Academic literature on the topic 'Proper Generalized Decomposition (PGD)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Proper Generalized Decomposition (PGD).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Proper Generalized Decomposition (PGD)"
Le-Quoc, C., Linh A. Le, V. Ho-Huu, P. D. Huynh, and T. Nguyen-Thoi. "An Immersed Boundary Proper Generalized Decomposition (IB-PGD) for Fluid–Structure Interaction Problems." International Journal of Computational Methods 15, no. 06 (September 2018): 1850045. http://dx.doi.org/10.1142/s0219876218500457.
Full textPassieux, J. C., and J. N. Périé. "High resolution digital image correlation using proper generalized decomposition: PGD-DIC." International Journal for Numerical Methods in Engineering 92, no. 6 (June 5, 2012): 531–50. http://dx.doi.org/10.1002/nme.4349.
Full textSibileau, Alberto, Alberto García-González, Ferdinando Auricchio, Simone Morganti, and Pedro Díez. "Explicit parametric solutions of lattice structures with proper generalized decomposition (PGD)." Computational Mechanics 62, no. 4 (January 10, 2018): 871–91. http://dx.doi.org/10.1007/s00466-017-1534-9.
Full textPineda-Sanchez, Manuel, Angel Sapena-Baño, Juan Perez-Cruz, Javier Martinez-Roman, Ruben Puche-Panadero, and Martin Riera-Guasp. "Internal inductance of a conductor of rectangular cross-section using the proper generalized decomposition." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 35, no. 6 (November 7, 2016): 2007–21. http://dx.doi.org/10.1108/compel-03-2016-0124.
Full textFalcó, Antonio, Lucía Hilario, Nicolás Montés, Marta C. Mora, and Enrique Nadal. "Towards a Vector Field Based Approach to the Proper Generalized Decomposition (PGD)." Mathematics 9, no. 1 (December 25, 2020): 34. http://dx.doi.org/10.3390/math9010034.
Full textAlameddin, Shadi, Amélie Fau, David Néron, Pierre Ladevèze, and Udo Nackenhorst. "Toward Optimality of Proper Generalised Decomposition Bases." Mathematical and Computational Applications 24, no. 1 (March 5, 2019): 30. http://dx.doi.org/10.3390/mca24010030.
Full textPoulhaon, Fabien, Francisco Chinesta, and Adrien Leygue. "A First Approach Toward a Proper Generalized Decomposition Based Time Parallelization." Key Engineering Materials 504-506 (February 2012): 461–66. http://dx.doi.org/10.4028/www.scientific.net/kem.504-506.461.
Full textLe, Cuong Q., H. Phan-Duc, and Son H. Nguyen. "Immersed boundary method combined with proper generalized decomposition for simulation of a flexible filament in a viscous incompressible flow." Vietnam Journal of Mechanics 39, no. 2 (June 21, 2017): 109–19. http://dx.doi.org/10.15625/0866-7136/8120.
Full textFalcó, Antonio, Lucía Hilario, Nicolás Montés, Marta C. Mora, and Enrique Nadal. "A Path Planning Algorithm for a Dynamic Environment Based on Proper Generalized Decomposition." Mathematics 8, no. 12 (December 19, 2020): 2245. http://dx.doi.org/10.3390/math8122245.
Full textNasri, Mohamed Aziz, Camille Robert, Amine Ammar, Saber El Arem, and Franck Morel. "Proper Generalized Decomposition (PGD) for the numerical simulation of polycrystalline aggregates under cyclic loading." Comptes Rendus Mécanique 346, no. 2 (February 2018): 132–51. http://dx.doi.org/10.1016/j.crme.2017.11.009.
Full textDissertations / Theses on the topic "Proper Generalized Decomposition (PGD)"
Retat, Françoise. "Proper generalized decomposition based dynamic data driven application systems." Ecole centrale de Nantes, 2013. http://www.theses.fr/2013ECDN0025.
