To see the other types of publications on this topic, follow the link: PRODUTOS CARTESIANOS.

Journal articles on the topic 'PRODUTOS CARTESIANOS'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'PRODUTOS CARTESIANOS.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Borba, Rute E. S. Rosa. "Crianças de Anos Iniciais Levantando Espaços Amostrais: Relações Entre Pensamentos Combinatório e Probabilístico." Jornal Internacional de Estudos em Educação Matemática 10, no. 2 (August 31, 2017): 86. http://dx.doi.org/10.17921/2176-5634.2017v10n2p91-97.

Full text
Abstract:
Estudos em Educação Matemática têm apontado conhecimentos que crianças de anos iniciais já possuem e suas dificuldades com alguns conceitos em particular. Nesse texto são discutidos quatro argumentos. 1) Crianças em início de escolarização já possuem conhecimentos básicos de alguns conceitos mais complexos, tais como os associados à Probabilidade e à Combinatória. 2) Em situações de jogo, com uso de recursos adequados e por meio de estratégias próprias, as crianças evidenciam noções sobre aleatoriedade, independência de eventos e equiprobabilidade, bem como demonstram compreensão de situações combinatórias variadas – produtos cartesianos, arranjos, combinações e permutações. 3) Trabalhar de modo articulado com a Probabilidade e a Combinatória – por meio do levantamento de espaços amostrais, por exemplo – constitui-se um modo eficiente de integrar conhecimentos matemáticos diversos. 4)Por demandarem formas mais complexas de pensamento, recomenda-se que se inicie cedo o estímulo ao desenvolvimento dos raciocínios combinatório e probabilístico. Esses argumentos são aqui discutidos a partir de resultados de pesquisas e são apontadas implicações para o ensino escolar.Palavras-chave: Crianças. Anos Iniciais. Espaços Amostrais. Raciocínios Combinatório e Probabilístico.AbstractStudies in Mathematics Education have pointed out knowledge that children in initial studying already have and their difficulties with some concepts in particular. In this text four arguments are discussed. 1) Children in initial schooling already have basic knowledge of some more complex concepts, such as those associated with Probability and Combinatorics. 2) In game situations, using appropriate resources and through their own strategies, children show notions about randomness, independence of events and equiprobability, as well as demonstrate understanding of varied combinatorial situations – Cartesian products, arrangements, combinations and permutations. 3) Working in an articulated way with Probability and Combinatorial – by means of raising sample spaces, for example – is an efficient way to integrate diverse mathematical knowledge. 4) Because they require more complex forms of thinking, it is recommended that the stimulus to the development of combinatorial and probabilistic reasoning be initiated early. These arguments are discussed from research results and implications for school teaching will be pointed out.Keywords: Children. Initial Schooling. Sample Spaces. Combinatorial and Probabilistic Reasoning.
APA, Harvard, Vancouver, ISO, and other styles
2

Takahashi, Keiichi. "Descartes’ Dream: Cartesian Products." Pure and Applied Mathematics Journal 4, no. 2 (2015): 7. http://dx.doi.org/10.11648/j.pamj.s.2015040201.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Magina, Sandra Maria Pinto, Alina Galvão Spinillo, and Lianny Milenna de Sá Melo. "A Resolução de Problemas de Produto Cartesiano por Alunos do Ensino Fundamental." Educação & Realidade 43, no. 1 (October 5, 2017): 293–311. http://dx.doi.org/10.1590/2175-623664750.

Full text
Abstract:
Resumo: O estudo investigou a resolução de problemas de produto cartesiano diretos (requer a multiplicação para sua resolução) e inverso (requer a divisão para sua resolução) por alunos do Ensino Fundamental, examinando o nível de complexidade deles e os procedimentos adotados por esses alunos em função do tipo de problema. Solicitou-se que 269 alunos do 3º ao 5º ano, entre 8 e 10 anos, resolvessem um problema de produto cartesiano direto e outro inverso. Como esperado, o problema inverso foi o mais difícil. As estratégias mostraram que os níveis de raciocínio combinatório variavam em função do tipo de problema. Observou-se uma progressão no processo de resolução de problemas de produto cartesiano diretos, mas não nos inversos.
APA, Harvard, Vancouver, ISO, and other styles
4

CHO, Y. J., M. T. GRABIEC, and A. A. TALESHIAN. "CARTESIAN PRODUCTS OF PQPM-SPACES." Journal of Nonlinear Sciences and Applications 02, no. 01 (September 15, 2009): 60–70. http://dx.doi.org/10.22436/jnsa.002.01.08.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Djelloul, Selma. "Graph decompositions for cartesian products." Electronic Notes in Discrete Mathematics 22 (October 2005): 375–81. http://dx.doi.org/10.1016/j.endm.2005.06.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Seoud, M. A., A. E. I. Abd el Maqsoud, Robin J. Wilson, and Jini Williams. "Total colourings of Cartesian products." International Journal of Mathematical Education in Science and Technology 28, no. 4 (July 1997): 481–87. http://dx.doi.org/10.1080/0020739970280402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

IMRICH, WILFRIED. "Embedding Graphs into Cartesian Products." Annals of the New York Academy of Sciences 576, no. 1 Graph Theory (December 1989): 266–74. http://dx.doi.org/10.1111/j.1749-6632.1989.tb16407.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kwasik, Slawomir, and Reinhard Schultz. "Decomposing manifolds into Cartesian products." Homology, Homotopy and Applications 20, no. 2 (2018): 1–10. http://dx.doi.org/10.4310/hha.2018.v20.n2.a1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bishop, Christopher J., and Yuval Peres. "Packing dimension and Cartesian products." Transactions of the American Mathematical Society 348, no. 11 (1996): 4433–45. http://dx.doi.org/10.1090/s0002-9947-96-01750-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Peters, Travis, John Goldwasser, and Michael Young. "LIGHTS OUT! on Cartesian Products." Electronic Journal of Linear Algebra 32 (February 6, 2017): 464–74. http://dx.doi.org/10.13001/1081-3810.3483.

Full text
Abstract:
The game LIGHTS OUT! is played on a 5 by 5 square grid of buttons; each button may be on or off. Pressing a button changes the on/o state of the light of the button pressed and of all its vertical and horizontal neighbors. Given an initial configuration of buttons that are on, the object of the game is to turn all the lights out. The game can be generalized to arbitrary graphs. In this paper, Cartesian Product graphs (that is, graphs of the form G\box H, where G and H are arbitrary finite, simple graphs) are investigated. In particular, conditions for which GH is universally solvable (every initial configuration of lights can be turned out by a finite sequence of button presses), using both closed neighborhood switching and open neighborhood switching, are provided.
APA, Harvard, Vancouver, ISO, and other styles
11

Corner, A. L. S., and Rüdiger Göbel. "Radicals commuting with cartesian products." Archiv der Mathematik 71, no. 5 (November 1998): 341–48. http://dx.doi.org/10.1007/s000130050275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Benecke, S., and C. M. Mynhardt. "Domination of generalized Cartesian products." Discrete Mathematics 310, no. 8 (April 2010): 1392–97. http://dx.doi.org/10.1016/j.disc.2009.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Klavžar, Sandi, and Norbert Seifter. "Dominating Cartesian products of cycles." Discrete Applied Mathematics 59, no. 2 (May 1995): 129–36. http://dx.doi.org/10.1016/0166-218x(93)e0167-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hartnell, Bert L., Douglas F. Rall, and Kirsti Wash. "On Well-Covered Cartesian Products." Graphs and Combinatorics 34, no. 6 (August 27, 2018): 1259–68. http://dx.doi.org/10.1007/s00373-018-1943-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Afzal, Shehzad, and Clemens Brand. "Recognizing triangulated Cartesian graph products." Discrete Mathematics 312, no. 1 (January 2012): 188–93. http://dx.doi.org/10.1016/j.disc.2011.08.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bandelt, H. J. "Cartesian products of block graphs." Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 65, no. 1 (December 1995): 83–87. http://dx.doi.org/10.1007/bf02953314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bujtás, Csilla, Pakanun Dokyeesun, Vesna Iršič, and Sandi Klavžar. "Connected domination game played on Cartesian products." Open Mathematics 17, no. 1 (November 8, 2019): 1269–80. http://dx.doi.org/10.1515/math-2019-0111.

Full text
Abstract:
Abstract The connected domination game on a graph G is played by Dominator and Staller according to the rules of the standard domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of G. If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the connected game domination number of G. Here this invariant is studied on Cartesian product graphs. A general upper bound is proved and demonstrated to be sharp on Cartesian products of stars with paths or cycles. The connected game domination number is determined for Cartesian products of P3 with arbitrary paths or cycles, as well as for Cartesian products of an arbitrary graph with Kk for the cases when k is relatively large. A monotonicity theorem is proved for products with one complete factor. A sharp general lower bound on the connected game domination number of Cartesian products is also established.
APA, Harvard, Vancouver, ISO, and other styles
18

Kreh, Martin, and Jan-Hendrik de Wiljes. "Peg Solitaire on Cartesian Products of Graphs." Graphs and Combinatorics 37, no. 3 (March 11, 2021): 907–17. http://dx.doi.org/10.1007/s00373-021-02289-7.

