Academic literature on the topic 'Processus stochastique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Processus stochastique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Processus stochastique"
Orléan, André. "De la stabilité évolutionniste à la stabilité stochastique : réflexions sur les jeux évolutionnistes stochastiques." Revue économique 47, no. 3 (May 1, 1996): 589–600. http://dx.doi.org/10.3917/reco.p1996.47n3.0589.
Full textAbi-Zeid, I., and B. Bobée. "La modélisation stochastique des étiages: une revue bibliographique." Revue des sciences de l'eau 12, no. 3 (April 12, 2005): 459–84. http://dx.doi.org/10.7202/705360ar.
Full textDinculeanu, Nicolae. "Intégrale stochastique des processus à deux indices." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no. 6 (September 1999): 527–30. http://dx.doi.org/10.1016/s0764-4442(00)80055-5.
Full textGondran, Michel. "Processus complexe stochastique non standard en mécanique." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 333, no. 6 (September 2001): 593–98. http://dx.doi.org/10.1016/s0764-4442(01)02082-1.
Full textBodo, B. A., and T. E. Unny. "Modèles linéaires stochastiques théoriques pour la réponse des petits bassins." Revue des sciences de l'eau 3, no. 2 (April 12, 2005): 151–82. http://dx.doi.org/10.7202/705069ar.
Full textGlachant, Jérôme. "Fil du rasoir et chocs sur les rendements d’échelle." Recherches économiques de Louvain 60, no. 3 (September 1994): 359–75. http://dx.doi.org/10.1017/s0770451800008046.
Full textPontier, Monique. "Filtrage approche et calcul stochastique non causal." Nagoya Mathematical Journal 118 (June 1990): 1–33. http://dx.doi.org/10.1017/s0027763000002968.
Full textDinculeanu, Nicolae. "Intégrale stochastique des processus abstraits à semi-variation finie." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no. 3 (February 1998): 343–46. http://dx.doi.org/10.1016/s0764-4442(97)82992-8.
Full textKennedy, Peter. "Innovation stochastique et coût de la réglementation environnementale." L'Actualité économique 70, no. 2 (March 23, 2009): 199–209. http://dx.doi.org/10.7202/602142ar.
Full textAzaïs, Jean-Marc, and Mario Wschebor. "Une formule pour calculer la distribution du maximum d'un processus stochastique." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324, no. 2 (January 1997): 225–30. http://dx.doi.org/10.1016/s0764-4442(99)80350-4.
Full textDissertations / Theses on the topic "Processus stochastique"
Benchettah, Azzedine. "Commande optimale stochastique et processus reciproques." Paris 7, 1991. http://www.theses.fr/1991PA077135.
Full textGravereaux, Jean-Bernard. "Calcul stochastique et processus de Markov." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37613974b.
Full textYounès, Sana. "Model checking stochastique par les méthodes de comparaison stochastique." Versailles-St Quentin en Yvelines, 2008. http://www.theses.fr/2008VERS0008.
Full textNous proposons dans cette thèse une nouvelle méthode de vérification des chaînes de Markov. La vérification de ces modèles est effectuée à partir des distributions transitoires ou stationnaire de la chaîne de Markov considérée. Nous utilisons les méthodes de comparaison stochastique pour obtenir des mesures bornantes afin de vérifier la chaîne considérée. Ces mesures sont obtenues par la construction d'une chaîne bornante à la chaîne initiale qui est en générale de très grande taille. Les chaînes bornantes construites doivent être plus simples à analyser permettant de construire des bornes pour les modèles dont la résolution numérique est difficile voire impossible. Nous avons exploré certains schémas pour construire des chaînes bornantes comme la lumpabilité et la classe C. Nous avons développé également d'autres schémas de construction de chaînes bornantes sur les chaînes de Markov censurées. Il est évident que les mesures bornantes ne permettent pas toujours de conclure. Dans ce cas il faut affiner le modèle bornant si le schéma de borne le permet. Nous avons montré que les méthodes de bornes que nous proposons sont pertinentes pour la vérification de chaînes de Markov et permettent de réduire remarquablement le temps de vérification
Paredes, Moreno Daniel. "Modélisation stochastique de processus d'agrégation en chimie." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30368/document.
Full textWe center our interest in the Population Balance Equation (PBE). This equation describes the time evolution of systems of colloidal particles in terms of its number density function (NDF) where processes of aggregation and breakage are involved. In the first part, we investigated the formation of groups of particles using the available variables and the relative importance of these variables in the formation of the groups. We use data in (Vlieghe 2014) and exploratory techniques like principal component analysis, cluster analysis and discriminant analysis. We used this scheme of analysis for the initial population of particles as well as in the resulting populations under different hydrodynamics conditions. In the second part we studied the use of the PBE in terms of the moments of the NDF, and the Quadrature Method of Moments (QMOM) and the Generalized Minimal Extrapolation (GME), in order to recover the time evolution of a finite set of standard moments of the NDF. The QMOM methods uses an application of the Product-Difference algorithm and GME recovers a discrete non-negative measure given a finite set of its standard moments. In the third part, we proposed an discretization scheme in order to find a numerical approximation to the solution of the PBE. We used three cases where the analytical solution is known (Silva et al. 2011) in order to compare the theoretical solution to the approximation found with the discretization scheme. In the last part, we proposed a method for estimate the parameters involved in the modelization of aggregation and breakage processes in PBE. The method uses the numerical approximation found, as well as the Extended Kalman Filter. The method estimates iteratively the parameters at each time, using an non- linear Least Square Estimator
Barbachoux, Cécile. "Contribution a l'etude d'un processus stochastique relativiste." Paris 6, 2000. http://www.theses.fr/2000PA066026.
Full textFlint, Ian. "Analyse stochastique de processus ponctuels : au-delà du processus de Poisson." Thesis, Paris, ENST, 2013. http://www.theses.fr/2013ENST0085/document.
Full textDeterminantal point processes have sparked interest in very diverse fields, such as random matrix theory, point process theory, and networking. In this manuscript, we consider them as random point processes, i.e. a stochastic collection of points in a general space. Hence, we are granted access to a wide variety of tools from point process theory, which allows for a precise study of many of their probabilistic properties. We begin with the study of determinantal point processes from an applicative point of view. To that end, we propose different methods for their simulation in a very general setting. Moreover, we bring to light a series of models derived from the well-known Ginibre point process, which are quite suited for applications. Thirdly, we introduce a differentiable gradient on the considered probability space. Thanks to some powerful tools from Dirichlet form theory, we discuss integration by parts for general point processes, and show the existence of the associated diffusion processes correctly associated to the point processes. We are able to apply these results to the specific case of determinantal point processes, which leads us to characterizing these diffusions in terms of stochastic differential equations. Lastly, we turn our attention to the difference gradient on the same space. In a certain sense, we define a Skohorod integral, which satisfies an integration by parts formula, i.e. its adjoint is the difference operator. An application to the study of a random transformation of the point process is given, wherein we characterize the distribution of the transformed point process under mild hypotheses
Flint, Ian. "Analyse stochastique de processus ponctuels : au-delà du processus de Poisson." Electronic Thesis or Diss., Paris, ENST, 2013. http://www.theses.fr/2013ENST0085.
Full textDeterminantal point processes have sparked interest in very diverse fields, such as random matrix theory, point process theory, and networking. In this manuscript, we consider them as random point processes, i.e. a stochastic collection of points in a general space. Hence, we are granted access to a wide variety of tools from point process theory, which allows for a precise study of many of their probabilistic properties. We begin with the study of determinantal point processes from an applicative point of view. To that end, we propose different methods for their simulation in a very general setting. Moreover, we bring to light a series of models derived from the well-known Ginibre point process, which are quite suited for applications. Thirdly, we introduce a differentiable gradient on the considered probability space. Thanks to some powerful tools from Dirichlet form theory, we discuss integration by parts for general point processes, and show the existence of the associated diffusion processes correctly associated to the point processes. We are able to apply these results to the specific case of determinantal point processes, which leads us to characterizing these diffusions in terms of stochastic differential equations. Lastly, we turn our attention to the difference gradient on the same space. In a certain sense, we define a Skohorod integral, which satisfies an integration by parts formula, i.e. its adjoint is the difference operator. An application to the study of a random transformation of the point process is given, wherein we characterize the distribution of the transformed point process under mild hypotheses
Nicaise, Florent. "Calcul stochastique anticipant pour des processus avec sauts." Clermont-Ferrand 2, 2001. http://www.theses.fr/2001CLF2A003.
Full textBordenave, Charles. "Analyse stochastique des réseaux spatiaux." Phd thesis, Ecole Polytechnique X, 2006. http://pastel.archives-ouvertes.fr/pastel-00001902.
Full textGobard, Renan. "Fluctuations dans des modèles de boules aléatoires." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S025/document.
