Academic literature on the topic 'Propeler turbine'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Propeler turbine.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Propeler turbine"
Wahyudi, B., S. Sudarmadji, S. Sarjiyana, and M. Maskuri. "Web innovation in horizontal wind pipe turbine propeler." IOP Conference Series: Materials Science and Engineering 1073, no. 1 (February 1, 2021): 012080. http://dx.doi.org/10.1088/1757-899x/1073/1/012080.
Full textManness, Jessica, and Jay Doering. "An improved model for predicting the efficiency of hydraulic propeller turbines." Canadian Journal of Civil Engineering 32, no. 5 (October 1, 2005): 789–95. http://dx.doi.org/10.1139/l05-029.
Full textXu, Yiyi, Pengfei Liu, Irene Penesis, and Guanghua He. "A panel method for both marine propulsion and renewable energy." Journal of Naval Architecture and Marine Engineering 16, no. 2 (December 19, 2019): 61–76. http://dx.doi.org/10.3329/jname.v16i2.35984.
Full textKuwana, Anna, Xue Yan Bai, Dan Yao, and Haruo Kobayashi. "Numerical Simulation for the Starting Characteristics of a Wind Turbine." Advanced Engineering Forum 38 (November 2020): 215–21. http://dx.doi.org/10.4028/www.scientific.net/aef.38.215.
Full textPribadyo, Pribadyo, Hadiyanto H, and Jamari J. "Simulasi Performa Turbin Propeller Dengan Sudut Pitch Yang Divariasikan." Jurnal Mekanova: Mekanikal, Inovasi dan Teknologi 6, no. 1 (June 11, 2020): 54. http://dx.doi.org/10.35308/jmkn.v6i1.2257.
Full textGorban’, Alexander N., Alexander M. Gorlov, and Valentin M. Silantyev. "Limits of the Turbine Efficiency for Free Fluid Flow." Journal of Energy Resources Technology 123, no. 4 (August 14, 2001): 311–17. http://dx.doi.org/10.1115/1.1414137.
Full textAdhikari, Pradhumna, Umesh Budhathoki, Shiva Raj Timilsina, Saurav Manandhar, and Tri Ratna Bajracharya. "A Study on Developing Pico Propeller Turbine for Low Head Micro Hydropower Plants in Nepal." Journal of the Institute of Engineering 9, no. 1 (June 29, 2014): 36–53. http://dx.doi.org/10.3126/jie.v9i1.10669.
Full textNurdin, Akhmad, Dwi Aries Himawanto, and Syamsul Hadi. "Study of the Effect of Bulb Ratio and Blade Angle on Propeller Turbine Performance in Horizontal Flow using Numerical Simulation." TEKNIK 41, no. 1 (May 18, 2020): 9–13. http://dx.doi.org/10.14710/teknik.v41i1.25328.
Full textBurghardt, Andrzej, Krzysztof Kurc, and Dariusz Szybicki. "Robotic Automation of the Turbo-Propeller Engine Blade Grinding Process." Applied Mechanics and Materials 817 (January 2016): 206–13. http://dx.doi.org/10.4028/www.scientific.net/amm.817.206.
Full textSuryadi, Aris, Mochamad Faisal, Berayan Munthe, Mindit Eriyadi, and Junaidy Burhan. "APLIKASI TEKNOLOGI PLTMH TURBIN PROPELLER OPEN FLUME SEBAGAI PEMBANGKIT LISTRIK DESA." SPEKTA (Jurnal Pengabdian Kepada Masyarakat : Teknologi dan Aplikasi) 1, no. 2 (November 10, 2020): 39. http://dx.doi.org/10.12928/spekta.v1i2.2742.
Full textDissertations / Theses on the topic "Propeler turbine"
Duda, Petr. "Optimalizace polohy propelerové turbíny v kašně." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2014. http://www.nusl.cz/ntk/nusl-231499.
Full textSkidmore, F. W., and n/a. "The influence of gas turbine combustor fluid mechanics on smoke emissions." Swinburne University of Technology, 1988. http://adt.lib.swin.edu.au./public/adt-VSWT20070420.131227.
Full textFaulkner, Simon A. "A simplified low head propeller turbine for micro hydroelectric power." Thesis, University of Canterbury. Engineering, 1991. http://hdl.handle.net/10092/6456.
Full textDemetriades, Georgios Manoli. "Integral propeller turbine-induction generator units for village hydroelectric schemes." Thesis, Nottingham Trent University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363325.
Full textFuller, Adam Michael. "Increasing the specific speed of simple microhydro propeller turbines." Thesis, University of Canterbury. Mechanical Engineering, 2011. http://hdl.handle.net/10092/6680.
Full textGagnon, Jean-Mathieu. "Contribution to the study of the 3D unsteady flow in a propeller turbine." Thesis, Université Laval, 2012. http://www.theses.ulaval.ca/2012/28126/28126.pdf.
Full textPortocarrero, Aguilar Carlos Enrique. "Diseño de una turbina propeller utilizando plásticos reciclados reforzados con madera recuperada." Bachelor's thesis, Pontificia Universidad Católica del Perú, 2012. http://tesis.pucp.edu.pe/repositorio/handle/123456789/1215.
Full textTesis
Houde, Sébastien. "Analysis of the part-load and speed-no-load flow dynamics in a model propeller hydraulic turbine." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/29823.
Full textHydraulic turbines have become an important asset to provide power regulation on electrical grids. However, power-regulation scenarios require turbines to operate far from their best eciency conditions, in regions where large pressure uctuations aect the turbine structural integrity. This is particularly acute for xed blade reaction turbines such as propeller units. This thesis presents contributions to the study of the hydrodynamics of the ow in a model propeller turbine operating in part-load and speed-no-load conditions. In part load, the main pressure uctuations are associated with the part-load vortex. Data from Particle Image Velocimetry (PIV), coupled to Laser Induced Fluorescence and shadowgraphy techniques, were used to reconstruct the water-vapour interface and to identify the origin of uctuations aecting the precision of the phase-averaged PIV measurements. Furthermore, miniature pressure transducers imbedded in two runner blades and strain gages at the blade roots provided data to quantify the impact of the part load vortex on the runner. This thesis also presents one of the rst detailed studies on transient and no-load conditions in a model hydro-turbine. Pressure and strain sensors were used to identify the dominant ow instabilities in speed-no-load and runaway conditions. Scale Adaptive Simulations (SAS) of the speed-no-load condition were used to study a rotating stall dominating the runner ow. Simulations without runner blades indicate that the rotating stall is associated with an unstable shear-layer originating from a recirculation around the runner hub and a boundary layer separation on the turbine head cover. Those results open the possibility of eventually developing mitigation techniques.
Leng, Yujun. "Preliminary design tools in turbomachinery| Non-uniformly spaced blade rows, multistage interaction, unsteady radial waves, and propeller horizontal-axis turbine optimization." Thesis, Purdue University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10149746.
Full textTurbomachinery flow fields are inherently unsteady and complex which makes the related CFD analyses computationally intensive. Physically based preliminary design tools are desirable for parametric studies early in the design stage, and to provide deep physical insight and a good starting point for the later CFD analyses. Four analytical/semi-analytical models are developed in this study: 1) a generalized flat plate cascade model for investigating the unsteady aerodynamics of a blade row with non-uniformly spaced blades; 2) a multistage interaction model for investigating rotor-stator interactions; 3) an analytical solution for quantifying the impeller wake convection and pressure wave propagating between a centrifugal compressor impeller and diffuser vane; and 4) a semi-analytical model based Lifting line theory for unified propeller and horizontal-axis turbine optimization. Each model has been thoroughly validated with existing models.
With these models, non-uniformly spaced blade rows and vane clocking are investigated in detail for their potential use as a passive control technique to reduce forced response, flutter and aeroacoustic problems in axial compressors. Parametric studies with different impeller blade numbers and back sweep angles are conducted to investigate their effect on impeller wake and pressure wave propagation. Results show that the scattered pressure waves with high circumferential wave numbers may be an important excitation source to the impeller as their amplitude grows much faster as they travel inwardly than the lower order primary pressure waves. Detailed analysis of Lifting line theory reveals the mathematical and physical equivalence of Lifting line models for propellers and horizontal-axis turbines. With a new implementation, the propeller optimization code can be used for horizontal-axis turbine optimization without any modification. The newly developed unified propeller and horizontal-axis turbine optimization code based on lifting line theory and interior point method has been shown to be a very versatile tool with the capability of hub modelling, working with non-uniform inflow and including extra user specified constraints.