Full text
Abstract:
AbstractIn 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. In the same article, the authors proved some results on the solvability of Cartesian products, given solvable or distance 2-solvable graphs. We extend these results to Cartesian products of certain unsolvable graphs. In particular, we prove that ladders and grid graphs are solvable and, further, even the Cartesian product of two stars, which in a sense are the “most” unsolvable graphs.
APA, Harvard, Vancouver, ISO, and other styles
19

Imrich, Wilfried, Blaž Zmazek, and Janez Žerovnik. "Weak k-reconstruction of Cartesian products." Discussiones Mathematicae Graph Theory 23, no. 2 (2003): 273. http://dx.doi.org/10.7151/dmgt.1202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Imrich, Wilfried, Ali Iranmanesh, Sandi Klavžar, and Abolghasem Soltani. "Edge-transitive lexicographic and Cartesian products." Discussiones Mathematicae Graph Theory 36, no. 4 (2016): 857. http://dx.doi.org/10.7151/dmgt.1892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Estaji, Ehsan, Wilfried Imrich, Rafał Kalinowski, Monika Pilśniak, and Thomas Tucker. "Distinguishing Cartesian products of countable graphs." Discussiones Mathematicae Graph Theory 37, no. 1 (2017): 155. http://dx.doi.org/10.7151/dmgt.1902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Leclercq, Rémi. "The Seidel morphism of Cartesian products." Algebraic & Geometric Topology 9, no. 4 (October 3, 2009): 1951–69. http://dx.doi.org/10.2140/agt.2009.9.1951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gravier, Sylvain, Kahina Meslem, Simon Schmidt, and Souad Slimani. "Game distinguishing numbers of Cartesian products." Ars Mathematica Contemporanea 14, no. 1 (April 14, 2017): 39–54. http://dx.doi.org/10.26493/1855-3974.1015.84f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Weld, Kathryn. "Computability, Homotopy, and Twisted Cartesian Products." Proceedings of the American Mathematical Society 108, no. 4 (April 1990): 1073. http://dx.doi.org/10.2307/2047970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Bandelt, Hans-J�rgen, Gustav Burosch, and Jean-Marie Laborde. "Cartesian products of trees and paths." Journal of Graph Theory 22, no. 4 (August 1996): 347–56. http://dx.doi.org/10.1002/(sici)1097-0118(199608)22:4<347::aid-jgt8>3.0.co;2-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Blei, Ron, and Fuchang Gao. "Combinatorial dimension in fractional Cartesian products." Random Structures and Algorithms 26, no. 1-2 (January 2005): 146–59. http://dx.doi.org/10.1002/rsa.20058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Matoušek, Jiří. "On the Discrepancy for Cartesian Products." Journal of the London Mathematical Society 61, no. 3 (June 2000): 737–47. http://dx.doi.org/10.1112/s002461070000867x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Morishita, Shinichi. "Avoiding Cartesian products for multiple joins." Journal of the ACM 44, no. 1 (January 15, 1997): 57–85. http://dx.doi.org/10.1145/256292.256296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Blei, Ron C., and James H. Schmerl. "Combinatorial dimension of fractional Cartesian products." Proceedings of the American Mathematical Society 120, no. 1 (January 1, 1994): 73. http://dx.doi.org/10.1090/s0002-9939-1994-1160291-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pike, David A., and Yubo Zou. "Decycling Cartesian Products of Two Cycles." SIAM Journal on Discrete Mathematics 19, no. 3 (January 2005): 651–63. http://dx.doi.org/10.1137/s089548010444016x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Weld, Kathryn. "Computability, homotopy and twisted Cartesian products." Proceedings of the American Mathematical Society 108, no. 4 (April 1, 1990): 1073. http://dx.doi.org/10.1090/s0002-9939-1990-0994794-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Imrich, Wilfried, and Iztok Peterin. "Recognizing Cartesian products in linear time." Discrete Mathematics 307, no. 3-5 (February 2007): 472–83. http://dx.doi.org/10.1016/j.disc.2005.09.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Špacapan, Simon. "Connectivity of Cartesian products of graphs." Applied Mathematics Letters 21, no. 7 (July 2008): 682–85. http://dx.doi.org/10.1016/j.aml.2007.06.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Nowakowski, Richard, and Ivan Rival. "Retract rigid cartesian products of graphs." Discrete Mathematics 70, no. 2 (1988): 169–84. http://dx.doi.org/10.1016/0012-365x(88)90091-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Pfeifle, Julian, Vincent Pilaud, and Francisco Santos. "Polytopality and Cartesian products of graphs." Israel Journal of Mathematics 192, no. 1 (May 12, 2012): 121–41. http://dx.doi.org/10.1007/s11856-012-0049-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ferrara, Michael, Zoltan Füredi, Sogol Jahanbekam, and Paul S. Wenger. "List-distinguishing Cartesian products of cliques." Discrete Mathematics 342, no. 7 (July 2019): 2012–22. http://dx.doi.org/10.1016/j.disc.2019.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Zelenyuk, E. G., and V. I. Malykhin. "A two-coloring of Cartesian products." Ukrainian Mathematical Journal 42, no. 6 (June 1990): 751–54. http://dx.doi.org/10.1007/bf01058929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Banič, Iztok, and Janez Žerovnik. "The fault-diameter of Cartesian products." Advances in Applied Mathematics 40, no. 1 (January 2008): 98–106. http://dx.doi.org/10.1016/j.aam.2007.04.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mehta, H. S., and U. P. Acharya. "Independence number of generalized products of graphs." Asian-European Journal of Mathematics 13, no. 01 (August 27, 2018): 2050013. http://dx.doi.org/10.1142/s1793557120500138.

Full text
Abstract:
The tensor product and the Cartesian product of two graphs are very well-known graph products and studied in detail. Many graph parameters, particularly independence number, have been studied for these graph products. These two graph products have been generalized by [Formula: see text]-tensor product and [Formula: see text]-Cartesian product, respectively, and studied in detail. In this paper, we discuss the independence number for [Formula: see text]-tensor product [Formula: see text] and [Formula: see text]-Cartesian product [Formula: see text]. In general, we obtain lower bound and upper bound for the independence number.
APA, Harvard, Vancouver, ISO, and other styles
40

Bagas, Rizky Muhammad, Titi Udjiani SRRM, and Harjito Harjito. "MENGKONSTRUKSI DIRECT PRODUCT NEAR RING DAN SMARANDACHE NEAR RING." Journal of Fundamental Mathematics and Applications (JFMA) 2, no. 2 (November 30, 2019): 70. http://dx.doi.org/10.14710/jfma.v2i2.35.

Full text
Abstract:
If we have two arbitrary non empty sets ,then their cartesian product can be constructed. Cartesian products of two sets can be generalized into number of sets. It has been found that if the algebraic structure of groups and rings are seen as any set, then the phenomenon of cartesian products of sets can be extended to groups and rings. Direct products of groups and rings can be obtained by adding binary operations to the cartesian product. This paper answers the question of whether the direct product phenomenon of groups and rings can also be extended at the near ring and Smarandache near ring ?. The method in this paper is by following the method in groups and rings, namely by seen that near ring and Smarandache near ring as a set and then build their cartesian products. Next, the binary operations is adding to the cartesian products that have been obtained to build the direct product definitions of near ring and near ring Smarandache.
APA, Harvard, Vancouver, ISO, and other styles
41

Placha, Kelly Cristine, and Maria Lucia Faria Moro. "Problemas de produto cartesiano, raciocínio combinatório e intervenção do professor." Psicologia: Teoria e Pesquisa 25, no. 1 (March 2009): 7–17. http://dx.doi.org/10.1590/s0102-37722009000100002.

Full text
Abstract:
O artigo descreve a natureza das soluções de crianças a problemas de produto cartesiano conforme níveis do raciocínio combinatório ali implicados, para identificar a aprendizagem ocorrente e a natureza das intervenções de ensino. Participaram cinco crianças de nove anos, alunas da 3ª série de uma escola municipal de Ensino Fundamental. A coleta de dados foi realizada em duas sessões individuais para solucionar problemas por escrito. A intervenção de ensino da pesquisadora seguiu o estilo clínico-crítico. Da análise qualitativa dos dados gravados em vídeo foram identificados os seguintes níveis de solução: resposta contextualizada sem indício de combinação, primeiras aproximações à solução combinatória, obtenção de algumas combinações e presença de solução combinatória. As formas identificadas de intervenção do adulto foram: orientadora, reorientadora, questionadora e instigadora. A discussão sublinha a relação das intervenções de ensino descritas na ocorrência dos progressos pontuais das crianças em direção a soluções de caráter combinatório.
APA, Harvard, Vancouver, ISO, and other styles
42

DRAZENSKA, EMILIA. "The crossing numbers of products of paths with 7–vertex trees." Creative Mathematics and Informatics 23, no. 2 (2014): 191–97. http://dx.doi.org/10.37193/cmi.2014.02.13.

