Dissertations / Theses on the topic 'Proper Generalized Decomposition (PGD)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 27 dissertations / theses for your research on the topic 'Proper Generalized Decomposition (PGD).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Retat, Françoise. "Proper generalized decomposition based dynamic data driven application systems." Ecole centrale de Nantes, 2013. http://www.theses.fr/2013ECDN0025.
Full textNowadays, in simulation-based engineering science, the need of real-time responses is felt more than ever. Dynamic Data-Driven Application systems -DDDAS, thanks to the linkage of the simulation tools with the measurement devices, enable us to achieve real-time computation. But to do so, DDDAS need accurate and fast simulation tools. The solution presented here consists in first computing once and for all, off-line the model's most general solution, introducing all the parameters as extra-coordinates. This abacus is then considered for the on-line purposes. But this, in turn, raises the issue of highly multidimensional spaces. The Proper Generalized Decomposition technique, thanks to its separated representation, allows circumventing this redoubtable curse. The focus of this work is to explore some possibilities in the context of parameter estimation, verification and control in real time. The application of this research is the development of a new boundary control method, i. E. Laminar-flow control over an airfoil. This new approach is associated with the unsteady surface heating regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer separation and transition will provide a reduction in friction drag, and hence a reduction in the fuel consumption, which would comply with the ACARE 2020 requirements
Lázaro, García Juan. "Contribución al cálculo de elementos en instalaciones eléctricas mediante PGD (Proper Generalized Decomposition)." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/61966.
Full text[ES] Planteamiento y resumen de la tesis doctoral. La presente tesis se centra en dar luz al estado actual de los métodos numéricos tradicionales, las limitaciones a las que nos enfrentamos, y las diferentes soluciones que se están planteando para la simulación del comportamiento electromagnético de diferentes materiales como conductores eléctricos en líneas de transmisión e instalaciones de puesta a tierra, basándose en la formulación que define la Teoría de Campos Electromagnéticos (Leyes de Maxwell), y las diferentes condiciones de cada problema particular a resolver. El objetivo principal de la tesis es el investigar la aplicación de técnicas numéricas de muy reciente aplicación, conocidas como la Descomposición Propia Generalizada (Proper Generalized Decomposition PGD). Basándose en una técnica novedosa de descomposición de las variables multidimensionales (como en el campo electromagnético) en una suma de productos (modos) de variables unidimensionales, y mediante algoritmos iterativos, la PGD permite abordar, con una reducida necesidad de medios computacionales, problemas complejos cuya solución requiere medios extraordinarios empleando las técnicas tradicionales. Estas nuevas técnicas han sido aplicadas con éxito en otros dominios, como el de la simulación de elementos mecánicos y en ciencia de los materiales. El objetivo de la presente tesis es precisamente el de la aplicación de estas novedosas técnicas a la simulación de fenómenos electromagnéticos en los diferentes elementos diseñados para la utilización de la energía eléctrica. La tesis se centra en el desarrollo de la modelización de conductores de transmisión de energía eléctricas y redes de puesta a tierra, estructuras básicas en la tecnología eléctrica pero que sirven para analizar y observar con detalle además de validar con métodos tradicionales, de demostrada fiabilidad, el gran potencial de la PGD, dejando abierta la aplicación de la técnica a elementos técnicamente más complejos como transformadores y máquinas rotativas en futuros trabajos del Grupo de Investigación de Instalaciones, Sistemas y Equipos Eléctricos (ISEE) de la Universidad Politécnica de Valencia (UPV). Las principales novedades que aporta la tesis sobre trabajos realizados anteriormente son parte de los objetivos que persigue, y son las siguientes: - Optimización de la técnica de la PGD. En la presente tesis se ha optado por una aplicación de la PGD con la máxima descomposición posible en funciones elementales, es decir, los modos se considerarán formados por productos de funciones exclusivamente unidimensionales (x, y, z, t, frecuencia, etc.), discretizadas posteriormente con mallas unidimensionales uniformes. Esto nos llevará a obtener códigos simples, de sencilla implementación y que necesitarán de reducidos recursos computacionales. - Aplicación de la PGD al campo del Electromagnetismo, ya que la gran mayoría de las referencias que se pueden encontrar en la aplicación de la PGD se refieren al campo de la mecánica y los materiales. Este trabajo pretende utilizar avances logrados en esos campos, y aplicarlos al campo del electromagnetismo, donde sólo muy pocos trabajos han sido publicados en los últimos años, con el objetivo de contribuir a seguir abriendo un nuevo frente en el desarrollo y aplicación de la técnica, que permita vencer las limitaciones y problemas que hasta el momento se presentan con las técnicas de resolución tradicionales.