Full textNowadays, in simulation-based engineering science, the need of real-time responses is felt more than ever. Dynamic Data-Driven Application systems -DDDAS, thanks to the linkage of the simulation tools with the measurement devices, enable us to achieve real-time computation. But to do so, DDDAS need accurate and fast simulation tools. The solution presented here consists in first computing once and for all, off-line the model's most general solution, introducing all the parameters as extra-coordinates. This abacus is then considered for the on-line purposes. But this, in turn, raises the issue of highly multidimensional spaces. The Proper Generalized Decomposition technique, thanks to its separated representation, allows circumventing this redoubtable curse. The focus of this work is to explore some possibilities in the context of parameter estimation, verification and control in real time. The application of this research is the development of a new boundary control method, i. E. Laminar-flow control over an airfoil. This new approach is associated with the unsteady surface heating regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer separation and transition will provide a reduction in friction drag, and hence a reduction in the fuel consumption, which would comply with the ACARE 2020 requirements
Lázaro, García Juan. "Contribución al cálculo de elementos en instalaciones eléctricas mediante PGD (Proper Generalized Decomposition)." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/61966.
Full text[ES] Planteamiento y resumen de la tesis doctoral. La presente tesis se centra en dar luz al estado actual de los métodos numéricos tradicionales, las limitaciones a las que nos enfrentamos, y las diferentes soluciones que se están planteando para la simulación del comportamiento electromagnético de diferentes materiales como conductores eléctricos en líneas de transmisión e instalaciones de puesta a tierra, basándose en la formulación que define la Teoría de Campos Electromagnéticos (Leyes de Maxwell), y las diferentes condiciones de cada problema particular a resolver. El objetivo principal de la tesis es el investigar la aplicación de técnicas numéricas de muy reciente aplicación, conocidas como la Descomposición Propia Generalizada (Proper Generalized Decomposition PGD). Basándose en una técnica novedosa de descomposición de las variables multidimensionales (como en el campo electromagnético) en una suma de productos (modos) de variables unidimensionales, y mediante algoritmos iterativos, la PGD permite abordar, con una reducida necesidad de medios computacionales, problemas complejos cuya solución requiere medios extraordinarios empleando las técnicas tradicionales. Estas nuevas técnicas han sido aplicadas con éxito en otros dominios, como el de la simulación de elementos mecánicos y en ciencia de los materiales. El objetivo de la presente tesis es precisamente el de la aplicación de estas novedosas técnicas a la simulación de fenómenos electromagnéticos en los diferentes elementos diseñados para la utilización de la energía eléctrica. La tesis se centra en el desarrollo de la modelización de conductores de transmisión de energía eléctricas y redes de puesta a tierra, estructuras básicas en la tecnología eléctrica pero que sirven para analizar y observar con detalle además de validar con métodos tradicionales, de demostrada fiabilidad, el gran potencial de la PGD, dejando abierta la aplicación de la técnica a elementos técnicamente más complejos como transformadores y máquinas rotativas en futuros trabajos del Grupo de Investigación de Instalaciones, Sistemas y Equipos Eléctricos (ISEE) de la Universidad Politécnica de Valencia (UPV). Las principales novedades que aporta la tesis sobre trabajos realizados anteriormente son parte de los objetivos que persigue, y son las siguientes: - Optimización de la técnica de la PGD. En la presente tesis se ha optado por una aplicación de la PGD con la máxima descomposición posible en funciones elementales, es decir, los modos se considerarán formados por productos de funciones exclusivamente unidimensionales (x, y, z, t, frecuencia, etc.), discretizadas posteriormente con mallas unidimensionales uniformes. Esto nos llevará a obtener códigos simples, de sencilla implementación y que necesitarán de reducidos recursos computacionales. - Aplicación de la PGD al campo del Electromagnetismo, ya que la gran mayoría de las referencias que se pueden encontrar en la aplicación de la PGD se refieren al campo de la mecánica y los materiales. Este trabajo pretende utilizar avances logrados en esos campos, y aplicarlos al campo del electromagnetismo, donde sólo muy pocos trabajos han sido publicados en los últimos años, con el objetivo de contribuir a seguir abriendo un nuevo frente en el desarrollo y aplicación de la técnica, que permita vencer las limitaciones y problemas que hasta el momento se presentan con las técnicas de resolución tradicionales.
