To see the other types of publications on this topic, follow the link: Proportional odds.

Journal articles on the topic 'Proportional odds'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Proportional odds.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kurniawati, Yenni, Anang Kurnia, and Kusman Sadik. "A COMPARISON OF POLYTOMOUS MODEL WITH PROPORTIONAL ODDS AND NON-PROPORTIONAL ODDS MODEL ON BIRTH SIZE CASE IN INDONESIA." MEDIA STATISTIKA 14, no. 1 (April 16, 2021): 79–88. http://dx.doi.org/10.14710/medstat.14.1.79-88.

Full text
Abstract:
The proportional odds model (POM) and the non-proportional odds model (NPOM) are very useful in ordinal modeling. However, the proportional odds assumption is often violated in practice. In this paper, the non-proportional odds model is chosen as an alternative model when the proportional odds assumption is not violated. This paper aims to compare Proportional Odds Model (POM) and Non-Proportional Odds Model (NPOM) in cases of birth size in Indonesia based on the 2017 Indonesian Demographic and Health Survey (IDHS) data. The results showed that in the POM there was a violation of the proportional odds assumption, so the alternative NPOM model was used. NPOM had better use than POM. The goodness of fit shows that the deviance test failed to reject H0, and the value of Mac Fadden R2 is higher than POM. The risk factors that have a significant influence on all categories of birth size are the residence and gender of the child.
APA, Harvard, Vancouver, ISO, and other styles
2

Sankaran, P. G., and K. Jayakumar. "On proportional odds models." Statistical Papers 49, no. 4 (January 13, 2007): 779–89. http://dx.doi.org/10.1007/s00362-006-0042-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zahid, Faisal Maqbool, Shahla Ramzan, and Christian Heumann. "Regularized proportional odds models." Journal of Statistical Computation and Simulation 85, no. 2 (July 15, 2013): 251–68. http://dx.doi.org/10.1080/00949655.2013.814133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hanson, Timothy, and Mingan Yang. "Bayesian Semiparametric Proportional Odds Models." Biometrics 63, no. 1 (November 13, 2006): 88–95. http://dx.doi.org/10.1111/j.1541-0420.2006.00671.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Economou, P., and C. Caroni. "Parametric Proportional Odds Frailty Models." Communications in Statistics - Simulation and Computation 36, no. 6 (November 5, 2007): 1295–307. http://dx.doi.org/10.1080/03610910701569143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gao, Xiaoming, Todd A. Schwartz, John S. Preisser, and Jamie Perin. "GEEORD: A SAS macro for analyzing ordinal response variables with repeated measures through proportional odds, partial proportional odds, or non-proportional odds models." Computer Methods and Programs in Biomedicine 150 (October 2017): 23–30. http://dx.doi.org/10.1016/j.cmpb.2017.07.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Shande, and Amita K. Manatunga. "A note on proportional hazards and proportional odds models." Statistics & Probability Letters 77, no. 10 (June 2007): 981–88. http://dx.doi.org/10.1016/j.spl.2007.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