[CAT] Plantejament i resum de la tesi doctoral. La present tesi se centra a donar llum a l'estat actual dels mètodes numèrics tradicionals, les limitacions a què ens enfrontem, i les diferents sol¿lucions que s'estan plantejant per a la simulació del comportament electromagnètic de diversos materials com a conductors elèctrics en linies de transmissió i instal¿lacions d'enclavament a terra, basant-se en la formulació que defineix la Teoria de Camps Electromagnètics (Lleis de Maxwell) , i les diferents condicions de cada problema particular a resoldre. L'objectiu principal de la tesi és investigar l'aplicació de tècniques numèriques de molt recent aplicació, conegudes com la Descomposició Pròpia Generalitzada (Proper Generalized Decomposition PGD). Basant-se en una tècnica nova de descomposició de les variables multidimensionales (com en el camp electromagnètic) en una suma de productes (modes) de variables unidimensionals, i per mitjà d'algoritmes iteratius. La PGD permet abordar, amb una reduïda necessitat de mitjans computacionals, problemes complexos la sol¿lució de la qual requereix mitjans extraordinaris emprant les tècniques tradicionals. Tals tècniques han sigut aplicades amb èxit en altres dominis, com el de la simulació d'elements mecànics i en ciència dels materials. L'objectiu de la present tesi és precisament el de l'aplicació d'estes noves tècniques a la simulació de fenòmens electromagnètics en els diversos elements dissenyats per a l'utilització de l'energia elèctrica. La tesi es centra en el desenrotllament de la modelització de conductors de transmissió d'energia eléctrica i xarxes d'enclavament a terra, estructures bàsiques en la tecnologia elèctrica però que serveixen per a analitzar i observar amb detall a més de validar amb mètodes tradicionals, de demostrada fiabilitat, el gran potencial de la PGD, deixant oberta l'aplicació de la tècnica a elements tècnicament més complexos com a transformadors i màquines rotatives en futures treballs del Grup d'Investigació d'Instal¿lacions, Sistemes i Equips Elèctrics (ISEE) de la Universitat Politècnica de València (UPV). Les principals novetats que aporta la tesi sobre treballs realitzats anteriorment són part dels objectius que persegueix, i són les següents: -Optimització de la tècnica de la PGD. En la present tesi s'ha optat per una aplicació de la PGD amb la màxima descomposició possible en funcions elementals, és a dir, els modes es consideraran formats per productes de funcions exclusivament unidimensionals (x, y, z, t, freqüència, etc.), discretizadas amb malles unidimensionals uniformes. Açò ens portarà a obtindre còdics simples, de senzilla implementació i que necessitaran de reduïts recursos computacionals. -Aplicació de la PGD al camp de l'Electromagnetisme, ja que la gran majoria de les referències que es poden trobar en l'aplicació de la PGD es refereixen al camp de la mecànica i els materials. Este treball pretén utilitzar avanços aconseguits en esses camps, i aplicar-los al camp de l'electromagnetisme, on només molt pocs treballs han sigut publicats en els últims anys, amb l'objectiu de contribuir a continuar obrint un nou front en el desentrollament i aplicació de la tècnica, que permeta véncer les limitacions i problemes que fins al moment es presenten amb les tècniques de resol¿lució tradicionals.
Lázaro García, J. (2016). Contribución al cálculo de elementos en instalaciones eléctricas mediante PGD (Proper Generalized Decomposition) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/61966
TESIS
Sandino, de Benito Carlos. "Global-local separated representations based on the Proper Generalized Decomposition." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0064.
Full textOne of the main advantages of the Proper Generalized Decomposition method, when compared to other model reduction methods, lies in its adequacy to compute space separated representations in Cartesian-like degenerated domains, such as plates or shells. The main objective of this thesis is to generalize space separated representations to non-Cartesian domains, by introducing the notion of Global-Local separated representations. Global-Local separated representations can be understood as a multiplicative decomposition in which the local modes capture the solution at the finer scale, while the global modes solve the coarser scale. To this aim, two strategies are proposed. The first proposal is based on the partition of unity, and combines the global and local discretization levels, based on a partition of the domain. It builds a separated representation that provides the local enrichment, without the need for a priori knowledge of the solution, nor the implementation of auxiliary local problems to determine the enrichment. The second strategy is devoted to the construction of Global-Local separated representations in a less intrusive manner, compatible with the finite element standard. Therefore, we rely on standard FEM assembly of the operators and use the PGD as an algebraic iterative solver. Continuity on the boundaries of the domain’s partition does not need to be imposed explicitly, as it comes as a built-in property of the FEM operators
Barbarulo, Andrea. "On a PGD model order reduction technique for mid-frequency acoustic." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00822643.
Full textAllier, Pierre-Eric. "Contrôle d’erreur pour et par les modèles réduits PGD." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLN063/document.
Full textMany structural mechanics problems require the resolution of several similar numerical problems. An iterative model reduction approach, the Proper Generalized Decomposition (PGD), enables the control of the main solutions at once, by the introduction of additional parameters. However, a major drawback to its use in the industrial world is the absence of a robust error estimator to measure the quality of the solutions obtained.The approach used is based on the concept of constitutive relation error. This method consists in constructing admissible fields, thus ensuring the conservative and guaranteed aspect of the estimation of the error by reusing the maximum number of tools used in the finite elements framework. The ability to quantify the importance of the different sources of error (reduction and discretization) allows to control the main strategies of PGD resolution.Two strategies have been proposed in this work. The first was limited to post-processing a PGD solution to construct an estimate of the error committed, in a non-intrusively way for existing PGD codes. The second consists of a new PGD strategy providing an improved approximation associated with an estimate of the error committed. The various comparative studies are carried out in the context of linear thermal and elasticity problems.This work also allowed us to optimize the admissible fields construction methods by substituting the resolution of many similar problems by a PGD solution, exploited as a virtual chart
Barasinski, Anaïs. "Modélisations du procédé de placement de fibres composites à matrice thermoplastique." Ecole centrale de Nantes, 2012. http://www.theses.fr/2012ECDN0032.
Full textThermoplastic automated tape placement process allows the manufacture of large composite parts with all kinds of geometries (eg double curvature). This method is based on the continuous welding by fusion bonding of a thermoplastic matrix composite ply on a substrate. It received an increasing interest in recent years due to its ability to produce parts out of autoclave. This study is part of an aeronautic project that aims to understand and develop this automated deposition process through the study of the thermo-mechanical history of the material during its deposition, the residual stresses in the workpiece after manufacturing and the process capability for in-situ welding, while contributing to the development of the deposit head. In order to control and optimize the quality of the part, the prediction of the thermo-mechanical history applied during the manufacturing of the laminate is required. In this work, an original thermal modeling of this process is proposed. The bonding degree evolves during the deposition and has a significant impact on heat transfer, this parameter is included in the model using evolving thermal contact resistance. The numerical results are validated by experimental measurements. Due to the particular geometry of the problem (thin pre-impregnated tape of great length), a numerical PGD method (Proper Generalized Decomposition) is used. This method overcomes the problems associated with large ratio between the length of material and its thickness. It also allows to take into account many parameters (material, or process) as extra coordinates of the model. Finally, various process windows, appropriate to the level required specifications on the part, are defined. Questions related to the maximization of the crystallinity and the minimization of residual stresses are discussed in order to approach the one-step process sought
Heyberger, Christophe. "PGD espace-temps adaptée pour le traitement de problèmes paramétrés." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2014. http://tel.archives-ouvertes.fr/tel-01048636.
Full textDumon, Antoine. "Réduction dimensionnelle de type PGD pour la résolution des écoulements incompressibles." Phd thesis, Université de La Rochelle, 2011. http://tel.archives-ouvertes.fr/tel-00644565.
Full textSaleh, Marwan. "Étude mathématique et numérique des méthodes de réduction dimensionnelle de type POD et PGD." Thesis, La Rochelle, 2015. http://www.theses.fr/2015LAROS004/document.
Full textThis thesis is formed of four chapters. The first one presents the mathematical notions and tools used in this thesis and gives a description of the main results obtained within. The second chapter presents our generalization of a result obtained by Rousselet-Chenais in 1990 which describes the sensitivity of eigensubspaces for self-adjoint compact operators. Rousselet-Chenais were limited to sensitivity for specific subspaces of dimension 1, we have extended their result to higher dimensions. We applied our results to the Proper Orthogonal Decomposition (POD) in the case of parametric, temporal and spatial variations (Gappy- POD). The third chapter discusses the optical flow estimate with quadratic or linear energies at infinity. Mathematical results of convergence are shown for the method Progressive Generalized Decomposition (PGD) in the case of quadratic energies. Our proof is based on the decomposition of Brézis-lieb via the convergence almost everywhere of the PGD sequence gradients. A detailed numerical study is made on different types of images : on the passive scalar transport equations, whose displacement fields are solutions of the Navier-Stokes equations. These equations present a challenge for optical flow estimates because of the presence of low gradient regions in the image. We applied our method to the MRI image sequences to estimate the movement of the abdominal organs. PGD presented a superiority in both computing time level (even in 2D) and accuracy representation of the estimated motion. The local diffusion of standard methods (Horn Schunck, for example) limits the convergence rate, in contrast to the PGD which is a more global approach by construction. The last chapter deals with the application of PGD method in the case of variational elliptic equations whose energy present all challenges to classical variational methods : lack of convexity, lack of coercivity and lack of boundedness. We prove convergence results for the weak topology, the PGD sequences converge (when they are well defined) to two extremal solutions on the Nehari manifold. Several mathematical questions about PGD remain open in this chapter. These questions are part of our research perspectives
Oulghelou, Mourad. "Développement de modèles réduits adaptatifs pour le contrôle optimal des écoulements." Thesis, La Rochelle, 2018. http://www.theses.fr/2018LAROS014/document.
Full textThe numerical resolution of adjoint based optimal control problems requires high computational time and storage capacities. In order to get over these high requirement, it is possible to use model reduction techniques such as POD (Proper Orthogonal Decomposition). The disadvantage of this approach is that the POD basis is valid only for parameters located in a small neighborhood to the parameters for which it was built. Therefore, this basis may not be representative for all parameters in the optimizer’s path eventually suggested by the optimal control loop. To overcome this issue, a reduced optimal control methodology using adaptive reduced order models obtained by the ITSGM (Interpolation on a Tangent Subspace of the Grassman Manifold) method or by the PGD (Proper Generalized Decomposition) method, has been proposed in this work. The robustness of this approach in terms of precision and computation time has been demonstrated for the optimal control (based on adjoint equations) of the 2D reaction-diffusion and Burgers equations. The interpolation method ITSGM has also been validated in the control of flow around a 2D cylinder. In the context of non intrusive model reduction, two non intrusive reduction methods, which do not require knowledge of the equations of the studied model, have also been proposed. These methods called NIMR (Non-Intrusive Model Reduction) and HNIMR (Hyper Non-Intrusive Model Reduction) were developed and then coupled to a genetic algorithm in order to solve an optimal control problem in quasi-real time. The problem of optimal control of the flow around a 2D cylinder has been studied and the results have shown the effectiveness of this approach. Indeed, the genetic algorithm coupled with the HNIMR method allowed to obtain the solutions with a good accuracy in less than 40 seconds
Giraldi, Loïc. "Contributions aux méthodes de calcul basées sur l'approximation de tenseurs et applications en mécanique numérique." Phd thesis, Ecole centrale de nantes - ECN, 2012. http://tel.archives-ouvertes.fr/tel-00861986.
Full textBur, Nicolas. "Développement d’algorithmes de réduction de modèles pour l’optimisation du procédé de placement de fibres robotisé." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2186/document.
Full textRealising composite parts mainly dedicated to aeronautics sector by robotised processes tends to increase productivity. However, Automated Tape Placement (ATP) is still in ripening stage and requires various developments, particularly in case of thermoplastic composites or dry fibres. In this manuscript, we propose different tools allowing to determine in advance the best heating power to drape composite fibres. Difficulty arises from dependence on many parameters, from material (density, specific heat) or from process itself (velocity, number and orientation of plies). Therefore we construct a multi-parametric reduced order model using the so called Proper Generalised Decomposition (PGD). Results have been faced to those obtained from more conventional methods but also to experimental data
Ramazzotti, Andrea. "Contribution au développement de méthodes numériques destinées à résoudre des problèmes couplés raides rencontrés en mécanique des matériaux." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2016. http://www.theses.fr/2016ESMA0007/document.
Full textThis work presents the development of the Proper Generalized Decomposition (PGD) method for solving stiff reaction-diffusion equations in the framework of mechanics of materials. These equations are particularly encountered in the oxidation of polymers and it is therefore necessary to develop a tool to simulate this phenomenon for example for the ageing of organic matrix composites in aircraft application. The PGD method has been chosen in this work since it allows a large time saving compared to the finite element method. However this family of equations has never been dealt with this method. The PGD method consists in approximating a solution of a Partial Differential Equation with a separated representation. The solution is sought under a space-time separated representation for a 1D transient equation.In this work, a numerical tool has been developed allowing a flexibility to test different algorithms. The 1D Fickian diffusion is first evaluated and two numerical schemes, Euler and Runge-Kutta adaptive methods, are discussed for the determination of the time modes. The Runge-Kutta method allows a large time saving. The implementation of the numerical tool for reaction-diffusion equations requires the use of specific algorithms dedicated to nonlinearity, couplingand stiffness. For this reason, different algorithms have been implemented and discussed. For nonlinear systems, the use of the Newton-Raphson algorithm at the level of the iterations to compute the new mode allows time saving by decreasing the number of modes required for a given precision. Concerning the couplings, two strategies have been evaluated. The strong coupling leads to the same conclusions as the nonlinear case. The linear stiff systems are then studied by considering a dedicated method, the Rosenbrock method, for the determination of the time modes. This algorithm allows time saving compared to the Runge-Kutta method. The solution of a realistic nonlinear stiff reaction-diffusionsystem used for the prediction of the oxidation of a composite obtained from the literature has been tested by using the various implemented algorithms. However, the nonlinearities and the stiffness of the system generate differential equations with variable coefficients for which the Rosenbrock method is limited. It will be necessary to test or develop other algorithms to overcome this barrier
Sorba, Grégoire. "Etude expérimentale et modélisation numérique des écoulements de compression dans les composites stratifiés visqueux à plis discontinus." Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0038.