Full textIn this thesis, we study the macroscopic fluctuations in random balls models. A random balls model is an aggregation of balls in Rd whose centers and radii are random. We also mark each balls with a random weight. We consider the mass M induced by the system of weighted balls on a configuration μ of Rd. In order to investigate the macroscopic fluctuations of M, we realize a zoom-out on the configuration of balls. Mathematically, we reduce the mean radius while increasing the mean number of centers by volume unit. The question has already been studied when the centers, the radii and the weights are independent and the triplets (center, radius, weight) are generated according to a Poisson point process on Rd ×R+ ×R. Then, we observe three different behaviors depending on the comparison between the speed of the decreasing of the radii and the speed of the increasing of the density of centers. We propose to generalize these results in three different directions. The first part of this thesis consists in introducing dependence between the radii and the centers and inhomogeneity in the distribution of the centers. In the model we propose, the stochastic behavior of the radii depends on the location of the ball. In the previous works, the convergences obtained for the fluctuations of M are at best functional convergences in finite dimension. In the second part of this work, we obtain functional convergence on an infinite dimensional set of configurations μ. In the third and last part, we study a random balls model (non-weighted) on C where the couples (center, radius) are generated according to determinantal point process. Unlike to the Poisson point process, the determinantal point process exhibits repulsion phenomena between its points which allows us to model more physical problems
Books on the topic "Processus stochastique"
Nikolaevich, Shiri͡aev Alʹbert, ed. Probability theory. Berlin: Springer-Verlag, 1998.
Find full textDoyon, Gérald. Systèmes et réseaux de télécommunication en régime stochastique. Paris: Masson, 1989.
Find full textIkeda, Nobuyuki. Stochastic differential equations and diffusion processes. 2nd ed. Amsterdam: North-Holland Pub. Co., 1989.
Find full textKaratzas, Ioannis. Brownian motion and stochastic calculus. 2nd ed. New York: Springer, 1996.
Find full textE, Shreve Steven, ed. Brownian motion and stochastic calculus. New York: Springer-Verlag, 1988.
Find full textE, Shreve Steven, ed. Brownian motion and stochastic calculus. 2nd ed. New York: Springer-Verlag, 1991.
Find full textAzencott, Robert. Series of irregular observations: Forecasting and model building. New York: Springer-Verlag, 1986.
Find full textKli͡at͡skin, Valeriĭ Isaakovich. Stochastic equations through the eye of the physicist: Basic concepts, exact results and asymptotic approximations. Amsterdam: Elsevier, 2005.
Find full textFrauendorfer, Karl. Stochastic two-stage programming. Berlin: Springer-Verlag, 1992.
Find full textAné, Thierry. Changement de temps, processus subordonnés et volatilite stochastique: Une approche financière des données à haute fréquence. Grenoble: A.N.R.T, Université Pierre Mendes France (Grenoble II), 1997.
Find full textBook chapters on the topic "Processus stochastique"
Le Gall, Jean-Francois. "Vecteurs et processus gaussiens." In Mouvement brownien, martingales et calcul stochastique, 1–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31898-6_1.
Full textLe Gall, Jean-Francois. "Vecteurs et processus gaussiens." In Mouvement brownien, martingales et calcul stochastique, 57–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31898-6_4.
Full textLe Gall, Jean-Francois. "Vecteurs et processus gaussiens." In Mouvement brownien, martingales et calcul stochastique, 121–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-31898-6_6.
Full textBertoin, Jean. "Temps locaux et integration stochastique pour les processus de dirichlet." In Lecture Notes in Mathematics, 191–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077634.
Full textCaumel, Yves. "Processus du second ordre." In Probabilités et processus stochastiques, 235–59. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_10.
Full textCaumel, Yves. "Probabilités sur les ensembles finis." In Probabilités et processus stochastiques, 1–18. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_1.
Full textCaumel, Yves. "Problèmes." In Probabilités et processus stochastiques, 261–92. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_11.
Full textCaumel, Yves. "Variables aléatoires." In Probabilités et processus stochastiques, 19–44. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_2.
Full textCaumel, Yves. "Vecteurs aléatoires." In Probabilités et processus stochastiques, 45–69. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_3.
Full textCaumel, Yves. "Calcul de lois." In Probabilités et processus stochastiques, 71–91. Paris: Springer Paris, 2011. http://dx.doi.org/10.1007/978-2-8178-0163-6_4.
Full textConference papers on the topic "Processus stochastique"
Guérineau, L., and P. Carer. "Évaluation de l’impact des conditions climatiques sur la fiabilité du réseau électrique par des processus stochastiques." In Congrès Lambda Mu 19 de Maîtrise des Risques et Sûreté de Fonctionnement, Dijon, 21-23 Octobre 2014. IMdR, 2015. http://dx.doi.org/10.4267/2042/56157.
Full text