O'Connell, Ann A., and Xing Liu. "Model Diagnostics for Proportional and Partial Proportional Odds Models." Journal of Modern Applied Statistical Methods 10, no. 1 (May 1, 2011): 139–75. http://dx.doi.org/10.22237/jmasm/1304223240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lu, Wenbin, and Hao H. Zhang. "Variable selection for proportional odds model." Statistics in Medicine 26, no. 20 (2007): 3771–81. http://dx.doi.org/10.1002/sim.2833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar M., Dileep, Sankaran P.G., and Unnikrishnan Nair N. "Proportional odds model – a quantile approach." Journal of Applied Statistics 46, no. 11 (January 29, 2019): 1937–55. http://dx.doi.org/10.1080/02664763.2019.1572724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Perevozskaya, Inna, William F. Rosenberger, and Linda M. Haines. "Optimal design for the proportional odds model." Canadian Journal of Statistics 31, no. 2 (June 2003): 225–35. http://dx.doi.org/10.2307/3316068.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Benduch-Frąszczak, Magdalena. "Some properties of the proportional odds model." Applicationes Mathematicae 37, no. 2 (2010): 247–56. http://dx.doi.org/10.4064/am37-2-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chimka, Justin, and Ege Ozdemir. "A Proportional Odds Model of Particle Pollution." Environments 1, no. 1 (August 12, 2014): 54–59. http://dx.doi.org/10.3390/environments1010054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gupta, Ramesh C., and Cheng Peng. "Proportional odds frailty model and stochastic comparisons." Annals of the Institute of Statistical Mathematics 66, no. 5 (October 15, 2013): 897–912. http://dx.doi.org/10.1007/s10463-013-0432-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hastie, Trevor, and Robert Tibshirani. "Non-Parametric Logistic and Proportional Odds Regression." Applied Statistics 36, no. 3 (1987): 260. http://dx.doi.org/10.2307/2347785.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Xiaohu, and Peng Zhao. "On the Mixture of Proportional Odds Models." Communications in Statistics - Theory and Methods 40, no. 2 (December 6, 2010): 333–44. http://dx.doi.org/10.1080/03610920903392665.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Gupta, Ramesh C., and Cheng Peng. "Estimating reliability in proportional odds ratio models." Computational Statistics & Data Analysis 53, no. 4 (February 2009): 1495–510. http://dx.doi.org/10.1016/j.csda.2008.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Colosimo, Enrico A., Liciana V. A. S. Chalita, and Clarice G. B. Demétrio. "Tests of Proportional Hazards and Proportional Odds Models for Grouped Survival Data." Biometrics 56, no. 4 (December 2000): 1233–40. http://dx.doi.org/10.1111/j.0006-341x.2000.01233.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kim, Ji-Hyun. "Assessing practical significance of the proportional odds assumption." Statistics & Probability Letters 65, no. 3 (November 2003): 233–39. http://dx.doi.org/10.1016/j.spl.2003.07.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Shen, X. "Proportional odds regression and sieve maximum likelihood estimation." Biometrika 85, no. 1 (March 1, 1998): 165–77. http://dx.doi.org/10.1093/biomet/85.1.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dauxois, J. Y. "Testing the proportional odds model under random censoring." Biometrika 90, no. 4 (December 1, 2003): 913–22. http://dx.doi.org/10.1093/biomet/90.4.913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Peterson, Bercedis, and Frank E. Harrell. "Partial Proportional Odds Models for Ordinal Response Variables." Applied Statistics 39, no. 2 (1990): 205. http://dx.doi.org/10.2307/2347760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zahid, Faisal Maqbool, and Gerhard Tutz. "Proportional Odds Models with High-Dimensional Data Structure." International Statistical Review 81, no. 3 (October 24, 2013): 388–406. http://dx.doi.org/10.1111/insr.12032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Murphy, S. A., A. J. Rossini, and A. W. van der Vaart. "Maximum Likelihood Estimation in the Proportional Odds Model." Journal of the American Statistical Association 92, no. 439 (September 1997): 968–76. http://dx.doi.org/10.1080/01621459.1997.10474051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yang, Song, and Ross L. Prentice. "Semiparametric Inference in the Proportional Odds Regression Model." Journal of the American Statistical Association 94, no. 445 (March 1999): 125–36. http://dx.doi.org/10.1080/01621459.1999.10473829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Huang, Ting Ting, Tong Min Jiang, and Rui Jian Huo. "Lifetime Prediction of Product Based on Proportional Hazards-Proportional Odds Model in Accelerated Life Testing." Advanced Materials Research 118-120 (June 2010): 444–48. http://dx.doi.org/10.4028/www.scientific.net/amr.118-120.444.