Full textThe design freedom of composites can be improved by combining continuous and discontinuous prepregs. The forming of a pre-heated blank made of optimally oriented and distributed discontinuous prepreg plies may lead to unacceptable defects such as in-plane and out-of-plane wrinkles, sliding of plies, rotation of adjacent plies, bending of fibres induced by transverse squeeze flow and finally to inappropriate and inefficient fibre distribution. This arises because the individual discontinuous plies are free to move and deform in the mould during the forming step. First, this work presents some experiments conducted to identify the behaviour of a stack of unidirectional and woven discontinuous viscous prepregs subjected to through-thickness compression. Then a model based on a heterogeneous transverse isotropic fluid approach is gradually developped in agreement with the experimental findings. It is shown that the various observed phenomena are retrieved for the unidirectional and partly for the woven prepreg by the numerical model. The predicted values are in good agreement with measurements, when the problem is solved in 3D with a relatively fine mesh in the thickness. Finally an attempt is made to reduce the computational cost by the use of advanced numerical simulation techniques
El-Ghamrawy, Karim. "Proper generalized decomposition solutions for composite laminates parameterized with fibre orientations for fast computations." Doctoral thesis, Universitat Politècnica de Catalunya, 2021. http://hdl.handle.net/10803/672121.
Full textLos materiales compuestos están ganando popularidad como una alternativa a los materiales clásicos en muchas aplicaciones distintas. Además, su diseño es aún más flexible debido al potencial de la fabricación aditiva. Por lo tanto, se puede fabricar un compuesto laminado a medida usando valores óptimos para algunos parámetros de diseño a fin de proporcionar el rendimiento mecánico deseado. En ese contexto, tener un modelo numérico paramétrico para la respuesta mecánica del compuesto laminado es esencial para calcular los parámetros óptimos. En general, resolver un modelo mecánico usando técnicas basadas en mallas 3D es computacionalmente muy caro y, en según qué situación, puede resultar inviable si el problema es multidimensional. Además, si el problema considerado es una aplicación que requiere "multi-query" como en el caso de optimizaciones, problemas inversos, o cuantificación de la incertidumbre, el problema directo se tiene que resolver un número elevado de veces aumentando drásticamente el coste computacional. En la presente tesis, los parámetros de diseño considerados son los ángulos que describen la orientación de las fibras de refuerzo en distintas capas o parches de los compuestos laminados. Presentamos el criterio de rotura Tsai-Wu como función objetivo para el problema de optimización. Las técnicas de “Model Order Reduction” (MOR) son recomendables para aligerar la mencionada carga computacional. Es decir, recurrimos a la técnica “Poper Generalized Descomposition” (PGD) para obtener una solución general de la respuesta mecánica de la estructura. En particular, obtenemos un vademécum computacional en 3D que proporciona un índice de falla del laminado y un factor de seguridad que depende de forma explícita de la orientación de las fibras. El vademécum de PGD proporciona también sensibilidades para un algoritmo de optimización basado en gradientes. El potencial y eficiencia del enfoque presentado se demuestra a través de varias pruebas numéricas. Finalmente, se presenta el acoplamiento entre la metodología propuesta y técnicas de agrupamiento para mejorar el rendimiento general del modelo.
Relun, Nicolas. "Stratégie multiparamétrique pour la conception robuste en fatigue." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2011. http://tel.archives-ouvertes.fr/tel-00669449.
Full textNguyen, Tuan Linh. "La Décomposition propre généralisée pour la résolution de problèmes multiphysiques transitoires couplés dédiés à la mécanique des matériaux." Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2012. https://theses.hal.science/docs/00/78/59/85/PDF/manuscrit_final_NGUYEN_Tuan_Linh_ENSMA_Poitiers_v2B.pdf.
Full textThis work presents the development of the Proper Generalized Decomposition (PGD) method for solving couple transient multiphysics problems with different characteristic times. This method consists in approximating solutions ( Partial Differentiai Equations with separated representations. The 2D transient heat equation is initially considered. A automatic adaptive mesh technique is proposed in order to make the discretization fit the different transient domains. Tw different couplings between the PGD method and the adaptive mesh refinement technique are discussed: the frrst on consists in computing the PGD solution for each new mesh from the null solution; the second one consists in enrichin the PGD solution for each new mesh from the basis functions generated on the previous meshes. The frrst coupling. More efficient since fewer modes are required to accurately describe the solution on the final mesh. Nevertheless, th second one decreases the number of enrichments cumulated tbrough the mesh refmement pro cess. Regardless of th coupling used, the adaptive mesh technique is able to automatically describe the localized transient zones. The II transient heat equation with a non linear source term is also studied. A new approach combining the PGD method and th Asymptotic Numerical Method (ANM) is tested, which allows to efficiently solve sorne families of non linear transiel problems. Finally, two muItitime and multiphysics problems are considered. It consists of a partially coupled he diffusion problem and a strongly coupled thermoviscoelastic problem. The PGD method gives an accurate prediction c the response of these muItiphysics problems for which the coupling terms lead to specific transient zones. Combined wit the PGD method, the adaptive mesh technique is particularly suitable for these situations of strongly coupled tim multiscale. This combination brings to the same conclusions as in the case of a single physical phenomenon. The discussion focuses on two strategies of mesh construction: concatenating the time meshes of each physical phenomeno or refme each mesh independently. The concatenation of two meshes allows a convergence with fewer steps of mes refmement but with a much bigher mesh density
Canales, Aguilera Diego. "Stratégies numériques avancées pour la simulation efficace de procédés de soudage conventionnels et non conventionnels : Une approche de réduction de modèles." Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0012/document.
