Journal articles on the topic 'Programmed -1 ribosomal frameshift'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Programmed -1 ribosomal frameshift.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Choi, Jinah, Zhenming Xu, and Jing-hsiung Ou. "Triple Decoding of Hepatitis C Virus RNA by Programmed Translational Frameshifting." Molecular and Cellular Biology 23, no. 5 (2003): 1489–97. http://dx.doi.org/10.1128/mcb.23.5.1489-1497.2003.
Full textLopinski, John D., Jonathan D. Dinman, and Jeremy A. Bruenn. "Kinetics of Ribosomal Pausing during Programmed −1 Translational Frameshifting." Molecular and Cellular Biology 20, no. 4 (2000): 1095–103. http://dx.doi.org/10.1128/mcb.20.4.1095-1103.2000.
Full textSchütz, G. M. "On the stationary frequency of programmed ribosomal −1 frameshift." Journal of Statistical Mechanics: Theory and Experiment 2020, no. 4 (2020): 043502. http://dx.doi.org/10.1088/1742-5468/ab7a1d.
Full textTumer, Nilgun E., Bijal A. Parikh, Ping Li, and Jonathan D. Dinman. "The Pokeweed Antiviral Protein Specifically Inhibits Ty1-Directed +1 Ribosomal Frameshifting and Retrotransposition in Saccharomyces cerevisiae." Journal of Virology 72, no. 2 (1998): 1036–42. http://dx.doi.org/10.1128/jvi.72.2.1036-1042.1998.
Full textGarcia-Miranda, Pablo, Jordan T. Becker, Bayleigh E. Benner, Alexander Blume, Nathan M. Sherer, and Samuel E. Butcher. "Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity." Journal of Virology 90, no. 15 (2016): 6906–17. http://dx.doi.org/10.1128/jvi.00149-16.
Full textKontos, Harry, Sawsan Napthine, and Ian Brierley. "Ribosomal Pausing at a Frameshifter RNA Pseudoknot Is Sensitive to Reading Phase but Shows Little Correlation with Frameshift Efficiency." Molecular and Cellular Biology 21, no. 24 (2001): 8657–70. http://dx.doi.org/10.1128/mcb.21.24.8657-8670.2001.
Full textLarsen, B., N. M. Wills, R. F. Gesteland, and J. F. Atkins. "rRNA-mRNA base pairing stimulates a programmed -1 ribosomal frameshift." Journal of Bacteriology 176, no. 22 (1994): 6842–51. http://dx.doi.org/10.1128/jb.176.22.6842-6851.1994.
Full textPeltz, Stuart W., Amy B. Hammell, Ying Cui, Jason Yasenchak, Lara Puljanowski, and Jonathan D. Dinman. "Ribosomal Protein L3 Mutants Alter Translational Fidelity and Promote Rapid Loss of the Yeast Killer Virus." Molecular and Cellular Biology 19, no. 1 (1999): 384–91. http://dx.doi.org/10.1128/mcb.19.1.384.
Full textChoi, Junhong, Sinéad O’Loughlin, John F. Atkins, and Joseph D. Puglisi. "The energy landscape of −1 ribosomal frameshifting." Science Advances 6, no. 1 (2020): eaax6969. http://dx.doi.org/10.1126/sciadv.aax6969.
Full textTürkel, Sezai. "Amino Acid Starvation Enhances Programmed Ribosomal Frameshift in Metavirus Ty3 of Saccharomyces cerevisiae." Advances in Biology 2016 (June 30, 2016): 1–6. http://dx.doi.org/10.1155/2016/1840782.
Full textMeskauskas, Arturas, Jennifer L. Baxter, Edward A. Carr, et al. "Delayed rRNA Processing Results in Significant Ribosome Biogenesis and Functional Defects." Molecular and Cellular Biology 23, no. 5 (2003): 1602–13. http://dx.doi.org/10.1128/mcb.23.5.1602-1613.2003.
Full textSun, Yu, Laura Abriola, Rachel O. Niederer, et al. "Restriction of SARS-CoV-2 replication by targeting programmed −1 ribosomal frameshifting." Proceedings of the National Academy of Sciences 118, no. 26 (2021): e2023051118. http://dx.doi.org/10.1073/pnas.2023051118.
Full textPlant, Ewan P., Rasa Rakauskaitė, Deborah R. Taylor, and Jonathan D. Dinman. "Achieving a Golden Mean: Mechanisms by Which Coronaviruses Ensure Synthesis of the Correct Stoichiometric Ratios of Viral Proteins." Journal of Virology 84, no. 9 (2010): 4330–40. http://dx.doi.org/10.1128/jvi.02480-09.
Full textBelew, Ashton T., Nicholas L. Hepler, Jonathan L. Jacobs, and Jonathan D. Dinman. "PRFdb: A database of computationally predicted eukaryotic programmed -1 ribosomal frameshift signals." BMC Genomics 9, no. 1 (2008): 339. http://dx.doi.org/10.1186/1471-2164-9-339.
Full textHsu, Chiung-Fang, Kai-Chun Chang, Yi-Lan Chen, et al. "Formation of frameshift-stimulating RNA pseudoknots is facilitated by remodeling of their folding intermediates." Nucleic Acids Research 49, no. 12 (2021): 6941–57. http://dx.doi.org/10.1093/nar/gkab512.
Full textDulude, D. "Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1." Nucleic Acids Research 30, no. 23 (2002): 5094–102. http://dx.doi.org/10.1093/nar/gkf657.
Full textHong, Samuel, S. Sunita, Tatsuya Maehigashi, Eric D. Hoffer, Jack A. Dunkle, and Christine M. Dunham. "Mechanism of tRNA-mediated +1 ribosomal frameshifting." Proceedings of the National Academy of Sciences 115, no. 44 (2018): 11226–31. http://dx.doi.org/10.1073/pnas.1809319115.
Full textNapthine, Sawsan, Susanne Bell, Chris H. Hill, Ian Brierley, and Andrew E. Firth. "Characterization of the stimulators of protein-directed ribosomal frameshifting in Theiler's murine encephalomyelitis virus." Nucleic Acids Research 47, no. 15 (2019): 8207–23. http://dx.doi.org/10.1093/nar/gkz503.
Full textSharma, Virag, Marie-Françoise Prère, Isabelle Canal, et al. "Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli." Nucleic Acids Research 42, no. 11 (2014): 7210–25. http://dx.doi.org/10.1093/nar/gku386.
Full textGirnary, Roseanne, Louise King, Laurence Robinson, Robert Elston, and Ian Brierley. "Structure–function analysis of the ribosomal frameshifting signal of two human immunodeficiency virus type 1 isolates with increased resistance to viral protease inhibitors." Journal of General Virology 88, no. 1 (2007): 226–35. http://dx.doi.org/10.1099/vir.0.82064-0.
Full textPlant, E. P. "A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element." Nucleic Acids Research 32, no. 2 (2004): 784–90. http://dx.doi.org/10.1093/nar/gkh256.
Full textManktelow, E. "Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting." Nucleic Acids Research 33, no. 5 (2005): 1553–63. http://dx.doi.org/10.1093/nar/gki299.
Full textJacobs, Jonathan L., Ashton T. Belew, Rasa Rakauskaite, and Jonathan D. Dinman. "Identification of functional, endogenous programmed −1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae." Nucleic Acids Research 35, no. 1 (2006): 165–74. http://dx.doi.org/10.1093/nar/gkl1033.
Full textKelly, Jamie A., Alexandra N. Olson, Krishna Neupane, et al. "Structural and functional conservation of the programmed −1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2)." Journal of Biological Chemistry 295, no. 31 (2020): 10741–48. http://dx.doi.org/10.1074/jbc.ac120.013449.
Full textHuang, Wan-Ping, Che-Pei Cho, and Kung-Yao Chang. "mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting." International Journal of Molecular Sciences 19, no. 12 (2018): 3867. http://dx.doi.org/10.3390/ijms19123867.
Full textFinch, Leanne K., Roger Ling, Sawsan Napthine, et al. "Characterization of Ribosomal Frameshifting in Theiler's Murine Encephalomyelitis Virus." Journal of Virology 89, no. 16 (2015): 8580–89. http://dx.doi.org/10.1128/jvi.01043-15.
Full textWan, Ji, Xiangwei Gao, Yuanhui Mao, Xingqian Zhang, and Shu-Bing Qian. "A Coding Sequence-Embedded Principle Governs Translational Reading Frame Fidelity." Research 2018 (September 20, 2018): 1–15. http://dx.doi.org/10.1155/2018/7089174.
Full textLawler, Joseph F., Gennady V. Merkulov, and Jef D. Boeke. "Frameshift Signal Transplantation and the Unambiguous Analysis of Mutations in the Yeast Retrotransposon Ty1 Gag-Pol Overlap Region." Journal of Virology 75, no. 15 (2001): 6769–75. http://dx.doi.org/10.1128/jvi.75.15.6769-6775.2001.
Full textHalma, Matthew T. J., Dustin B. Ritchie, Tonia R. Cappellano, Krishna Neupane, and Michael T. Woodside. "Complex dynamics under tension in a high-efficiency frameshift stimulatory structure." Proceedings of the National Academy of Sciences 116, no. 39 (2019): 19500–19505. http://dx.doi.org/10.1073/pnas.1905258116.
Full textFirth, A. E., B. W. Jagger, H. M. Wise, et al. "Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction." Open Biology 2, no. 10 (2012): 120109. http://dx.doi.org/10.1098/rsob.120109.
Full textBARIL, M. "Efficiency of a programmed -1 ribosomal frameshift in the different subtypes of the human immunodeficiency virus type 1 group M." RNA 9, no. 10 (2003): 1246–53. http://dx.doi.org/10.1261/rna.5113603.
Full textAtkins, John F., and Glenn R. Björk. "A Gripping Tale of Ribosomal Frameshifting: Extragenic Suppressors of Frameshift Mutations Spotlight P-Site Realignment." Microbiology and Molecular Biology Reviews 73, no. 1 (2009): 178–210. http://dx.doi.org/10.1128/mmbr.00010-08.
Full textLeger, M., D. Dulude, S. V. Steinberg, and L. Brakier-Gingras. "The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift." Nucleic Acids Research 35, no. 16 (2007): 5581–92. http://dx.doi.org/10.1093/nar/gkm578.
Full textHuang, Xiaolan, Qiang Cheng, and Zhihua Du. "A Genome-Wide Analysis of RNA Pseudoknots That Stimulate Efficient −1 Ribosomal Frameshifting or Readthrough in Animal Viruses." BioMed Research International 2013 (2013): 1–15. http://dx.doi.org/10.1155/2013/984028.
Full textPatel, Ankoor, Emmely E. Treffers, Markus Meier, et al. "Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression." Journal of Biological Chemistry 295, no. 52 (2020): 17904–21. http://dx.doi.org/10.1074/jbc.ra120.016105.
Full textMishra, Bhavya, and Debashish Chowdhury. "Programmed −1 Frameshift of a Ribosome: Non-Monotonic Variation of Frameshift Efficiency with Increasing Stiffness of mRNA Secondary Structure." Biophysical Journal 110, no. 3 (2016): 234a. http://dx.doi.org/10.1016/j.bpj.2015.11.1292.
Full textPande, S., A. Vimaladithan, H. Zhao, and P. J. Farabaugh. "Pulling the ribosome out of frame by +1 at a programmed frameshift site by cognate binding of aminoacyl-tRNA." Molecular and Cellular Biology 15, no. 1 (1995): 298–304. http://dx.doi.org/10.1128/mcb.15.1.298.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107.
Full textVimaladithan, A., and P. J. Farabaugh. "Special peptidyl-tRNA molecules can promote translational frameshifting without slippage." Molecular and Cellular Biology 14, no. 12 (1994): 8107–16. http://dx.doi.org/10.1128/mcb.14.12.8107-8116.1994.
Full textRamsay, Joshua P., Laura G. L. Tester, Anthony S. Major, et al. "Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing–activated transfer of a mobile genetic element." Proceedings of the National Academy of Sciences 112, no. 13 (2015): 4104–9. http://dx.doi.org/10.1073/pnas.1501574112.
Full textOmar, Sara Ibrahim, Meng Zhao, Rohith Vedhthaanth Sekar, Sahar Arbabi Moghadam, Jack A. Tuszynski, and Michael T. Woodside. "Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers." PLOS Computational Biology 17, no. 1 (2021): e1008603. http://dx.doi.org/10.1371/journal.pcbi.1008603.
Full textCharbonneau, J., K. Gendron, G. Ferbeyre, and L. Brakier-Gingras. "The 5' UTR of HIV-1 full-length mRNA and the Tat viral protein modulate the programmed -1 ribosomal frameshift that generates HIV-1 enzymes." RNA 18, no. 3 (2012): 519–29. http://dx.doi.org/10.1261/rna.030346.111.
Full textGendron, Karine, Johanie Charbonneau, Dominic Dulude, Nikolaus Heveker, Gerardo Ferbeyre, and Léa Brakier-Gingras. "The presence of the TAR RNA structure alters the programmed -1 ribosomal frameshift efficiency of the human immunodeficiency virus type 1 (HIV-1) by modifying the rate of translation initiation." Nucleic Acids Research 36, no. 1 (2007): 30–40. http://dx.doi.org/10.1093/nar/gkm906.
Full textNiu, Shengniao, Shishu Cao, and Sek-Man Wong. "An infectious RNA with a hepta-adenosine stretch responsible for programmed −1 ribosomal frameshift derived from a full-length cDNA clone of Hibiscus latent Singapore virus." Virology 449 (January 2014): 229–34. http://dx.doi.org/10.1016/j.virol.2013.11.021.
Full textAhn, Dae-Gyun, Gun Young Yoon, Sunhee Lee, et al. "A Novel Frameshifting Inhibitor Having Antiviral Activity against Zoonotic Coronaviruses." Viruses 13, no. 8 (2021): 1639. http://dx.doi.org/10.3390/v13081639.
Full textSipley, J., and E. Goldman. "Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli." Proceedings of the National Academy of Sciences 90, no. 6 (1993): 2315–19. http://dx.doi.org/10.1073/pnas.90.6.2315.
Full textTheis, Corinna, Jens Reeder, and Robert Giegerich. "KnotInFrame: prediction of −1 ribosomal frameshift events." Nucleic Acids Research 36, no. 18 (2008): 6013–20. http://dx.doi.org/10.1093/nar/gkn578.
Full textLi, Lei, Alice L. Wang, and Ching C. Wang. "Structural Analysis of the −1 Ribosomal Frameshift Elements in Giardiavirus mRNA." Journal of Virology 75, no. 22 (2001): 10612–22. http://dx.doi.org/10.1128/jvi.75.22.10612-10622.2001.
Full textPersson, Britt C., and John F. Atkins. "Does Disparate Occurrence of Autoregulatory Programmed Frameshifting in Decoding the Release Factor 2 Gene Reflect an Ancient Origin with Loss in Independent Lineages?" Journal of Bacteriology 180, no. 13 (1998): 3462–66. http://dx.doi.org/10.1128/jb.180.13.3462-3466.1998.
Full textBlinkova, A., M. F. Burkart, T. D. Owens, and J. R. Walker. "Conservation of the Escherichia coli dnaX programmed ribosomal frameshift signal in Salmonella typhimurium." Journal of bacteriology 179, no. 13 (1997): 4438–42. http://dx.doi.org/10.1128/jb.179.13.4438-4442.1997.
Full text