Full text
Abstract:
Accelerated life testing can be operated in the designing process of a product to predict the lifetime of the product. The design of the product would be improved if the lifetime prediction value is not acceptable. This paper presents a method to predict lifetime of products based on proportional hazards-proportional odds model in accelerated life testing. Proportional hazards-proportional odds model makes proportional hazards model and proportional odds model special cases of it through transformation parameter. A testing system is established to process constant stress accelerated life testing for miniature bulbs under high stress levels and failure time data of the bulbs under each stress level are analyzed using proportional hazards-proportional odds model. Lifetime prediction of the miniature bulbs is presented finally.
APA, Harvard, Vancouver, ISO, and other styles
27

Lee, Hyun Yung. "Goodness-of-fit tests for a proportional odds model." Journal of the Korean Data and Information Science Society 24, no. 6 (November 30, 2013): 1465–75. http://dx.doi.org/10.7465/jkdi.2013.24.6.1465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wan, Shuwen, and Biao Zhang. "Using proportional odds models for semiparametric ROC surface estimation." Statistics & Probability Letters 105 (October 2015): 74–79. http://dx.doi.org/10.1016/j.spl.2015.06.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pérez-Ortiz, M., P. A. Gutiérrez, M. Cruz-Ramírez, J. Sánchez-Monedero, and C. Hervás-Martínez. "Kernelising the Proportional Odds Model through kernel learning techniques." Neurocomputing 164 (September 2015): 23–33. http://dx.doi.org/10.1016/j.neucom.2014.09.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Eriksson, Frank, Jianing Li, Thomas Scheike, and Mei-Jie Zhang. "The proportional odds cumulative incidence model for competing risks." Biometrics 71, no. 3 (May 26, 2015): 687–95. http://dx.doi.org/10.1111/biom.12330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Liu, Ivy, and Dong Wang. "Diagnostics for Stratified Clinical Trials in Proportional Odds Models." Communications in Statistics - Theory and Methods 36, no. 1 (2007): 211–20. http://dx.doi.org/10.1080/03610920600853407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

ZHANG, HAO, and ELSAYED A. ELSAYED. "NONPARAMETRIC ACCELERATED LIFE TESTING BASED ON PROPORTIONAL ODDS MODEL." International Journal of Reliability, Quality and Safety Engineering 13, no. 04 (August 2006): 365–78. http://dx.doi.org/10.1142/s0218539306002318.

Full text
Abstract:
Accelerated life testing (ALT) is used to obtain failure time data in short duration under high stress levels in order to predict product life and performance under design conditions. The proportional hazards (PH) model, a widely used reliability prediction model, assumes constant ratio between the failure rate at high stress levels and the failure rate at the normal operating conditions. However, this assumption might be violated under some conditions and the prediction of the failure rate at normal conditions becomes inaccurate. We investigate the proportional odds (PO) model, which assumes that the odds ratio under different stress levels is constant, for accelerating life testing. In this research, we propose a nonparametric ALT approach based on the proportional odds model to predict reliability at normal operating conditions. We estimate the parameters of the proposed ALT model using the maximum likelihood estimation method. To verify the new approach, we fit the PO model with simulated failure time datasets and experimental failure data and compare its performance with the PH model. The results show that the new approach based on the PO model is a viable complement to the PH model in estimating reliability of products possessing property of converging hazard rate functions.
APA, Harvard, Vancouver, ISO, and other styles
33

Mukherjee, Bhramar, Jaeil Ahn, Ivy Liu, Paul J. Rathouz, and Brisa N. Sánchez. "Fitting stratified proportional odds models by amalgamating conditional likelihoods." Statistics in Medicine 27, no. 24 (October 30, 2008): 4950–71. http://dx.doi.org/10.1002/sim.3325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Ying Qing, Nan Hu, Su-Chun Cheng, Philippa Musoke, and Lue Ping Zhao. "Estimating Regression Parameters in an Extended Proportional Odds Model." Journal of the American Statistical Association 107, no. 497 (March 2012): 318–30. http://dx.doi.org/10.1080/01621459.2012.656021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fox, John, and Robert Andersen. "Effect Displays for Multinomial and Proportional-Odds Logit Models." Sociological Methodology 36, no. 1 (August 2006): 225–55. http://dx.doi.org/10.1111/j.1467-9531.2006.00180.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kundu, Pradip, and Asok K. Nanda. "Reliability study of proportional odds family of discrete distributions." Communications in Statistics - Theory and Methods 47, no. 5 (September 21, 2017): 1091–103. http://dx.doi.org/10.1080/03610926.2017.1316397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Huwang, Longcheen, Yi-Hua Tina Wang, Arthur B. Yeh, and Yi-Heng Huang. "Phase II profile monitoring based on proportional odds models." Computers & Industrial Engineering 98 (August 2016): 543–53. http://dx.doi.org/10.1016/j.cie.2015.11.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Banerjee, Sudipto, and Dipak K. Dey. "Semiparametric Proportional Odds Models for Spatially Correlated Survival Data." Lifetime Data Analysis 11, no. 2 (June 2005): 175–91. http://dx.doi.org/10.1007/s10985-004-0382-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sun, Jianguo, Liuquan Sun, and Chao Zhu. "Testing the proportional odds model for interval-censored data." Lifetime Data Analysis 13, no. 1 (December 9, 2006): 37–50. http://dx.doi.org/10.1007/s10985-006-9029-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Tan, W. Y. "Bayesian Approach to Proportional Odds Models for Survival Analysis." Biometrical Journal 30, no. 2 (1988): 175–85. http://dx.doi.org/10.1002/bimj.4710300209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