Full textNumerical simulations represent a fundamental tool for the design and optimization of industrial manufacturing processes such as welding. Despite the impressive development of the numerical methods and the means of calculation, the complexity of these processes and the new demands of the more advanced industries make it necessary to rethink the available methods, strategies and simulation algorithms. In this thesis, we propose new numerical methods with a Model Order Reduction approach, a consolidated discipline that has provided surprising solutions indifferent applications, such as advanced manufacturing processes. First, different strategies for the efficient simulation of conventional welding processes are proposed. To this end, the use of Computational Vademecums is introduced for the improvement of methods such as the Generalized Finite Element for thermal calculation, the local-global approach for the mechanical calculation or the direct construction of vademecums useful for predesign phases. Then, an efficient PGD solver for thermomechanical simulations for friction stir welding is presented. This thesis shows how Model Reduction, besides being an end, it can be an excellent ingredient to improve the efficiency of traditional numerical methods, with great interest for the industry
Ghnatios, Chady. "Simulation avancée des problèmes thermiques rencontrés lors de la mise en forme des composites." Phd thesis, Ecole centrale de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00867281.
Full textGonzález, Pintor Sebastián. "Approximation of the Neutron Diffusion Equation on Hexagonal Geometries." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17829.
Full textGonzález Pintor, S. (2012). Approximation of the Neutron Diffusion Equation on Hexagonal Geometries [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17829
Palancia
Metoui, Sondes. "Separated représentations for th multiscale simulation of the mechanical behavior and damages of composite materials." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0049/document.
Full textSeparated representations for the multiscale simulation of the mechanicalbehavior and damages of composite materials.Abstract: The development of efficient simulations for composite structures is very challengingdue to the multiscale nature and the complex damage process of this materials. When usingstandard 3D discretization techniques with advanced models for large structures, the computationalcosts are generally prohibitive.In this thesis, a new strategy based on a separated represenation of the solution is explored todevelop a computationally efficient and reliable numerical framework for the analysis of damagesin laminated composites subjected to quasi-static and dynamic loading. The PGD (Proper GeneralizedDecomposition) is used to build the solution.To treat damage, and especially delamination, a cohesive zone model has been implemented inthe PGD solver. A novel multiscale approach is also proposed to compute the mechanical behaviorof composites with periodic microstructure. The idea is to separate two scales: the scaleof periodic pattern and the macroscopic scale. The PGD results have been compared with theresults obtained with the classcial finite element method. A close agreement is found between thetwo approach and the PGD has significantly reduced the model complexity
Maitrejean, Guillaume. "Couplages moléculaire- théorie cinétique pour la simulation du comportement des matériaux complexes." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENI067/document.
Full textThis work is a contribution to the numerical modeling of suspension system in the kinetic theory framework. This continuum description of suspension system allows to account for the microstructure impact on the kinetic of the macroscopic flow. However, its main drawback is related to the high dimensional spaces in which kinetic theory models are defined and makes difficult for classical deterministic approaches to solve such systems. One possibility for circumventing, or at least alleviate, the weight of the micro-macro kinetic theory approaches lies in the use of separated representations strategies based on the Proper Generalized Decomposition (PGD). A study of different PGD algorithms is driven, illustrating the efficiency of these algorithms in terms of convergence speed and optimality of the solution obtained. The immiscible fluids blends modeling is driven using the area tensor which is a powerful numerical tool for characterizing blends. However it needs the introduction of closure relation of which impact is measured using equivalent and exact kinetic theory model. Finally, the numerical modeling of colloidal suspension system described by the Smoluchowski equation presents an original approach of the modeling of solid suspension system. This description allows to circumvent the statistical noise inherent to the stochastic approaches commonly used
Malik, Muhammad Haris. "Reduced order modeling for smart grids' simulation and optimization." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405730.
Full textCette these présente l'étude de la réduction de modeles pour les réseaux électriques et les réseaux de transmission. Un point de vue mathématique a été adopté pour la réduction de modeles. Les réseaux électriques sont des réseaux immenses et complexes, dont l'analyse et la conception nécessite la simulation et la résolution de grands modeles non-linéaires. Dans le cadre du développement de réseaux électriques intelligents (smart grids) avec une génération distribuée de puissance, l'analyse en temps réel de systemes complexes tels que ceux-ci nécessite des modeles rapides, fiables et précis. Dans la présente étude, nous proposons des méthodes de réduction de de modeles a la fois a priori et a posteriori, adaptées aux modeles dynamiques des réseaux électriques. Un accent particulier a été mis sur la dynamique transitoire des réseaux électriques, décrite par un modele oscillant nonlinéaire et complexe. La non-linéarité de ce modele nécessite une attention particuliere pour bénéficier du maximum d'avantages des techniques de réduction de modeles. lnitialement, des méthodes comme POD et LATIN ont été adoptées avec des degrés de succes divers. La méthode de TPWL, qui combine la POD avec des approximations linéaires multiples, a été prouvée comme étant la méthode de réduction de modeles la mieux adaptée pour le modele dynamique oscillant. Pour les lignes de transmission, un modele de parametres distribués en domaine fréquentiel est utilisé. Des modeles réduits de type PGD sont proposés pour le modele DP des lignes de transmission. Un probleme multidimensionnel entierement paramétrique a été formulé, avec les parametres électriques des lignes de transmission inclus comme coordonnées additionnelles de la représentation séparée. La méthode a été étendue pour étudier la solution du modele des lignes de transmission pour laquelle les parametres dépendent de la fréquence.
Esta tesis presenta un estudio de la reducción de modelos (MOR) para redes de transmisión y distribución de electricidad. El enfoque principal utilizado ha sido la dinámica transitoria y para la reducción de modelos se ha adoptado un punto de vista matemático. Las redes eléctricas son complejas y tienen un tamaño importante. Por lo tanto, el análisis y diseño de este tipo de redes mediante la simulación numérica, requiere la resolución de modelos no-lineales complejos. En el contexto del desarrollo de redes inteligentes, el objetivo es un análisis en tiempo real de sistemas complejos, por lo que son necesarios modelos rápidos, fiables y precisos. En el presente estudio se proponen diferentes métodos de reducción de modelos, tanto a priori como a posteriori, adecuados para modelos dinámicos de redes eléctricas. La dinámica transitoria de redes eléctricas, se describe mediante modelos dinámicos oscilatorios no-lineales. Esta no-linearidad del modelo necesita ser bien tratada para obtener el máximo beneficio de las técnicas de reducción de modelos. Métodos como la POD y la LATIN han sido inicialmente utilizados en esta problemática con diferentes grados de éxito. El método de TPWL, que combina la POD con múltiples aproximaciones lineales, ha resultado ser el mas adecuado para sistemas dinámicos oscilatorios. En el caso de las redes de transmisión eléctrica, se utiliza un modelo de parámetros distribuidos en el dominio de la frecuencia. Se propone reducir este modelo basándose en la PGD, donde los parámetros eléctricos de la red de transmisión son incluidos como coordenadas de la representación separada del modelo paramétrico. Este método es ampliado para representar la solución de modelos con parámetros dependientes de la frecuencia para las redes de transmisión eléctrica
Al, Takash Ahmad. "Development of Numerical Methods to Accelerate the Prediction of the Behavior of Multiphysics under Cyclic Loading." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2018. http://www.theses.fr/2018ESMA0014/document.
Full textIn the framework of structural calculation, the reduction of computation time plays an important rolein the proposition of failure criteria in the aeronautic and automobile domains. Particularly, the prediction of the stabilized cycle of polymer under cyclic loading requires solving of a thermo-viscoelastic problem with a high number of cycles. The presence of different time scales, such as relaxation time (viscosity), thermal characteristic time (thermal), and the cycle time (loading) lead to a huge computation time when an incremental scheme is used such as with the Finite Element Method (FEM).In addition, an allocation of memory will be used for data storage. The objective of this thesis isto propose new techniques and to extend existent ones. A transient thermal problem with different time scales is considered in the aim of computation time reduction. The proposed methods are called model reduction methods. First, the Proper Generalized Decomposition method (PGD) was extended to a nonlinear transient cyclic 3D problems. The non-linearity was considered by combining the PGD method with the Discrete Empirical Interpolation Method (DEIM), a numerical strategy used in the literature. Results showed the efficiency of the PGD in generating accurate results compared to the FEM solution with a relative error less than 1%. Then, a second approach was developed in order to reduce the computation time. It was based on the collection of the significant modes calculated from the PGD method for different time scales. A dictionary assembling these modes is then used to calculate the solution for different characteristic times and different boundary conditions. This approach was adapted in the case of a weak coupled diffusion thermal problem. The novelty of this method is to consider a dictionary composed of spatio-temporal bases and not spatial only as usedin the POD. The results showed again an exact reproduction of the solution in addition to a huge time reduction. However, when different cycle times are considered, the number of modes increases which limits the usage of the approach. To overcome this limitation, a third numerical strategy is proposed in this thesis. It consists in considering a priori known time bases and is called the mixed strategy. The originality in this approach lies in the construction of a priori time basis based on the Fourier analysis of different simulations for different time scales and different values of parameters.Once this study is done, an analytical expression of time bases based on parameters such as the characteristic time and the cycle time is proposed. The related spatial bases are calculated using the PGD algorithm. This method is then tested for the resolution of 3D thermal problems under cyclic loading linear and nonlinear and a weak coupled diffusion thermal problem
Nouy, Anthony. "Contributions à la quantification et à la propagation des incertitudes en mécanique numérique." Habilitation à diriger des recherches, Université de Nantes, 2008. http://tel.archives-ouvertes.fr/tel-00422364.
