Academic literature on the topic 'Projectiles'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Projectiles.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Projectiles"
Harris, A. L. "Projectile Coherence Effects in Twisted Electron Ionization of Helium." Atoms 11, no. 5 (May 3, 2023): 79. http://dx.doi.org/10.3390/atoms11050079.
Full textKim, Jonghoek. "Autonomous Balloon Controls for Protection against Projectiles with Known Destinations." Applied Sciences 11, no. 9 (April 29, 2021): 4077. http://dx.doi.org/10.3390/app11094077.
Full textLuo, Qiao, and Xiaobing Zhang. "Numerical simulation of serial launch process of multiple projectiles considering the aftereffect period." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 8 (August 7, 2017): 1720–34. http://dx.doi.org/10.1108/hff-04-2016-0151.
Full textMERDA, Tomasz MERDA. "SEMI STABLE FLIGHT OF SUPERSONIC MORTAR PROJECTILE." PROBLEMY TECHNIKI UZBROJENIA 149, no. 1 (August 28, 2019): 23–46. http://dx.doi.org/10.5604/01.3001.0013.3769.
Full textXing, Bingnan, Chengxin Du, Zhonghua Du, and Wenxin Yang. "Robust Optimization Design of the Aerodynamic Shape and External Ballistics of a Pulse Trajectory Correction Projectile." Applied Sciences 13, no. 12 (June 10, 2023): 7007. http://dx.doi.org/10.3390/app13127007.
Full textMeda, T., and A. Rogala. "Experimental Validation of the Mean Pitch Theory." Journal of Physics: Conference Series 2090, no. 1 (November 1, 2021): 012042. http://dx.doi.org/10.1088/1742-6596/2090/1/012042.
Full textZhang, Lite, Chengwei Zhang, Huixia Jia, and Ruoling Dong. "Effects of Lateral Flows on the Supercavitation and Hydrodynamic Characteristics of Underwater Series and Parallel High-Speed Projectiles." Journal of Marine Science and Engineering 11, no. 4 (April 21, 2023): 878. http://dx.doi.org/10.3390/jmse11040878.
Full textCatovic, Alan. "Comparison of Penetration Capability of Several Contemporary 5.56×45 mm Projectiles into Hard Targets." Advances in Military Technology 19, no. 1 (August 4, 2024): 71–90. http://dx.doi.org/10.3849/aimt.01870.
Full textXiao, Yihua, Huanghuang Dong, Haifei Zhan, and Aihua Zhu. "Numerical study on the perforation of steel plates by multiple projectiles." Engineering Computations 35, no. 7 (October 1, 2018): 2629–51. http://dx.doi.org/10.1108/ec-03-2018-0107.
Full textWei, Ping, Shoufa Wang, Wenrong Yan, and Xin Yu. "Analysis and Calculation of the Best Center of Mass for Supercavitating Projectile." Journal of Sensors 2022 (February 23, 2022): 1–10. http://dx.doi.org/10.1155/2022/9521236.
Full textDissertations / Theses on the topic "Projectiles"
Dykes, John William. "Projectile linear theory for aerodynamically asymmetric projectiles." Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42828.
Full textMyrtroeen, Ole Joergen. "Negatively buoyant fluid projectiles." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9212.
Full textSalles-Le, Gac Danielle. "Cohérence et limites projectiles." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37601005b.
Full textPolat, Mehmet. "Tracking Of Subsequently Fired Projectiles." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614426/index.pdf.
Full textSommerville, R. "Mid-course guidance for artillery projectiles." Thesis, Cranfield University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.338034.
Full textPETRELLESE, JOSEPH JR. "Modified Instrumentation for Torsional Impulse Projectiles." International Foundation for Telemetering, 1990. http://hdl.handle.net/10150/613440.
Full textThe demand for test projectiles instrumented for gathering in-bore torsional impulse data has been steadily increasing. A test projectile consists of a telemeter, 12 accelerometers, and the remaining necessary hardware. Cost, availability, and survivability of commercial accelerometers being used have become a major concern. In-house testing of a new source and different technology accelerometer show a cost benefit, higher availability and a much higher survivability rate. This paper outlines the recent progress of qualifying a new source and different technology accelerometer, which leads to a modification of the current Torsional Impulse test projectile, along with potential developments to insure a more cost effective, available, and reliable test projectile to be used in future torsional impulse tests.
PEREIRA, CARLOS M. "INSTRUMENTATION OF TRIBOELECTRIC EFFECTS ON PROJECTILES." International Foundation for Telemetering, 1990. http://hdl.handle.net/10150/613458.
Full textTriboelectric phenomena occurs when static electricity accumulates on the surfaces of flying projectiles due to friction of air contaminants on the aerodynamic projectile surfaces. The sequence of events that create this phenomena indicate that as the projectile flies through the denser atmosphere, electric charges are transferred from the surface of the flying projectiles to the dust as a result of the collision with the atmospheric air stream. In the development of highly static sensitive electronic circuitry used in timing and fuzing, the need to know how the charge builds up has warranted the investigation of the triboelectric affects during flight. This paper will discuss the method of instrumentation used, the pre-flight test results obtained during dynamic wind tunnel tests, and the instrumentation system used to perform the triboelectric measurements.
Saygin, Oktay. "An Effectiveness Evaluation Method For Airburst Projectiles." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613202/index.pdf.
Full textVerreault, Jimmy. "Initiation of gaseous detonation by conical projectiles." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107822.
Full textCette étude a pour objet l'initiation et la stabilisation d'une onde de détonation par un projectile conique hypersonique projeté dans un milieux combustible gazeux. On retrouve ce phénomène dans certains propulseurs hypersoniques, comme le moteur à onde de détonation oblique et le ram accelerator. Le critère pour l'initiation d'une détonation par un projectile est relié à des aspects fondamentaux de la recherche en détonique, tel que les conditions nécessaires pour l'initation directe d'une détonation par une forte onde de choc. Les résultats expérimentaux de ce problème offrent aussi d'utiles références pour la validation d'études numériques et théoriques. Des projectiles conique dont le demi-angle varie de 15° à 60° ont été lancés dans des mélanges stoechiométriques d'hydrogène et d'oxygène avec une dilution d'argon à 70% à des pressions initiales de 10 à 200 kPa. Les projectiles ont été accélérés par un canon qui produit la propulsion à partir de la combustion gazeuse de mélanges stoechiométriques composées d'hydrogène et d'oxygène à des pressions initiales élevées. Des vitesses de l'ordre de 2.2 km/s ont été atteintes, correspondant à 133% de la vitesse Chapman Jouguet. Des photographies de l'écoulement autour des projectiles ont été prises avec un système Schlieren. Cinq régimes de combustion ont été observés autour des projectiles: formation d'une onde de détonation oblique prompte et retardée, instabilités de combustion, séparation d'ondes, et onde de choc inerte. Deux types de transition entre les régimes de détonation oblique prompte et de choc inerte on été observés. La première (qui concerne le régime onde de détonation retardée) a produit une onde de choc inerte attachée au nez du projectile suivie d'une augmentation abrupte de l'angle de choc au passage à la détonation oblique. Cette transition a eu lieu en diminuant l'angle de cône à de hautes pression de mélange. La deuxième (qui concerne le régime instabilités de combustion) a révélé la présence de forts gradients de densité causés par des phénomènes d'allumage et d'extinction du mélange combustible. Cette transition a été observée en diminuant la pression de mélange à des angles de cône élevés. Quelques modèles théoriques ont été considérés afin de prédire les conditions critiques pour l'initiation de détonations obliques. Le modèle de Lee-Vasiljev s'est avéré en accord qualitatif avec les résultats expérimentaux pour des projectiles relativement émoussés (des demi-angles de cône plus grand que 35°) et de basses pressions de mélanges (plus petit que 100 kPa). La tendance du nombre de Damköhler critique calculé sur la surface du cône s'est avéré similaire à celle des résultats expérimentaux pour des projectiles élancés (des demi-anges de cône plus petit que 35°) et des pressions de mélanges élevées (plus grand que 100 kPa). Des simulations 2D en mode permanent d'écoulements réactifs autour de dièdres finis en utilisant la méthode des caractéristiques avec une réaction chimique de forme Arrhenius ont reproduis les trois régimes observés dans les études d'initiation directe de détonations: les régimes sous-critique, critique et sur-critique. Il est démontré qu'un dièdre est équivalent au problème d'initiation directe d'une détonation si le nombre de Mach normal au choc oblique est supérieur à 50 et si l'angle du dièdre est inférieur à 30°. Des simulations d'écoulements réactifs autour de dièdres et de cônes semi-infinis ont été validés avec des résultats numériques. Un excellent accord a été observé entre l'angle d'une détonation oblique forte obtenu des simulations et celui dérivé d'une analyse des polaires. Pour un angle de dièdre ou de cône égal ou inférieur à l'angle minimal pour lequel une détonation oblique est attachée, une détonation oblique Chapman-Jouguet a été initiée. Pour une configuration conique, la courbure autour de l'axe du cône a permis une détonation oblique d'être non supportée à un angle inférieur à celui sans l'effet de courbure.
Zhou, Gang. "Penetration of fastener projectiles into construction materials." Thesis, Durham University, 1988. http://etheses.dur.ac.uk/6313/.
Full textBooks on the topic "Projectiles"
Mario, Carpo, and Barrett Clare, eds. Projectiles. London: Architectural Association London, 2011.
Find full text1957-, Croft Tony, ed. Modelling with projectiles. Chichester, West Sussex, England: E. Horwood, 1988.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. Collision forces for compliant projectiles. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Find full textHamilton, Sue L. Forensic ballistics: Styles of projectiles. Edina, Minn: ABDO Pub. Co., 2008.
Find full textMcDaniel, E. W. Atomic collisions: Heavy particle projectiles. New York: John Wiley, 1993.
Find full textRucker, Michelle A. Ablative shielding for hypervelocity projectiles. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textMcDaniel, Earl Wadsworth. Atomic collisions: Heavy particle projectiles. New York: Wiley, 1993.
Find full textRawat, Aseem Singh. Development of laser based velocity measuring instruments using time of flight principle. Mumbai: Bhabha Atomic Research Centre, 2005.
Find full textElischer, Paul P. The development of low cost 155mm practice ammunition: A feasibility study. Ascot Vale, Vic: Materials Research Laboratories, 1986.
Find full textNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Airbreathing propulsion for missiles and projectiles. Neuilly sur Seine, France: AGARD, 1992.
Find full textBook chapters on the topic "Projectiles"
Dyke, Philip, and Roger Whitworth. "Projectiles." In Guide to Mechanics, 142–75. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-11114-5_7.
Full textGooch, Jan W. "Projectiles." In Encyclopedic Dictionary of Polymers, 591–92. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_9508.
Full textHaines, Betty, Roger Haines, and Andrew May. "Projectiles." In Mathematics A Level, 275–88. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-13850-0_23.
Full textPitt, Christopher. "Projectiles." In Making Games, 53–60. Berkeley, CA: Apress, 2016. http://dx.doi.org/10.1007/978-1-4842-2493-9_9.
Full textHaines, R., and B. Haines. "Projectiles." In Work Out Applied Mathematics, 90–105. London: Macmillan Education UK, 1986. http://dx.doi.org/10.1007/978-1-349-08213-1_8.
Full textLodriguez, Oscar. "Projectiles!" In Let’s Build a Multiplayer Phaser Game, 57–81. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4249-0_6.
Full textHanserd, Robert. "Flaming projectiles." In Identity, Spirit and Freedom in the Atlantic World, 100–127. New York : Routledge, 2019. | Series: Routledge African studies; 31: Routledge, 2019. http://dx.doi.org/10.4324/9781315102344-5.
Full textWang, Wallace, and Tonnetta Walcott. "Shooting Projectiles." In Programming for Game Design, 273–85. Berkeley, CA: Apress, 2024. http://dx.doi.org/10.1007/979-8-8688-0190-7_13.
Full textHardman, Casey. "Enemies and Projectiles." In Game Programming with Unity and C#, 241–51. Berkeley, CA: Apress, 2023. http://dx.doi.org/10.1007/978-1-4842-9720-9_28.
Full textHardman, Casey. "Enemies, Towers, and Projectiles." In Game Programming with Unity and C#, 327–59. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5656-5_28.
Full textConference papers on the topic "Projectiles"
HUANG, XI, CHENG CHENG, and XIAOBING ZHANG. "MACHINE LEARNING AND NUMERICAL INVESTIGATION ON DRAG REDUCTION OF UNDERWATER SERIAL MULTI-PROJECTILES." In 32ND INTERNATIONAL SYMPOSIUM ON BALLISTICS. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/ballistics22/36040.
Full textWeiland, C. J., and P. P. Vlachos. "Spatio-Temporal Development of Supercavitation Over an Impulsively Launched Projectile." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98115.
Full textMitrović, Andjela, Saša Savić, Milan Vučković, Nebojša Hristov, Damir Jerković, and Mladen Josijević. "Numerical modeling of explosively formed projectiles formation." In 11th International Scientific Conference on Defensive Technologies - OTEX 2024, 235–40. Military Technical Institute, Belgrade, 2024. http://dx.doi.org/10.5937/oteh24042m.
Full textWeiland, Chris, and Pavlos Vlachos. "Observation of a Critical Time Scale for Supercavitation Development and the Effect of Gas Leakage." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55171.
Full textMARASINSKI, MARCIN, KRZYSZTOF SZCZUROWSKI, ADAM WISNIEWSKI, PRZEMYSLAW BADUROWICZ, NORBERT TUSNIO, and TADEUSZ BARTKOWIAK. "THERMAL ENERGY ANALYSIS OF PROJECTILES DURING RICOCHETING USING A THERMAL CAMERA." In 32ND INTERNATIONAL SYMPOSIUM ON BALLISTICS. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/ballistics22/36158.
Full textGABRIEL, UTA, MATHIEU DESROCHES, YVES BAILLARGEON, GILLES PAGEAU, and PIERRE FRANCUS. "SENSITIVITY STUDY OF X-RAY COMPUTED TOMOGRAPHY FOR EVALUATING THE MASS AND STRIKING VELOCITY OF EMBEDDED FRAGMENTS IN PLYWOOD RECOVERY MEDIA." In 32ND INTERNATIONAL SYMPOSIUM ON BALLISTICS. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/ballistics22/36143.
Full textCagle, Colton B., Kevin J. Hill, Connor Woodruff, Michelle L. Pantoya, Joseph Abraham, and Casey Meakin. "High Velocity Impact Testing for Evaluation of Intermetallic Projectiles." In 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-104.
Full textChoi, Sung R., Zsolt Racz, Ramakrishna T. Bhatt, David N. Brewer, and John P. Gyekenyesi. "Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride." In ASME Turbo Expo 2005: Power for Land, Sea, and Air. ASMEDC, 2005. http://dx.doi.org/10.1115/gt2005-68866.
Full textKang, Zuoyi, Yukihiko Okuda, Akemi Nishida, Haruji Tsubota, and Yinsheng Li. "Analytical Study of Perforation Damage to Reinforced Concrete Slabs Subjected to Oblique Impact by Projectiles With Different Nose Shapes." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16855.
Full textJi, Yangziyi, Xiangdong Li, Lanwei Zhou, and Junliang Chen. "Failure of Fuel Tanks Due to High Velocity Projectiles Impact." In 2022 16th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/hvis2022-25.
Full textReports on the topic "Projectiles"
Blevins, Matthew, Gregory Lyons, Carl Hart, and Michael White. Optical and acoustical measurement of ballistic noise signatures. Engineer Research and Development Center (U.S.), January 2021. http://dx.doi.org/10.21079/11681/39501.
Full textWhitelaw, J. H. In-Cylinder Projectiles. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada229219.
Full textReaugh, J. E. Penetration of yawed projectiles. Office of Scientific and Technical Information (OSTI), October 1990. http://dx.doi.org/10.2172/6375338.
Full textGeswender, Chris. Guided Projectiles Theory of Operation. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada386088.
Full textHoman, C. G., and P. M. Vottis. Launchability of Base-Driven Electromagnetic Projectiles. Fort Belvoir, VA: Defense Technical Information Center, December 1987. http://dx.doi.org/10.21236/ada189635.
Full textGolt, Michael C., Chris M. Peitsch, Matthew S. Bratcher, and Eric D. Warner. Batch Computed Tomography Analysis of Projectiles. Fort Belvoir, VA: Defense Technical Information Center, May 2016. http://dx.doi.org/10.21236/ad1009132.
Full textYager, Robert J. A Plant Model for Smart Projectiles. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada601891.
Full textD'Amico, William P. Telemetry Systems and Electric Gun Projectiles. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada384784.
Full textFresconi, Frank, and Peter Plostins. Control Mechanism Strategies for Spin-Stabilized Projectiles. Fort Belvoir, VA: Defense Technical Information Center, September 2008. http://dx.doi.org/10.21236/ada494194.
Full textHerbert, T. Unsteady Fluid Motion in Liquid Filled Projectiles. Fort Belvoir, VA: Defense Technical Information Center, March 1998. http://dx.doi.org/10.21236/ada343142.
Full text