ADELO, Belete, and Shibru TEMESGEN. "Undernutritional Status of Children in Ethiopia: Application of Partial Proportional Odds Model." Turkiye Klinikleri Journal of Biostatistics 7, no. 2 (2015): 77–89. http://dx.doi.org/10.5336/biostatic.2015-47184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Huang, Tingting, and Tongmin Jiang. "Optimum design of equivalent accelerated life testing plans based on proportional hazards-proportional odds model." Journal of Systems Engineering and Electronics 22, no. 5 (October 2011): 871–78. http://dx.doi.org/10.3969/j.issn.1004-4132.2011.05.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zucker, David M., and Song Yang. "Inference for a family of survival models encompassing the proportional hazards and proportional odds models." Statistics in Medicine 25, no. 6 (October 11, 2005): 995–1014. http://dx.doi.org/10.1002/sim.2255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zaloumis , Sophie G., Katrina J. Scurrah, Stephen B. Harrap, Justine A. Ellis, and Lyle C. Gurrin. "Non-proportional odds multivariate logistic regression of ordinal family data." Biometrical Journal 57, no. 2 (October 7, 2014): 286–303. http://dx.doi.org/10.1002/bimj.201300137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Stiger, Thomas R., Huiman X. Barnhart, and John M. Williamson. "Testing proportionality in the proportional odds model fitted with GEE." Statistics in Medicine 18, no. 11 (June 15, 1999): 1419–33. http://dx.doi.org/10.1002/(sici)1097-0258(19990615)18:11<1419::aid-sim127>3.0.co;2-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, Tingting, and Zhizhong Li. "Accelerated proportional degradation hazards-odds model in accelerated degradation test." Journal of Systems Engineering and Electronics 26, no. 2 (April 2015): 397–406. http://dx.doi.org/10.1109/jsee.2015.00046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ma, Ting, Rong Zhu, Jianghao Wang, Na Zhao, Tao Pei, Yunyan Du, Chenghu Zhou, and Jie Chen. "A proportional odds model of human mobility and migration patterns." International Journal of Geographical Information Science 33, no. 1 (September 7, 2018): 81–98. http://dx.doi.org/10.1080/13658816.2018.1514608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gu, Yu, Debajyoti Sinha, and Sudipto Banerjee. "Analysis of cure rate survival data under proportional odds model." Lifetime Data Analysis 17, no. 1 (June 3, 2010): 123–34. http://dx.doi.org/10.1007/s10985-010-9171-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Waller, Patrick, Eugène van Puijenbroek, Antoine Egberts, and Stephen Evans. "The reporting odds ratio versus the proportional reporting ratio:‘deuce’." Pharmacoepidemiology and Drug Safety 13, no. 8 (August 2004): 525–26. http://dx.doi.org/10.1002/pds.1002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zulkifli, Faiz, Zulkifley Mohamed, Nor Afzalina Azmee, and Rozaimah Zainal Abidin. "Robust Estimation for Proportional Odds Model through Monte Carlo Simulation." Mathematics and Statistics 9, no. 4 (July 2021): 566–73. http://dx.doi.org/10.13189/ms.2021.090415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography