Academic literature on the topic 'Progressive Cavity pump'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Progressive Cavity pump.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Progressive Cavity pump"
Ward, Peter R. B., William G. Dunford, and David L. Pulfrey. "Performance of small progressive cavity pumps with solar power." Canadian Journal of Civil Engineering 14, no. 2 (April 1, 1987): 284–87. http://dx.doi.org/10.1139/l87-041.
Full textKarthikeshwaran, Ramasamy. "Progressive Cavity Pump: A Review." Biosciences Biotechnology Research Asia 11, SE (October 30, 2014): 231–37. http://dx.doi.org/10.13005/bbra/1415.
Full textMrinal, KR, and Abdus Samad. "Performance prediction of kinetic and screw pumps delivering slurry." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, no. 7 (March 22, 2018): 898–911. http://dx.doi.org/10.1177/0957650918760161.
Full textKarthikeshwaran, Ramasamy. "Leakage Analysis of Metal Progressive Cavity Pump." Biosciences Biotechnology Research Asia 11, SE (October 30, 2014): 357–61. http://dx.doi.org/10.13005/bbra/1431.
Full textBaroiu, Nicuşor, Georgiana-Alexandra Moroşanu, Virgil-Gabriel Teodor, and Nicolae Oancea. "Roller Profiling for Generating the Screw of a Pump with Progressive Cavities." Inventions 6, no. 2 (May 14, 2021): 34. http://dx.doi.org/10.3390/inventions6020034.
Full textMohamed Iyad Al, Naboulsi, Niculae Napoleon Antonescu, Alin Dinita, and Marius Morosanu. "Tribological Characterization of Some Elastomers Used at Progressive Cavity and Piston Pumps." MATEC Web of Conferences 318 (2020): 01016. http://dx.doi.org/10.1051/matecconf/202031801016.
Full textZhou, Xian Jun, and Zhao Sheng Feng. "Numerical Simulation of Single Metal Progressive Cavity Pump." Advanced Materials Research 655-657 (January 2013): 372–75. http://dx.doi.org/10.4028/www.scientific.net/amr.655-657.372.
Full textSmith, Peter Mark. "Progressive cavity pump tubing drain valves: operator-savings illustration." APPEA Journal 60, no. 2 (2020): 677. http://dx.doi.org/10.1071/aj19023.
Full textKawamura, Takeshi. "Energy-saving and High-efficient Progressive Cavity Pump." JAPAN TAPPI JOURNAL 63, no. 8 (2009): 909–12. http://dx.doi.org/10.2524/jtappij.63.909.
Full textGuo, Zhong Feng, Shan Shan Li, and Hui Guo. "Developing Overview of Progressing Cavity Pump System." Advanced Materials Research 753-755 (August 2013): 2770–73. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.2770.
Full textDissertations / Theses on the topic "Progressive Cavity pump"
Belcher, I. R. "An investigation into the operating characteristics of the progressive cavity pump." Thesis, Cranfield University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302742.
Full textWhittaker, Lucy Victoria. "Evaluation and analysis of wear in progressive cavity pumps." Thesis, University of Hull, 2003. http://hydra.hull.ac.uk/resources/hull:5492.
Full textDall'Acqua, Daniel. "Thermo-mechanical modelling of progressing cavity pumps and positive displacement motors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0003/MQ59796.pdf.
Full textAzevedo, Victor Wagner Freire de. "Simula??o do escoamento multif?sico no interior de bombas de cavidades progressivas met?licas." Universidade Federal do Rio Grande do Norte, 2012. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15688.
Full textThe progressing cavity pumping (PCP) is one of the most applied oil lift methods nowadays in oil extraction due to its ability to pump heavy and high gas fraction flows. The computational modeling of PCPs appears as a tool to help experiments with the pump and therefore, obtain precisely the pump operational variables, contributing to pump s project and field operation otimization in the respectively situation. A computational model for multiphase flow inside a metallic stator PCP which consider the relative motion between rotor and stator was developed in the present work. In such model, the gas-liquid bubbly flow pattern was considered, which is a very common situation in practice. The Eulerian-Eulerian approach, considering the homogeneous and inhomogeneous models, was employed and gas was treated taking into account an ideal gas state. The effects of the different gas volume fractions in pump volumetric eficiency, pressure distribution, power, slippage flow rate and volumetric flow rate were analyzed. The results shown that the developed model is capable of reproducing pump dynamic behaviour under the multiphase flow conditions early performed in experimental works
O bombeio por cavidades progressivas (BCP) ? um dos m?todos de eleva??o artificial mais utilizados atualmente pela ind?stria do petr?leo devido ? sua capacidade de atuar em reservat?rios de ?leos pesados e com elevada fra??o de g?s. A modelagem computacional de BCPs surge como uma ferramenta para auxiliar os experimentos com a bomba e assim obter com precis?o as suas vari?veis de opera??o, o que contribui para a otimiza??o do projeto e da opera??o da bomba na situa??o a qual se encontra. Um modelo computacional do escoamento multif?sico no interior de uma BCP de estator met?lico que considera o movimento relativo entre o rotor e o estator foi desenvolvido no presente trabalho. Em tal modelo, o escoamento g?s-l?quido no padr?o de bolhas foi considerado, o que ? uma situa??o muito comum na pr?tica. A abordagem Euleriana- Euleriana, considerando o modelo homog?neo e n?o-homog?neo, foi empregada e o g?s foi tratado levando em considera??o um estado de gas ideal. Os efeitos das diferentes fra??es de g?s na efici?ncia da bomba, distribui??o de press?o, pot?ncia, taxa de escorregamento e vaz?o volum?trica foram analisados. Os resultados mostraram que o modelo desenvolvido ? capaz de reproduzir o comportamento din?mico da BCP sob as condi??es de escoamento multif?sico previamente realizados em trabalhos experimentais
Almeida, Rairam Francelino Cunha de. "Simula??o computacional da intera??o fluido-estrutura em bombas de cavidades progressivas." Universidade Federal do Rio Grande do Norte, 2010. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15618.