[CAT] Plantejament i resum de la tesi doctoral. La present tesi se centra a donar llum a l'estat actual dels mètodes numèrics tradicionals, les limitacions a què ens enfrontem, i les diferents sol¿lucions que s'estan plantejant per a la simulació del comportament electromagnètic de diversos materials com a conductors elèctrics en linies de transmissió i instal¿lacions d'enclavament a terra, basant-se en la formulació que defineix la Teoria de Camps Electromagnètics (Lleis de Maxwell) , i les diferents condicions de cada problema particular a resoldre. L'objectiu principal de la tesi és investigar l'aplicació de tècniques numèriques de molt recent aplicació, conegudes com la Descomposició Pròpia Generalitzada (Proper Generalized Decomposition PGD). Basant-se en una tècnica nova de descomposició de les variables multidimensionales (com en el camp electromagnètic) en una suma de productes (modes) de variables unidimensionals, i per mitjà d'algoritmes iteratius. La PGD permet abordar, amb una reduïda necessitat de mitjans computacionals, problemes complexos la sol¿lució de la qual requereix mitjans extraordinaris emprant les tècniques tradicionals. Tals tècniques han sigut aplicades amb èxit en altres dominis, com el de la simulació d'elements mecànics i en ciència dels materials. L'objectiu de la present tesi és precisament el de l'aplicació d'estes noves tècniques a la simulació de fenòmens electromagnètics en els diversos elements dissenyats per a l'utilització de l'energia elèctrica. La tesi es centra en el desenrotllament de la modelització de conductors de transmissió d'energia eléctrica i xarxes d'enclavament a terra, estructures bàsiques en la tecnologia elèctrica però que serveixen per a analitzar i observar amb detall a més de validar amb mètodes tradicionals, de demostrada fiabilitat, el gran potencial de la PGD, deixant oberta l'aplicació de la tècnica a elements tècnicament més complexos com a transformadors i màquines rotatives en futures treballs del Grup d'Investigació d'Instal¿lacions, Sistemes i Equips Elèctrics (ISEE) de la Universitat Politècnica de València (UPV). Les principals novetats que aporta la tesi sobre treballs realitzats anteriorment són part dels objectius que persegueix, i són les següents: -Optimització de la tècnica de la PGD. En la present tesi s'ha optat per una aplicació de la PGD amb la màxima descomposició possible en funcions elementals, és a dir, els modes es consideraran formats per productes de funcions exclusivament unidimensionals (x, y, z, t, freqüència, etc.), discretizadas amb malles unidimensionals uniformes. Açò ens portarà a obtindre còdics simples, de senzilla implementació i que necessitaran de reduïts recursos computacionals. -Aplicació de la PGD al camp de l'Electromagnetisme, ja que la gran majoria de les referències que es poden trobar en l'aplicació de la PGD es refereixen al camp de la mecànica i els materials. Este treball pretén utilitzar avanços aconseguits en esses camps, i aplicar-los al camp de l'electromagnetisme, on només molt pocs treballs han sigut publicats en els últims anys, amb l'objectiu de contribuir a continuar obrint un nou front en el desentrollament i aplicació de la tècnica, que permeta véncer les limitacions i problemes que fins al moment es presenten amb les tècniques de resol¿lució tradicionals.
Lázaro García, J. (2016). Contribución al cálculo de elementos en instalaciones eléctricas mediante PGD (Proper Generalized Decomposition) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61966
TESIS
Sandino, de Benito Carlos. "Global-local separated representations based on the Proper Generalized Decomposition." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0064.
