics related to stochastic optimal control and stochastic calculus, pivoting on thenotion of backward stochastic differential equation (BSDE) driven by a random measure.After a general introduction, the three first chapters of the thesis deal with optimal control for different classes of non-diffusiveMarkov processes, in finite or infinite horizon. In each case, the value function, which is the unique solution to anintegro-differential Hamilton-Jacobi-Bellman (HJB) equation, is probabilistically represented as the unique solution of asuitable BSDE. In the first chapter we control a class of semi-Markov processes on finite horizon; the second chapter isdevoted to the optimal control of pure jump Markov processes, while in the third chapter we consider the case of controlled piecewisedeterministic Markov processes (PDMPs) on infinite horizon. In the second and third chapters the HJB equations associatedto the optimal control problems are fully nonlinear. Those situations arise when the laws of the controlled processes arenot absolutely continuous with respect to the law of a given, uncontrolled, process. Since the corresponding HJB equationsare fully nonlinear, they cannot be represented by classical BSDEs. In these cases we have obtained nonlinear Feynman-Kacrepresentation formulae by generalizing the control randomization method introduced in Kharroubi and Pham (2015)for classical diffusions. This approach allows us to relate the value function with a BSDE driven by a random measure,whose solution hasa sign constraint on one of its components.Moreover, the value function of the original non-dominated control problem turns out to coincide withthe value function of an auxiliary dominated control problem, expressed in terms of equivalent changes of probability measures.In the fourth chapter we study a backward stochastic differential equation on finite horizon driven by an integer-valued randommeasure $mu$ on $R_+times E$, where $E$ is a Lusin space, with compensator $nu(dt,dx)=dA_t,phi_t(dx)$. The generator of thisequation satisfies a uniform Lipschitz condition with respect to the unknown processes.In the literature, well-posedness results for BSDEs in this general setting have only been established when$A$ is continuous or deterministic. We provide an existence and uniqueness theorem for the general case, i.e.when $A$ is a right-continuous nondecreasing predictable process. Those results are relevant, for example,in the frameworkof control problems related to PDMPs. Indeed, when $mu$ is the jump measure of a PDMP on a bounded domain, then $A$ is predictable and discontinuous.Finally, in the two last chapters of the thesis we deal with stochastic calculus for general discontinuous processes.In the fifth chapter we systematically develop stochastic calculus via regularization in the case of jump processes,and we carry on the investigations of the so-called weak Dirichlet processes in the discontinuous case.Such a process $X$ is the sum of a local martingale and an adapted process $A$ such that $[N,A] = 0$, for any continuouslocal martingale $N$.Given a function $u:[0,T] times R rightarrow R$, which is of class $C^{0,1}$ (or sometimes less), we provide a chain rule typeexpansion for $u(t,X_t)$, which constitutes a generalization of It^o's lemma being valid when $u$ is of class $C^{1,2}$.This calculus is applied in the sixth chapter to the theory of BSDEs driven by random measures.In several situations, when the underlying forward process $X$ is a special semimartingale, or, even more generally,a special weak Dirichlet process,we identify the solutions $(Y,Z,U)$ of the considered BSDEs via the process $X$ and the solution $u$ to an associatedintegro PDE
Genadot, Alexandre. "Étude multi-échelle de modèles probabilistes pour les systèmes excitables avec composante spatiale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2013. http://tel.archives-ouvertes.fr/tel-00905886.
Full textBect, Julien. "Processus de Markov diffusifs par morceaux : outils analytiques et numériques." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00169791.
Full textNous introduisons dans la première partie du mémoire la notion de processus diffusif par morceaux, qui fournit un cadre théorique général qui unifie les différentes classes de modèles "hybrides" connues dans la littérature. Différents aspects de ces modèles sont alors envisagés, depuis leur construction mathématique (traitée grâce au théorème de renaissance pour les processus de Markov) jusqu'à l'étude de leur générateur étendu, en passant par le phénomène de Zénon.
La deuxième partie du mémoire s'intéresse plus particulièrement à la question de la "propagation de l'incertitude", c'est-à-dire à la manière dont évolue la loi marginale de l'état au cours du temps. L'équation de Fokker-Planck-Kolmogorov (FPK) usuelle est généralisée à diverses classes de processus diffusifs par morceaux, en particulier grâce aux notions d'intensité moyenne de sauts et de courant de probabilité. Ces résultats sont illustrés par deux exemples de modèles multidimensionnels, pour lesquels une résolution numérique de l'équation de FPK généralisée a été effectuée grâce à une discrétisation en volumes finis. La comparaison avec des méthodes de type Monte-Carlo est également discutée à partir de ces deux exemples.
Helson, Pascal. "Étude de la plasticité pour des neurones à décharge en interaction." Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4013.
Full textIn this thesis, we study a phenomenon that may be responsible for our memory capacity: the synaptic plasticity. It modifies the links between neurons over time. This phenomenon is stochastic: it is the result of a series of diverse and numerous chemical processes. The aim of the thesis is to propose a model of plasticity for interacting spiking neurons. The main difficulty is to find a model that satisfies the following conditions: it must be both consistent with the biological results of the field and simple enough to be studied mathematically and simulated with a large number of neurons.In a first step, from a rather simple model of plasticity, we study the learning of external signals by a neural network as well as the forgetting time of this signal when the network is subjected to other signals (noise). The mathematical analysis allows us to control the probability to misevaluate the signal. From this, we deduce explicit bounds on the time during which a given signal is kept in memory.Next, we propose a model based on stochastic rules of plasticity as a function of the occurrence time of the neural electrical discharges (Spike Timing Dependent Plasticity, STDP). This model is described by a Piecewise Deterministic Markov Process (PDMP). The long time behaviour of such a neural network is studied using a slow-fast analysis. In particular, sufficient conditions are established under which the process associated with synaptic weights is ergodic. Finally, we make the link between two levels of modelling: the microscopic and the macroscopic approaches. Starting from the dynamics presented at a microscopic level (neuron model and its interaction with other neurons), we derive an asymptotic dynamics which represents the evolution of a typical neuron and its incoming synaptic weights: this is the mean field analysis of the model. We thus condense the information on the dynamics of the weights and that of the neurons into a single equation, that of a typical neuron
Pasin, Chloé. "Modélisation et optimisation de la réponse à des vaccins et à des interventions immunothérapeutiques : application au virus Ebola et au VIH." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0208/document.
Full textVaccines have been one of the most successful developments in public health in the last years. However, a major challenge still resides in developing effective vaccines against infectious diseases such as HIV or Ebola virus. This can be attributed to our lack of deep knowledge in immunology and the mode of action of immune memory. Mathematical models can help understanding the mechanisms of the immune response, quantifying the underlying biological processes and eventually developing vaccines based on a solid rationale. First, we present a mechanistic model for the dynamics of the humoral immune response following Ebola vaccine immunizations based on ordinary differential equations. The parameters of the model are estimated by likelihood maximization in a population approach, which allows to quantify the process of the immune response and its factors of variability. In particular, the vaccine regimen is found to impact only the response on a short term, while significant differences between subjects of different geographic locations are found at a longer term. This could have implications in the design of future clinical trials. Then, we develop a numerical tool based on dynamic programming for optimizing schedule of repeated injections. In particular, we focus on HIV-infected patients under treatment but unable to recover their immune system. Repeated injections of an immunotherapeutic product (IL-7) are considered for improving the health of these patients. The process is first by a piecewise deterministic Markov model and recent results of the impulse control theory allow to solve the problem numerically with an iterative sequence. We show in a proof-of-concept that this method can be applied to a number of pseudo-patients. All together, these results are part of an effort to develop sophisticated methods for analyzing data from clinical trials to answer concrete clinical questions
Goreac, Dan. "Quelques sujets en contrôle déterministe et stochastique : méthodes de type LP, PDMP associés aux réseaux de gènes, contrôlabilité." Habilitation à diriger des recherches, Université Paris-Est, 2013. http://tel.archives-ouvertes.fr/tel-00864555.
Full textBonnet, Celine. "Différentiation cellulaire, régulation des cellules souches et impact des mutations : une approche probabiliste." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX016.
Full textThis thesis focuses on understanding the mechanisms of stem cell differentiation leading to the production of red blood cells (a mechanism called erythropoiesis). To this end, we have developed different mathematical modelling leading to an understanding at different levels. Firstly, we have built and calibrated a model with 8 ordinary differential equations to describe the dynamics of 6 populations of cells in steady-state and stress erythropoiesis. The study of in vivo experimental data, realized by our collaborators St´ephane Giraudier (hematologist) and Evelyne Lauret (INSERM), showed the need of two equations to model erythropoiesis regulations. Modeling calibration was performed using biological data and a stochastic optimization algorithm called CMA-ES. This model highlighted the importance of the self-renewal capacity of the erythropoietic cells in the production of red blood cells. The development of a 3-dimensional probabilistic model then allowed us to understand the dynamic consequences of this capacity on the production of red blood cells. The study of this model required changes of scale in size and time revealing a so-called slow/fast system. Using averaging methods, we described the large population approximation of the number of each cell type. We have also mathematically quantified the large fluctuations in the number of red blood cells, biologically observed. Finally, we constructed a model to understand the influence of long periods of inactivity of mutant stem cells in the production of red blood cells. Mutant stem cells, which are in low numbers in the organism compared to healthy cells, randomly switch between an active and an inactive state. The different size scale between the cell populations led us to study the dynamics of a 4-dimensional piecewise deterministic Markov process. We showed the existence of a unique invariant probability measure towards which the process converges in total variation, and we identified this limits
Yvinec, Romain. "Modélisation probabiliste en biologie moléculaire et cellulaire." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00749633.
Full textGroparu-Cojocaru, Ionica. "A class of bivariate Erlang distributions and ruin probabilities in multivariate risk models." Thèse, 2012. http://hdl.handle.net/1866/8947.
Full textIn this contribution, we introduce a new class of bivariate distributions of Marshall-Olkin type, called bivariate Erlang distributions. The Laplace transform, product moments and conditional densities are derived. Potential applications of bivariate Erlang distributions in life insurance and finance are considered. Further, our research project is devoted to the study of multivariate risk processes, which may be useful in analyzing ruin problems for insurance companies with a portfolio of dependent classes of business. We apply results from the theory of piecewise deterministic Markov processes in order to derive exponential martingales needed to establish computable upper bounds of the ruin probabilities, as their exact expressions are intractable.