Fjällman, Johan. "Large Eddy Simulations of Complex Flows in IC-Engine's Exhaust Manifold and Turbine." Doctoral thesis, KTH, Strömningsfysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151399.
Full textDenna avhandling behandlar flödet i rörkrökar och radiella turbiner som vanligtvis återfinns i en förbränningsmotor. Utvecklingsfasen av förbränningsmotorer bygger mer och mer på att simuleringar är ett viktigt komplement till experiment. Detta beror delvis på minskade utvecklingskostnader men även på kortare utevklningstider. Detta är en av anledningarna till att man behöver mer exakta och prediktiva simuleringsmetoder. Genom att använda mer komplexa beräkningsmetoder så kan både nogrannheten och prediktiviteten öka. Nackdelen med att använda mer sofistikerade metoder är att beräkningstiden ökar, vilket medför att sådana verktyg är mindre attraktiva för standardiserade design ändamål. Härav, ett av målen med projektet har varit att bidra med att bedöma och förbättra de enklare metodernas prediktionsförmåga som används utav industrin. Genom att jämföra resultat från experiment, Reynolds Averaged Navier-Stokes (RANS) och Large Eddy Simulations (LES) så kan nogrannheten hos de olika simuleringsmetoderna fastställas. Fördelarna med att använda LES istället för RANS när det gäller de undersökta flödena kommer ifrån det instationära flödet i grenröret. När denna instationäritet överlappar den naturligt förekommande turbulensen så saknar modellen en rationell grund. Denna avhandling behandlar effekten av de cykliska flöderna på de valda numeriska modellerna. LES beräkningarna har bevisats kunna förutsäga medelfältet och fluktuationerna väldigt väl när man jämför med experimentell data. Effekterna som den pulserande avgasströmning har på turboladdarens turbin prestanda har också kunnat fastställas. Både konstant och pulserande inlopps randvillkor har används för turbinfallet, där det senare är ett mer realistiskt representation av den riktiga strömningsbilden innuti avgasgrenröret och turbinen. Resultaten har analyserats på flera olika sätt: snabba Fourier transformer (FFT) i enskilda punkter, medelvärden och statistik på problinjer, area och volumsbaserade metoder så som Proper Orthogonal Decomposition (POD) samt Dynamic Mode Decomposition (DMD).
QC 20140919
Books on the topic "Propeler turbine"
Dicmas, John L. Vertical turbine, mixed flow, and propeller pumps. New York: McGraw-Hill, 1987.
Find full textWhitlow, John B. NASA advanced turboprop research and concept validation program. [Washington, DC]: National Aeronautics and Space Administration, 1988.
Find full textAnderson, R. D. Advanced propfan engine technology (APET) definition study, single and counter-rotation gearbox/pitch change mechanism design. [Washington, DC: National Aeronautics and Space Administration, 1987.
Find full textPatterson, James C. Evaluation of installed performance of a wing-tip-mounted pusher turboprop on a semispan wing. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1987.
Find full textPatterson, James C. Evaluation of installed performance of a wing-tip-mounted pusher turboprop on a semispan wing. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Office, 1987.
Find full textLevin, Alan D. Aerodynamic and propeller performance characteristics of a propfan-powered, semispan model. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Find full textLitt, John. A real-time simulator of a turbofan engine. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Advanced technology for aero gas turbine components. Neuilly sur Seine, France: AGARD, 1987.
Find full textPlencner, Robert M. Plotting component maps in the Navy/NASA Engine Program (NNEP): A method and its usage. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textRosen, Robert. The Future challenge for aeropropulsion. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Find full textBook chapters on the topic "Propeler turbine"
Harvey, Adam. "11. Crossflow Turbines; Reaction Turbines; The Francis Turbine; The Propeller Turbine and Kaplan; Draught Tubes; Reverse Pumps." In Micro-Hydro Design Manual, 173–86. Rugby, Warwickshire, United Kingdom: Practical Action Publishing, 1993. http://dx.doi.org/10.3362/9781780445472.011.