Full textThe pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP
O sistema de bombeamento por cavidades progressivas est? sendo cada vez mais empregado na ind?stria do petr?leo, devido ? sua capacidade de eleva??o de ?leos altamente viscosos ou de fluidos com grandes concentra??es de areia ou outras part?culas s?lidas. Uma Bomba de Cavidades Progressivas (BCP) ? composta, basicamente, por um rotor - uma pe?a met?lica de forma semelhante a um parafuso exc?ntrico, e um estator - um tubo de a?o revestido internamente por uma h?lice dupla, a qual pode ser r?gida ou deform?vel/elastom?rica. Em geral, uma BCP ? submetida a uma combina??o de press?o do po?o com press?o gerada pelo pr?prio processo de bombeio. Em BCPs elastom?ricas, essa combina??o de esfor?os comprime o estator, gerando ou aumentando a folga existente entre o rotor e o estator, reduzindo, portanto, o efeito de veda??o entre suas cavidades. Tal abertura da regi?o de selagem produz o que ? conhecido como escorregamento do fluido, diminuindo, com isso, a efici?ncia de sistema de bombeio por BCP. Dessa maneira, este trabalho se prop?e a desenvolver um modelo computacional tridimensional transiente do processo din?mico da intera??o fluido-estrutural (FSI) que ocorre no interior de BCPs met?licas e elastom?ricas. O objetivo principal ? avaliar, a partir do uso do modelo desenvolvido, as caracter?sticas din?micas de efici?ncia de bombeio por BCPs, em fun??o de informa??es locais e instant?neas detalhadas dos campos de velocidade, press?o e deforma??o no seu interior. Para o alcance de tais metas (desenvolvimento e uso do modelo), fez-se necess?rio o desenvolvimento de uma metodologia pr?pria para gera??o de malhas computacionais din?micas, m?veis e deform?veis, representando as regi?es fluida e estrutural de uma BCP. Tal procedimento caracterizou-se como o maior desafio para a elabora??o do modelo computacional, devido ? cinem?tica complexa e ? geometria cr?tica desse tipo de bomba (?ngulos de h?lice diferentes entre rotor e estator e grandes diferen?as de escala de comprimento). Os processos de gera??o din?mica das malhas e de avalia??o simult?nea das deforma??es sofridas pelo elast?mero s?o realizados atrav?s de sub-rotinas em linguagem Fortran 90, as quais interagem dinamicamente com o software de din?mica dos fluidos computacional CFX/ANSYS. Desde que o modelo linear el?stico ? empregado para avaliar as deforma??es elastom?ricas, n?o ? necess?rio usar nenhum software para an?lise estrutural. Entretanto, uma proposta inicial para simula??o din?mica no ANSYS empregando-se modelos constitutivos hiper-el?sticos para o elast?mero ? tamb?m apresentada no presente trabalho. A valida??o dos resultados produzidos com a presente metodologia (gera??o de malha, simula??o do escoamento em BCPs met?licas e simula??o da intera??o fluido-estrutural em BCPs elastom?ricas) ? obtida atrav?s da compara??o com resultados experimentais reportados pela literatura. Vislumbra-se que o desenvolvimento e aplica??o de tal ferramenta computacional poder?o fornecer maiores detalhes da din?mica do escoamento no interior de BCPs met?licas e elastom?ricas, de maneira que melhores sistemas de controle possam ser implementados na ?rea de eleva??o artificial por BCPs
Narayanan, Shankar Bhaskaran. "Fluid Dynamic and Performance Behavior of Multiphase Progressive Cavity Pumps." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-9693.
Full textGlier, Michael W. "An Experimental Examination of a Progressing Cavity Pump Operating at Very High Gas Volume Fractions." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-05-9238.
Full textBooks on the topic "Progressive Cavity pump"
Revard, James M. The progressing cavity pump handbook. Tulsa, OK: PennWell Pub., 1995.
Find full textNelik, Lev. Progressing cavity pumps, downhole pumps, and mudmotors. Houston, Tex: Gulf Pub. Co., 2005.
Find full textGulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps and Mudmotors. Elsevier, 2005. http://dx.doi.org/10.1016/c2013-0-15501-8.
Full textGulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps And Mudmotors (Gulf Pump Guides). Gulf Publishing Company, 2005.
Find full textSaveth, Kenneth. Progressing Cavity Pumps: Theory and Operations. Elsevier Science & Technology Books, 2020.
Find full textBook chapters on the topic "Progressive Cavity pump"
Nguyen, Tan. "Progressing Cavity Pump." In Artificial Lift Methods, 181–226. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40720-9_4.
Full text"Progressive Cavity Pump Testing." In Positive Displacement Pumps, 31–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470924754.ch6.
Full textNelik, Lev, and Jim Brennan. "PROGRESSING CAVITY PUMP STARTUPS." In Gulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps and Mudmotors, 191–203. Elsevier, 2005. http://dx.doi.org/10.1016/b978-0-9765113-1-1.50017-0.
Full textNelik, Lev, and Jim Brennan. "BENEFITS OF PROGRESSING CAVITY PUMPS." In Gulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps and Mudmotors, 1–3. Elsevier, 2005. http://dx.doi.org/10.1016/b978-0-9765113-1-1.50008-x.
Full textNelik, Lev, and Jim Brennan. "PROGRESSING CAVITY PUMP OVERHAUL GUIDE." In Gulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps and Mudmotors, 205–9. Elsevier, 2005. http://dx.doi.org/10.1016/b978-0-9765113-1-1.50018-2.
Full textNelik, Lev, and Jim Brennan. "PROGRESSING CAVITY PUMP SELECTION AND SIZING." In Gulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps and Mudmotors, 177–90. Elsevier, 2005. http://dx.doi.org/10.1016/b978-0-9765113-1-1.50016-9.
Full textLea, James, Henry Nickens, and Michael Wells. "Progressive Cavity Pumps." In Gas Well Deliquification, 251–69. Elsevier, 2003. http://dx.doi.org/10.1016/b978-075067724-0/50013-2.
Full textLea, James F., Henry V. Nickens, and Mike R. Wells. "PROGRESSING CAVITY PUMPS." In Gas Well Deliquification, 383–403. Elsevier, 2008. http://dx.doi.org/10.1016/b978-075068280-0.50014-7.
Full textLea, James F., and Lynn Rowlan. "Progressing cavity pumps." In Gas Well Deliquification, 151–65. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-12-815897-5.00009-3.
Full text"Front Matter." In Gulf Pump Guides: Progressing Cavity Pumps, Downhole Pumps and Mudmotors, iii. Elsevier, 2005. http://dx.doi.org/10.1016/b978-0-9765113-1-1.50001-7.
Full textConference papers on the topic "Progressive Cavity pump"
Zhou, Desheng, and Hong Yuan. "Design of Progressive Cavity Pump Wells." In SPE Progressing Cavity Pumps Conference. Society of Petroleum Engineers, 2008. http://dx.doi.org/10.2118/113324-ms.
Full textWang, Haiwen, and Daoyong Yang. "Reliability Improvement of Progressive Cavity Pump in A Deep Heavy Oil Reservoir." In SPE Progressing Cavity Pumps Conference. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/137271-ms.
Full textIguaran, Marco, Leonardo Suarez, Juan Paz, Martin Altube, Ariel Nicoletti, and Mario Bustamante. "Progressive Cavity Pump Self Optimising System Argentina Field." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21827-ms.
Full textJun, Zhu, Jiang Min Zheng, and Xu Xiu Fen. "Progressive Cavity Pump-Jet Pump Production Method for Lateral Directional Drilling Well." In SPE Asia Pacific Oil and Gas Conference and Exhibition. Society of Petroleum Engineers, 1999. http://dx.doi.org/10.2118/54361-ms.
Full textRodríguez Luna, Marco Antonio, and Jorge Luis Morales De La Mora. "First All Metal Progressive Cavity Pump Experience in Mexico." In SPE International Heavy Oil Conference and Exhibition. Society of Petroleum Engineers, 2018. http://dx.doi.org/10.2118/193699-ms.
Full textMena, L., and S. Klein. "Surface Axial Load Based Progressive Cavity Pump Optimization System." In Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers, 1999. http://dx.doi.org/10.2118/53962-ms.
Full textSultan, A., M. Khalil, I. Attar, N. Gazi, and S. Al-Sabea. "Effective Insertable Progressive Cavity Pump Anchor Optimizes Workover Costs." In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/188459-ms.
Full textMrinal, K. R., Md Hamid Siddique, and Abdus Samad. "A Transient 3D CFD Model of a Progressive Cavity Pump." In ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-56599.
Full textErnst, Terry, Frank Santiago, Harry Schulz, Frank Bustamante, Juan Biternas, Jesus Borjas, Benigno Montilla, Jesus Molina, and John Bernard. "Back Spin Control in Progressive Cavity Pump for Oil Well." In 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America. IEEE, 2006. http://dx.doi.org/10.1109/tdcla.2006.311587.
Full textYusuf, Zulkarnaen, and Dyah Rini Ratnaningsih. "Sand handling using progressive cavity pump (PCP) in mangga field." In 2ND INTERNATIONAL CONFERENCE ON EARTH SCIENCE, MINERAL, AND ENERGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0006852.
Full text