Full textOne of the main advantages of the Proper Generalized Decomposition method, when compared to other model reduction methods, lies in its adequacy to compute space separated representations in Cartesian-like degenerated domains, such as plates or shells. The main objective of this thesis is to generalize space separated representations to non-Cartesian domains, by introducing the notion of Global-Local separated representations. Global-Local separated representations can be understood as a multiplicative decomposition in which the local modes capture the solution at the finer scale, while the global modes solve the coarser scale. To this aim, two strategies are proposed. The first proposal is based on the partition of unity, and combines the global and local discretization levels, based on a partition of the domain. It builds a separated representation that provides the local enrichment, without the need for a priori knowledge of the solution, nor the implementation of auxiliary local problems to determine the enrichment. The second strategy is devoted to the construction of Global-Local separated representations in a less intrusive manner, compatible with the finite element standard. Therefore, we rely on standard FEM assembly of the operators and use the PGD as an algebraic iterative solver. Continuity on the boundaries of the domain’s partition does not need to be imposed explicitly, as it comes as a built-in property of the FEM operators
Barbarulo, Andrea. "On a PGD model order reduction technique for mid-frequency acoustic." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00822643.
Full textAllier, Pierre-Eric. "Contrôle d’erreur pour et par les modèles réduits PGD." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN063/document.
Full textMany structural mechanics problems require the resolution of several similar numerical problems. An iterative model reduction approach, the Proper Generalized Decomposition (PGD), enables the control of the main solutions at once, by the introduction of additional parameters. However, a major drawback to its use in the industrial world is the absence of a robust error estimator to measure the quality of the solutions obtained.The approach used is based on the concept of constitutive relation error. This method consists in constructing admissible fields, thus ensuring the conservative and guaranteed aspect of the estimation of the error by reusing the maximum number of tools used in the finite elements framework. The ability to quantify the importance of the different sources of error (reduction and discretization) allows to control the main strategies of PGD resolution.Two strategies have been proposed in this work. The first was limited to post-processing a PGD solution to construct an estimate of the error committed, in a non-intrusively way for existing PGD codes. The second consists of a new PGD strategy providing an improved approximation associated with an estimate of the error committed. The various comparative studies are carried out in the context of linear thermal and elasticity problems.This work also allowed us to optimize the admissible fields construction methods by substituting the resolution of many similar problems by a PGD solution, exploited as a virtual chart
Barasinski, Anaïs. "Modélisations du procédé de placement de fibres composites à matrice thermoplastique." Ecole centrale de Nantes, 2012. http://www.theses.fr/2012ECDN0032.
Full textThermoplastic automated tape placement process allows the manufacture of large composite parts with all kinds of geometries (eg double curvature). This method is based on the continuous welding by fusion bonding of a thermoplastic matrix composite ply on a substrate. It received an increasing interest in recent years due to its ability to produce parts out of autoclave. This study is part of an aeronautic project that aims to understand and develop this automated deposition process through the study of the thermo-mechanical history of the material during its deposition, the residual stresses in the workpiece after manufacturing and the process capability for in-situ welding, while contributing to the development of the deposit head. In order to control and optimize the quality of the part, the prediction of the thermo-mechanical history applied during the manufacturing of the laminate is required. In this work, an original thermal modeling of this process is proposed. The bonding degree evolves during the deposition and has a significant impact on heat transfer, this parameter is included in the model using evolving thermal contact resistance. The numerical results are validated by experimental measurements. Due to the particular geometry of the problem (thin pre-impregnated tape of great length), a numerical PGD method (Proper Generalized Decomposition) is used. This method overcomes the problems associated with large ratio between the length of material and its thickness. It also allows to take into account many parameters (material, or process) as extra coordinates of the model. Finally, various process windows, appropriate to the level required specifications on the part, are defined. Questions related to the maximization of the crystallinity and the minimization of residual stresses are discussed in order to approach the one-step process sought
Heyberger, Christophe. "PGD espace-temps adaptée pour le traitement de problèmes paramétrés." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2014. http://tel.archives-ouvertes.fr/tel-01048636.
Full textDumon, Antoine. "Réduction dimensionnelle de type PGD pour la résolution des écoulements incompressibles." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00644565.
Full textSaleh, Marwan. "Étude mathématique et numérique des méthodes de réduction dimensionnelle de type POD et PGD." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS004/document.
Full textThis thesis is formed of four chapters. The first one presents the mathematical notions and tools used in this thesis and gives a description of the main results obtained within. The second chapter presents our generalization of a result obtained by Rousselet-Chenais in 1990 which describes the sensitivity of eigensubspaces for self-adjoint compact operators. Rousselet-Chenais were limited to sensitivity for specific subspaces of dimension 1, we have extended their result to higher dimensions. We applied our results to the Proper Orthogonal Decomposition (POD) in the case of parametric, temporal and spatial variations (Gappy- POD). The third chapter discusses the optical flow estimate with quadratic or linear energies at infinity. Mathematical results of convergence are shown for the method Progressive Generalized Decomposition (PGD) in the case of quadratic energies. Our proof is based on the decomposition of Brézis-lieb via the convergence almost everywhere of the PGD sequence gradients. A detailed numerical study is made on different types of images : on the passive scalar transport equations, whose displacement fields are solutions of the Navier-Stokes equations. These equations present a challenge for optical flow estimates because of the presence of low gradient regions in the image. We applied our method to the MRI image sequences to estimate the movement of the abdominal organs. PGD presented a superiority in both computing time level (even in 2D) and accuracy representation of the estimated motion. The local diffusion of standard methods (Horn Schunck, for example) limits the convergence rate, in contrast to the PGD which is a more global approach by construction. The last chapter deals with the application of PGD method in the case of variational elliptic equations whose energy present all challenges to classical variational methods : lack of convexity, lack of coercivity and lack of boundedness. We prove convergence results for the weak topology, the PGD sequences converge (when they are well defined) to two extremal solutions on the Nehari manifold. Several mathematical questions about PGD remain open in this chapter. These questions are part of our research perspectives
Oulghelou, Mourad. "Développement de modèles réduits adaptatifs pour le contrôle optimal des écoulements." Thesis, La Rochelle, 2018. http://www.theses.fr/2018LAROS014/document.
Full textThe numerical resolution of adjoint based optimal control problems requires high computational time and storage capacities. In order to get over these high requirement, it is possible to use model reduction techniques such as POD (Proper Orthogonal Decomposition). The disadvantage of this approach is that the POD basis is valid only for parameters located in a small neighborhood to the parameters for which it was built. Therefore, this basis may not be representative for all parameters in the optimizer’s path eventually suggested by the optimal control loop. To overcome this issue, a reduced optimal control methodology using adaptive reduced order models obtained by the ITSGM (Interpolation on a Tangent Subspace of the Grassman Manifold) method or by the PGD (Proper Generalized Decomposition) method, has been proposed in this work. The robustness of this approach in terms of precision and computation time has been demonstrated for the optimal control (based on adjoint equations) of the 2D reaction-diffusion and Burgers equations. The interpolation method ITSGM has also been validated in the control of flow around a 2D cylinder. In the context of non intrusive model reduction, two non intrusive reduction methods, which do not require knowledge of the equations of the studied model, have also been proposed. These methods called NIMR (Non-Intrusive Model Reduction) and HNIMR (Hyper Non-Intrusive Model Reduction) were developed and then coupled to a genetic algorithm in order to solve an optimal control problem in quasi-real time. The problem of optimal control of the flow around a 2D cylinder has been studied and the results have shown the effectiveness of this approach. Indeed, the genetic algorithm coupled with the HNIMR method allowed to obtain the solutions with a good accuracy in less than 40 seconds
Books on the topic "Proper Generalized Decomposition (PGD)"
Chinesta, Francisco, Roland Keunings, and Adrien Leygue. The Proper Generalized Decomposition for Advanced Numerical Simulations. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02865-1.
Full textChinesta, Francisco, Roland Keunings, and Adrien Leygue. The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. Springer, 2013.
Find full textBook chapters on the topic "Proper Generalized Decomposition (PGD)"
Cueto, Elías, David González, and Icíar Alfaro. "PGD for Dynamical Problems." In Proper Generalized Decompositions, 65–89. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29994-5_5.
Full textCueto, Elías, David González, and Icíar Alfaro. "PGD for Non-linear Problems." In Proper Generalized Decompositions, 39–63. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29994-5_4.
Full textCueto, Elías, David González, and Icíar Alfaro. "To Begin With: PGD for Poisson Problems." In Proper Generalized Decompositions, 7–19. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29994-5_2.