Full textUrlaub, Alfred. "Propeller-Turbinen-Luftstrahltriebwerke." In Flugtriebwerke, 119–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78386-9_5.
Full textUrlaub, Alfred. "Propeller-Turbinen-Luftstrahltriebwerke." In Flugtriebwerke, 119–27. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-97322-2_5.
Full textChattot, J. J., and M. M. Hafez. "Wind Turbine and Propeller Aerodynamics—Analysis and Design." In Theoretical and Applied Aerodynamics, 327–72. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9825-9_10.
Full textBillonnet, Gilles. "Supersonic Stator-Rotor Interaction in a Turbine Stage." In Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 309–29. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_16.
Full textLéonard, F. "Two Kinds of Whirl on Fixed-Blade Propeller Type Turbine." In Hydraulic Machinery and Cavitation, 885–94. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-010-9385-9_90.
Full textJunginger, Bernd, and Stefan Riedelbauch. "Numerical Analysis of a Propeller Turbine Operated in Part Load Conditions." In High Performance Computing in Science and Engineering ' 17, 355–68. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68394-2_21.
Full textChang, Jiang, and Yan Peng. "Construction and Simulation of the Movable Propeller Turbine Neural Network Model." In Advances in Machine Learning and Cybernetics, 133–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11739685_14.
Full textGallus, H. E., C. A. Poensgen, and J. Zeschky. "Three-Dimensional Unsteady Flow in a Single Stage Axial-Flow Turbine and Compressor." In Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 487–505. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_24.
Full textBölcs, A., A. Cargill, T. H. Fransson, A. Suddhoo, and K. Vogeler. "Time-Dependent Predictions and Analysis of Turbine Cascade Data in the Transonic Flow Region." In Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 289–308. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_15.
Full textConference papers on the topic "Propeler turbine"
Ranjanagi, Sagar, Quamber H. Nagpurwala, and S. Subbaramu. "Numerical Studies on the Effect of Design Trim on Aerodynamic Performance of a Micro Propeller for MAV Application." In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3671.
Full textSchmidt, Marvin F. "Propeller Design Point Calculation Method for Comparing Turbofan/Propfan Engine Performance." In ASME 1985 Beijing International Gas Turbine Symposium and Exposition. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-igt-150.
Full textMurugesan, Ramesh, and Vijayanandh Raja. "Acoustic Investigation on Unmanned Aerial Vehicle’s Rotor Using CFD-MRF Approach." In ASME 2019 Gas Turbine India Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gtindia2019-2430.
Full textFarghaly, Mohamed B., Ahmed F. El-Sayed, and Galal B. Salem. "Numerical Simulation of the Aerodynamic Behavior of Propeller Blades at Subsonic Conditions." In ASME 2012 Gas Turbine India Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gtindia2012-9733.
Full textWang, Zhitao, Jiayi Ma, Haichao Yu, and Tielei Li. "Research on Matching Characteristics of Ship-Engine-Propeller of COGAG." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59788.
Full textBellocq, Pablo, Vishal Sethi, Stefano Capodanno, Alexis Patin, and Fernando Rodriguez Lucas. "Advanced 0-D Performance Modelling of Counter Rotating Propellers for Multi-Disciplinary Preliminary Design Assessments of Open Rotors." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-27141.
Full textPrathapanayaka, Rajeevalochanam, Nanjundaiah Vinod Kumar, Krishnamurthy Settisara Janney, and Hari Krishna Nagishetty. "Design and Analysis Software for Propellers." In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3681.
Full textGhenaiet, Adel, and Akila Halimi. "Aerodynamic Characterization of a High Speed Propeller." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25765.
Full textAbbaszadeh, Morteza, Parvin Nikpour Parizi, and Ramin Taheri. "A Novel Approach to Design Reversible Counter Rotating Propeller Fans." In ASME 2012 Gas Turbine India Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/gtindia2012-9657.
Full textTantot, Nicolas, Thierry Brichler, Matthieu Dubosc, and Sacha Ghebali. "Innovative Approaches to Propellers Off-Design Performance Modeling." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42145.
Full text