Full textReposant sur des bases mathématiques fortes, les méthodes spectrales de type Galerkin semblent constituer une voie prometteuse pour l'obtention de prédictions numériques fiables de la réponse de modèles régis par des équations aux dérivées partielles stochastiques (EDPS). Plusieurs inconvénients freinent cependant l'utilisation de ces techniques et leur transfert vers des applications de grande taille : le temps de calcul, les capacités de stockage mémoire requises et le caractère ``intrusif'', nécessitant une bonne connaissance des équations régissant le modèle et l'élaboration de solveurs spécifiques à une classe de problèmes donnée. Un premier volet de mes travaux de recherche a consisté à proposer une stratégie de résolution alternative tentant de lever ces inconvénients. L'approche proposée, baptisée méthode de décomposition spectrale généralisée, s'apparente à une technique de réduction de modèle a priori. Elle consiste à rechercher une décomposition spectrale optimale de la solution sur une base réduite de fonctions, sans connaître la solution a priori.
Un deuxième volet de mes activités a porté sur le développement d'une méthode de résolution d'EDPS pour le cas où l'aléa porte sur la géométrie. Dans le cadre des approches spectrales stochastiques, le traitement d'aléa sur l'opérateur et le second membre est en effet un aspect aujourd'hui bien maîtrisé. Par contre, le traitement de géométrie aléatoire reste un point encore très peu abordé mais qui peut susciter un intérêt majeur dans de nombreuses applications. Mes travaux ont consisté à proposer une extension de la méthode éléments finis étendus (X-FEM) au cadre stochastique. L'avantage principal de cette approche est qu'elle permet de traiter le cas de géométries aléatoires complexes, tout en évitant les problèmes liés au maillage et à la construction d'espaces d'approximation conformes.
Ces deux premiers volets ne concernent que l'étape de prédiction numérique, ou de propagation des incertitudes. Mes activités de recherche apportent également quelques contributions à l'étape amont de quantification des incertitudes à partir de mesures ou d'observations. Elles s'insèrent dans le cadre de récentes techniques de représentation fonctionnelle des incertitudes. Mes contributions ont notamment porté sur le développement d'algorithmes efficaces pour le calcul de ces représentations. En particulier, ces travaux ont permis la mise au point d'une méthode d'identification de géométrie aléatoire à partir d'images, fournissant une description des aléas géométriques adaptée à la simulation numérique. Une autre contribution porte sur l'identification de lois multi-modales par une technique de représentation fonctionnelle adaptée.
Bognet, Brice. "Stratégies numériques avancées pour la simulation de modèles définis sur des géométries de plaques et coques : solutions 3D avec une complexité 2D." Phd thesis, Ecole Centrale de Nantes (ECN), 2013. http://tel.archives-ouvertes.fr/tel-01021762.
Full textGiacoma, Anthony. "Efficient acceleration techniques for non-linear analysis of structures with frictional contact." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0095.
Full textComputational mechanics is an essential tool for mechanical engineering purposes. Nowadays, numerical models have to take into account complex physical phenomenons to be even more realistic and become larger and larger. As a consequence, more and more computing capacities are required in order to tackle not only non-linear problems but also large scale problems. For that purpose, both computers and numerical methods have to be developed in order to solve them efficiently. In the last decades, model reduction methods show great abilities to assign such challenges. The frictional contact problem between elastic solids is particularly well-known for its difficulty. Because its governing laws are highly non-linear (non-smooth), prohibitive computational time can occur. In this dissertation, model reduction methods (both a posteriori and a priori approaches) are deployed in order to implement efficient numerical methods to solve frictional contact problem in the finite element framework. First, small perturbations hypothesis with a quasi-static evolution are assumed. Then, reducibility of some frictional solutions is emphasized and discussed using the singular value decomposition. In addition, a scale separability phenomenon is enlightened. Then, the non-linear large time increment method (LATIN) is introduced. Secondly, an accelerated LATIN method is suggested by drawing an analogy between previous scale separability observations and the non-linear multigrid full approximation scheme (FAS). This accelerated non-linear solver relies essentially on the a posteriori model reduction approach. A precomputation strategy for modes relying on surrogate models is also suggested. Next, the proper generalized decomposition (PGD) is used to implement a non-linear solver relying fundamentally on an a priori model reduction method. Finally, some extensions are given to assign parametric studies and to take into account an additional non-linearity such as elastoplastic constitutive laws