Full textChinesta, Francisco, Roland Keunings, and Adrien Leygue. "PGD Versus SVD." In The Proper Generalized Decomposition for Advanced Numerical Simulations, 47–56. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02865-1_3.
Full textChinesta, Francisco, Roland Keunings, and Adrien Leygue. "PGD Solution of the Poisson Equation." In The Proper Generalized Decomposition for Advanced Numerical Simulations, 25–46. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02865-1_2.
Full textCueto, Elías, Francisco Chinesta, and Antonio Huerta. "Model Order Reduction based on Proper Orthogonal Decomposition." In Separated Representations and PGD-Based Model Reduction, 1–26. Vienna: Springer Vienna, 2014. http://dx.doi.org/10.1007/978-3-7091-1794-1_1.
Full textChinesta, Francisco, Roland Keunings, and Adrien Leygue. "Introduction." In The Proper Generalized Decomposition for Advanced Numerical Simulations, 1–24. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02865-1_1.
Full textChinesta, Francisco, Roland Keunings, and Adrien Leygue. "The Transient Diffusion Equation." In The Proper Generalized Decomposition for Advanced Numerical Simulations, 57–69. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02865-1_4.
Full textChinesta, Francisco, Roland Keunings, and Adrien Leygue. "Parametric Models." In The Proper Generalized Decomposition for Advanced Numerical Simulations, 71–88. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02865-1_5.
Full textChinesta, Francisco, Roland Keunings, and Adrien Leygue. "Advanced Topics." In The Proper Generalized Decomposition for Advanced Numerical Simulations, 89–110. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02865-1_6.
Full textConference papers on the topic "Proper Generalized Decomposition (PGD)"
Grolet, Aurelien, and Fabrice Thouverez. "On the Use of the Proper Generalised Decomposition for Solving Nonlinear Vibration Problems." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87538.
Full textNazeer, S. Mohamed, Francisco Chinesta, and Adrien Leygue. "A Novel Proper Generalized Decomposition (PGD) Based Approach for Non-Matching Grids." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82506.
Full textNéron, David, and Pierre Ladevèze. "A Data Compression Approach for PGD Reduced-Order Modeling." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-83008.
Full textNiroomandi, Siamak, Felipe Bordeu, Iciar Alfaro, David Gonzalez, Adrien Leygue, Elias Cueto, and Francisco Chinesta. "Real-Time Simulation for Virtual Surgery in a PGD Framework." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82541.
Full textBehzad, Fariduddin, Brian T. Helenbrook, and Goodarz Ahmadi. "On Reduced Order Modeling of Transient Flows Using the Proper Orthogonal Decomposition." In ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72141.
Full textCanales, D., Ch Ghnatios, A. Leygue, F. Chinesta, I. Alfaro, E. Cueto, E. Feulvarch, and J. M. Bergheau. "Numerical Simulation of Friction Stir Welding by an Efficient 3D Updated Lagrangian Technique." In ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/esda2014-20285.
Full textSabetghadam, Fereydoun. "Generalization of the RANS Equations Using Mean Modal Decomposition of the Navier Stokes Equations." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58395.
Full textBadías, A., D. González, I. Alfaro, F. Chinesta, and E. Cueto. "Local proper generalized decomposition." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF GLOBAL NETWORK FOR INNOVATIVE TECHNOLOGY AND AWAM INTERNATIONAL CONFERENCE IN CIVIL ENGINEERING (IGNITE-AICCE’17): Sustainable Technology And Practice For Infrastructure and Community Resilience. Author(s), 2017. http://dx.doi.org/10.1063/1.5008205.
Full textHenneron, Thomas, and Stephane Clenet. "Parametric analysis of magnetoharmonic problem based on proper generalized decomposition." In 2016 IEEE Conference on Electromagnetic Field Computation (CEFC). IEEE, 2016. http://dx.doi.org/10.1109/cefc.2016.7816328.
Full textGhnatios, C., F. Chinesta, E. Cueto, A. Leygue, A. Poitou, Francisco Chinesta, Yvan Chastel, and Mohamed El Mansori. "Optimizing Composites Forming Processes by Applying the Proper Generalized Decomposition." In INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552440.
Full text