Full text
Abstract:
The crossing numbers of Cartesian products of paths with all graphs of order at most five are given. The crossing numbers of Cartesian products of paths with several graphs on six vertices are known. We extend these results by giving the exact values or upper bound of crossing numbers of Cartesian products G Pn for every tree G on seven vertices.
APA, Harvard, Vancouver, ISO, and other styles
43

Anand, Bijo, Kannan Balakrishnan, Manoj Changat, and Iztok Peterin. "Atoms and clique separators in graph products." Applicable Analysis and Discrete Mathematics 6, no. 1 (2012): 46–62. http://dx.doi.org/10.2298/aadm111230001a.

Full text
Abstract:
We describe in the present work all minimal clique separators of the four standard products-Cartesian, strong, direct, and lexicographic-as well as all maximal atoms of the Cartesian, strong and lexicographic product, while we only partially describe maximal atoms of direct products. Typically, a product has no clique separator and so the product is a maximal atom.
APA, Harvard, Vancouver, ISO, and other styles
44

KLESC, MARIAN, and JANA PETRILLOVA. "On Cartesian products with small crossing numbers." Carpathian Journal of Mathematics 28, no. 1 (2012): 67–75. http://dx.doi.org/10.37193/cjm.2012.01.13.

Full text
Abstract:
Kulli at al. started to characterize line graphs with crossing number one. In this paper, the similar problems were solved for the Cartesian products of two graphs. The necessary and sufficient conditions are given for all pairs of graphs G1 and G2 for which the crossing number of their Cartesian product G1 × G2 is one or two.
APA, Harvard, Vancouver, ISO, and other styles
45

CRUTTWELL, G. S. H. "Cartesian differential categories revisited." Mathematical Structures in Computer Science 27, no. 1 (April 13, 2015): 70–91. http://dx.doi.org/10.1017/s0960129515000055.

Full text
Abstract:
We revisit the definition of Cartesian differential categories, showing that a slightly more general version is useful for a number of reasons. As one application, we show that these general differential categories are comonadic over categories with finite products, so that every category with finite products has an associated cofree differential category. We also work out the corresponding results when the categories involved have restriction structure, and show that these categories are closed under splitting restriction idempotents.
APA, Harvard, Vancouver, ISO, and other styles
46

Abreu-Blaya, Ricardo, Sergio Bermudo, José M. Rodríguez, and Eva Tourís. "Topological Indices and f-Polynomials on Some Graph Products." Symmetry 13, no. 2 (February 9, 2021): 292. http://dx.doi.org/10.3390/sym13020292.

Full text
Abstract:
We obtain inequalities involving many topological indices in classical graph products by using the f-polynomial. In particular, we work with lexicographic product, Cartesian sum and Cartesian product, and with first Zagreb, forgotten, inverse degree and sum lordeg indices.
APA, Harvard, Vancouver, ISO, and other styles
47

Hellmuth, Marc, Wilfried Imrich, and Tomas Kupka. "Fast recognition of partial star products and quasi cartesian products." Ars Mathematica Contemporanea 9, no. 2 (December 8, 2014): 223–42. http://dx.doi.org/10.26493/1855-3974.520.933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Klešč, Marián. "The crossing numbers of certain Cartesian products." Discussiones Mathematicae Graph Theory 15, no. 1 (1995): 5. http://dx.doi.org/10.7151/dmgt.1001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hartnell, Bert L., and Douglas F. Rall. "Improving some bounds for dominating Cartesian products." Discussiones Mathematicae Graph Theory 23, no. 2 (2003): 261. http://dx.doi.org/10.7151/dmgt.1201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hou, Xinmin. "Total domination of Cartesian products of graphs." Discussiones Mathematicae Graph Theory 27, no. 1 (2007): 175. http://dx.doi.org/10.7151/dmgt.1353.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography