Dissertations / Theses on the topic 'Propriétés algébriques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 36 dissertations / theses for your research on the topic 'Propriétés algébriques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Wiatrowski, Coline. "Propriétés algébriques des unités de Stark." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1154.
Full textMiliton, Emmanuel. "Fragmentation et propriétés algébriques des groupes d'homéomorphismes." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00752638.
Full textDelaune, Stéphanie. "Vérification des protocoles cryptographiques et propriétés algébriques." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2006. http://tel.archives-ouvertes.fr/tel-00132677.
Full textAmbroz̆, Petr. "Propriétés algébriques et combinatoires des numérations non-standard." Paris 7, 2006. http://www.theses.fr/2006PA077061.
Full textThis thesis is devoted to the study of the so-called beta-numeration Systems. The beta-numeration differs from the usual numeration with an integer base by allowing an arbitrary real number beta>l to be the base. A real number may have several representations in such a base beta. We associate with each real number x a unique canonical representation, called the beta-expansion of x. We define two subsets of real numbers: Zb, the set of real numbers having an empty fractional part in their beta-expansion (the so-called beta-integers) and Fin, the set of numbers with a finite fractional part in their beta-expansion. We derive one necessary and two sufficient conditions for Fin to be closed under addition and subtraction. Then we inspect the values of Lp and Lt, that is, the maximal length of the fractional part of sum and product of two beta-integers. We compute upper bounds on Lp and Lt in the case of the generalized Tribonacci number and in the case of a class of totally real cubic Pisot numbers. Then we study another way of representations of numbers. It is called the alpha-adic representation and it is a representation in the numeration System with base alpha, where alpha is an algebraic conjugate of a Pisot number beta. We prove that a number x belong to the field Q(alpha) if and only if it has an eventually periodic alpha-adic expansion. Then we consider alpha-adic expansions of elements of the extension ring Z[alpha]. At the, end we study the palindromic structure of infinite aperiodic words ub associated with simple Parry numbers. We show a necessary condition for the word ub to contain infinitely many palindromes, we find a relation between factor and palindromic complexity and then a complete description of the set of palindromes, its structure and properties
Alberti, Lionel. "Propriétés Quantitatives des Singularités des Variétés Algébriques Réelles." Phd thesis, Nice, 2008. http://www.theses.fr/2008NICE4064.
Full textSection 2 explains a subdivision procedure triangulating an algebraic plane curve. The mathematical tools are the topological degree, alias Gauss's application, the representation of polynomials in the Bernstein basis, all of it wrapped up in a subdivision very fast and certified subdivision method. Section 3 presents a quantitative theory for measuring transversality to a semi-algebraic map (not necessarily smooth). Stem from it: A quantitative version of Thom-Mather's topological triviality theorem, A ``metrically stable'' version of the local conic structure theorem and of the existence of a ``Milnor tube'' around strata. An triangulation algorithm based on Voronoi partitions (not completely implementable because the effective estimation of transversality is not completely detailed)Section 4 presents a bound on the generic number of connected components in an affine section of a real analytic germ in terms of the multiplicity and of the dimension of the ambient space. These two parameters are not always enough to bound the number of connected components. The result is thus proved under some conditions which are shown to be minimal
Goul, Jawher El. "Surfaces algébriques hyperboliques : propriétés de négativité de la courbure." Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10195.
Full textMARTINS, RAPHAEL DEBORAH. "Comparaison de propriétés modèle-théoriques et de propriétés algébriques des groupes polycycliques-par-finis." Paris 7, 1996. http://www.theses.fr/1996PA077116.
Full textBellier, Olivia. "Propriétés algébriques et homotopiques des opérades sur une algèbre de Hopf." Phd thesis, Université Nice Sophia Antipolis, 2012. http://tel.archives-ouvertes.fr/tel-00756113.
Full textPlanquette, Guillaume. "Étude de certaines propriétés algébriques et spectrales des codes correcteurs d'erreurs." Rennes 1, 1996. http://www.theses.fr/1996REN10207.
Full textGuinaudeau, Ophélie. "Neurone abstrait : une formalisation de l’intégration dendritique et ses propriétés algébriques." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4001/document.
Full textBiological neurons communicate by means of electrical impulses, called spikes. Brain functions emerge notably from reception and emission coordination between those spikes. Furthermore, it is widely accepted that the function of each neuron depends on its morphology. In particular, dendrites perform the spatio-temporal integration of received spikes and affect the occurrence of emitted spikes. Dendrites are therefore fundamental for in silico studies of coordination mechanisms, and especially for the study of so-called neuron assemblies. Most of existing neuron models taking into account dendrites are detailed mathematical models, usually based on differential equations, whose simulations require significant computing resources. Moreover, their intrinsic complexity makes difficult the analysis and proofs on such models. In this thesis, we propose an abstract neuron model integrating dendrites. In order to pave the way to formal methods, we establish a rigorous definition of the modeling framework and highlight remarkable algebraic properties of dendritic integration. In particular, we have demonstrated that it is possible to reduce a neuron structure while preserving its input/output function. We have thus revealed equivalence classes with a canonical representative. Based on category theory and thanks to properly defined neuron morphisms, we then analyzed these equivalence classes in more details. A surprising result derives from these properties: simply adding delays in neuron computational models is sufficient to represent an abstract dendritic integration, without explicit tree structure representation of dendrites. At the root of the dendritic tree, soma modeling inevitably contains a differential equation in order to preserve the biological functioning essence. This requires combining an analytical vision with the algebraic vision. Nevertheless, thanks to a preliminary step of temporal discretization, we have also implemented a complete neuron in Lustre which is a formal language allowing proofs by model checking. All in all, we bring in this thesis an encouraging first step towards a complete neuron formalization, with remarkable properties on dendritic integration
Hbaib, Mohamed. "Propriétés arithmétiques des séries formelles sur un corps fini." Aix-Marseille 2, 2006. http://www.theses.fr/2006AIX22004.
Full textDevin, Lucile. "Propriétés algébriques et analytiques de certaines suites indexées par les nombres premiers." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS139/document.
Full textIn the first part of this Thesis, we study the sequence NX (p) [mod p] where X is a reduced separated scheme of finite type over Z,and NX (p) is the number of Fp-points of the reduction modulo p of X, for every prime p. Under some hypotheses on the geometry of X, we give a simple condition to ensure that this sequence is distinctat a positive proportion of indices from the zero sequence,or generalizations obtained by reduction modulo p of finitely many integers.We give a bound on average over a family of hyperelliptic curves for the least prime p such that NX (p) [mod p] avoids the reductionmodulo p of finitely many fixed integers.The second part deals with generalizations of Chebyshev’s bias.We consider an L-function satisfying some analytic properties that generalize those satisfied by Dirichlet L-functions.We study the sequence of coefficients a_p as p runs through the set of prime numbers.Precisely, we study the sign of the summatory function of the Fourier coefficients of the L-function.Under some classical conditions, we show that this function admits a limiting logarithmic distribution.Under stronger hypotheses, we prove regularity, symmetry and get information about the support of this distribution
Zuddas, Fabio. "Quelques relations entre propriétés algébriques des groupes de transformations et géométrie des espaces." Université Joseph Fourier (Grenoble), 2005. https://tel.archives-ouvertes.fr/tel-00011158.
Full textWe are interested in (discrete and isometric) actions of a group Gamma on a measured metric space X and in estimating how these actions separate points. The classical Margulis lemma is a basic result in this subject when X is a simply connected manifold with negative and bounded curvature. A recent version (due to G. Besson, G. Courtois and S. Gallot) generalises this to the case where X is a measured metric space with bounded entropy, but it is essentially limited to the case where the group Gamma is the fundamental group of some manifold with bounded negative curvature and injectivity radius bounded from below. We show that the latter result (and its geometric corollaries) can be generalized to a larger class C of groups (containing word-hyperbolic groups, free products and malnormal amalgamated products) and to quasi-actions by quasi-isometries (with eventual fixed points) of such groups on a measured metric space of bounded entropy. Applying this result in the case where X is the Cayley graph of a group G which is commensurable to some group Gamma, we obtain finiteness results which apply in particular to word-hyperbolic groups and to fundamental groups of manifolds with bounded diameter. These results aim to understand the questions about the existence of some universal lower bound of the algebraic entropy (for the set of such groups G and about the existence, for any such group, of a generating set with minimal entropy
Lebacque, Philippe [Jean-Georges]. "Sur quelques propriétés asymptotiques des corps globaux." Aix-Marseille 2, 2007. http://theses.univ-amu.fr.lama.univ-amu.fr/2007AIX22020.pdf.
Full textIn this thesis we study several aspects of infinite global fields (IGF). The first chapter is devoted to elementary properties of their invariants, to the notion of asymptotically good families of global fields, and to their composita. In the second chapter we try to control the invariants through their support, proving that, given a finite set of invariants, we can construct an IGF having all this invariants equal to zero and another having all this invariants positive. We are also interested in the default of IGF, proving that it is increasing for inclusion of IGF. The third chapter is the study of Mertens theorem and its link to generalised Brauer–Siegel theorem. Proving an explicit version of the first one, we deduce an explicit version of the second one under the Generalised Riemann Hypothesis (GRH), and recover it without GRH
Jaber, Khaled. "Propriétés équationnelles des groupes (généricité et largeur)." Lyon 1, 2000. http://www.theses.fr/2000LYO10183.
Full textCraciunescu, Àurélian. "Calcul fonctionnel et propriétés de factorisations pour multicontractions." Bordeaux 1, 2002. http://www.theses.fr/2002BOR12496.
Full textMilliet, Cédric. "Propriétés algébriques des structures menues ou minces, rang de Cantor Bendixson, espaces topologiques généralisés." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00442772.
Full textLazrak, Noureddine. "Contribution à la vérification des spécifications algébriques : application à certaines propriétés de programmes parallèles." Nancy 1, 1990. http://www.theses.fr/1990NAN10035.
Full textGouy, Xavier. "Etude des théories équationelles et des propriétés algébriques des modèles stables du Lambda-calcul." Paris 7, 1995. http://www.theses.fr/1995PA077203.
Full textLee, Ting-Yu. "Les foncteurs de plongement de tores dans les groupes réductifs et leurs propriétés arithmétiques." Paris 6, 2012. http://www.theses.fr/2012PA066235.
Full textIn this thesis, we focus on how to embed a torus T into a reductive group G with respect to a given root datum over a scheme S. This problem also relates to how to embed an étale algebra with involution into a central simple algebra with involution. We approach this problem by defining the embedding functor, and prove that it is a left homogeneous space over S under the automorphism group AutS-grp(G) and a right principal homogeneous space over the scheme of maximal tori under the automorphism group Aut(). Therefore, it is representable. Then we can reformulate the original problem into the problem of existence of the S-points of the embedding functor. In order to fix a connected component of the embedding functor, we define an orientation u of with respect to G. We show that the oriented embedding functor is a homogeneous space under the adjoint action of G. Moreover, we show that over a local field L, the orientation u and the Tits index of G determine the existence of L-points of the oriented embedding functor. We also use the techniques developed in Borovoi's paper to prove that the local-global principle holds for oriented embedding functors in certain cases. Actually, the Brauer-Manin obstruction is the only obstruction to the local-global principle for the oriented embedding functor. Finally, we apply the results of oriented embedding functors to give an alternative proof of Prasad and Rapinchuk's Theorem, and improve Theorem 7. 3 in their paper “Local-Global Principles for Embedding of Fields with Involution into Simple Algebras with Involution”
Stambul, Pierre. "Contribution à l'étude des propriétés arithmétiques des fractions continuées." Aix-Marseille 1, 1994. http://www.theses.fr/1994AIX11002.
Full textSedoglavic, Alexandre. "Méthodes seminumériques en algèbre différentielle; applications à l'étude des propriétés structurelles de systèmes différentiels algébriques en automatique." Phd thesis, Ecole Polytechnique X, 2001. http://tel.archives-ouvertes.fr/tel-00401888.
Full textLe problème de l'observabilité algébrique locale consiste à décider si les variables d'état intervenant dans un modèle peuvent être déterminées en fonction des entrées et des sorties supposées parfaitement connues.
Nous présentons un algorithme probabiliste de complexité arithmétique polynomiale en la taille de l'entrée permettant de tester l'observabilité algébrique locale en déterminant les variables non observables. L'utilisation du calcul modulaire permet d'obtenir pour ce test une complexité binaire elle aussi polynomiale. Cette complexité dépend linéairement de la probabilité de succès qui peut être arbitrairement fixée. Une implantation de cet algorithme permet de traiter des problèmes inaccessibles jusqu'à présent.
À partir de ces méthodes mêlant calcul symbolique et calcul numérique, nous proposons une généralisation de la notion de platitude différentielle à certains modèles non linéaires décrits par des équations aux dérivées partielles. Un système différentiel ordinaire est différentiellement plat si ses solutions peuvent être localement paramétrées bijectivement par des fonctions arbitraires.
Pour étudier certains systèmes d'équations aux dérivées partielles non linéaires, on se ramène à un système d'équations différentielles ordinaires par discrétisation ; notre approche consiste à chercher des discrétisations plates telles que les paramétrages associés convergent lorsque le pas de discrétisation tend vers zéro. Cette méthode est illustrée par l'étude du problème de planification de trajectoire réalisée pour trois modèles non linéaires de dimension infinie : l'équation de la chaleur semilinéaire, l'équation de Burger avec diffusion et un modèle non linéaire de tige flexible.
Bernardinello, Luca. "Propriétés algébriques et combinatoires des régions dans les graphes et leur application a la synthèse de réseaux." Rennes 1, 1998. http://www.theses.fr/1998REN1S018.
Full textBaumann, Pierre. "Propriétés et combinatoire des bases de type canonique." Habilitation à diriger des recherches, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00705204.
Full textLafourcade, Pascal. "Vérification de protocoles cryptographiques en présence de théories équationnelles." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2006. http://tel.archives-ouvertes.fr/tel-00133494.
Full textBoura, Christina. "Analyse de fonctions de hachage cryptographiques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00767028.
Full textKuyumzhiyan, Karine. "Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00685202.
Full textBaudry, Julie. "Structures de Poisson de certaines variétés quotient : propriétés homologiques, d’engendrement fini et de rationalité." Reims, 2009. http://theses.univ-reims.fr/exl-doc/GED00001087.pdf.
Full textIn this thesis, we study some properties of classical examples of Poisson algebras, and of their deformations : finiteness property for the Lie structure associated to the Poisson bracket, study of the zeroth homology group linked to the Poisson structure or to the non-commutative structure of the deformation, raionality property. Let A be a Poisson algebra, and G a finite group of Poisson automorphisms of A, we prove in the following examples that the finiteness property as a Lie algebra still holds in the invariant algebra : when G is a finite subgroup of SL(2,C) and A the symplectic Poisson algebra C[x, y] ; when G is the Weyl group A2 or B2, and A the symplectic Poisson algebra C[h ⊕ h_] ; when G is a finite subgroup of SL(2, Z), and A the multiplicative Poisson algebra C[x±1, y±1] provided with the Poisson bracket defined by {x, y} = xy. The finiteness property still holds in the deformation A1(C)G of C[x, y]G via the associated graded, and in the multiplicative case, the deformation by the invariants of the quantum torus Cq[x±1, y±1]G is also of finite type. In another part, we look for the Poisson center, and the zeroth Poisson homology group for Jacobian Poisson structures, which appear naturally in many situations. Finally, we take an interest in a Poisson version of the Gelfand-Kirillov conjecture : the existence of a Poisson isomorphism between the fields Frac(A) et Frac(AG). We check this property for the Kleinian surfaces, for the invariants of the 4-dimensional symplectic algebra under the action of the Weyl group B2, and for the invariants of the multiplicative Poisson algebra under the action of h−idi
Barelli, Armelle. "Approche algébrique de la limite semi-classique : Electrons bidimensionnels en champ magnétique et localisation dynamique : [Thèse soutenue sur un ensemble de travaux]." Toulouse 3, 1992. http://www.theses.fr/1992TOU30127.
Full textBauchère, Hugues. "Propriété de Bogomolov pour les modules de Drinfeld à multiplications complexes." Phd thesis, Université de Caen, 2013. http://tel.archives-ouvertes.fr/tel-00975587.
Full textRicka, Nicolas. "Sous-algèbres de l'algèbre de Steenrod équivariante et une propriété de détection pour la K-théorie d'Atiyah." Phd thesis, Université Paris-Nord - Paris XIII, 2013. http://tel.archives-ouvertes.fr/tel-00953049.
Full textCao, Junyan. "Théorèmes d'annulation et théorèmes de structure sur les variétés kähleriennes compactes." Phd thesis, Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00919536.
Full textMagnifo, Kahou Florence Laure. "Propriétés algébriques d'une algèbre de convolution." Thèse, 2009. http://hdl.handle.net/1866/6624.
Full textRÉMY, Bertrand. "Sur les propriétés algébriques et géométriques des groupes de Kac-Moody." Habilitation à diriger des recherches, 2003. http://tel.archives-ouvertes.fr/tel-00007119.
Full textZuddas, Fabio. "Quelques relations entre propriétés algébriques des groupes de transformation et géométrie des espaces." Phd thesis, 2005. http://tel.archives-ouvertes.fr/tel-00011158.
Full textmajorée et de rayon d'injectivité minoré. Nous montrons que ce dernier résultat (et ses applications géométriques) se généralise à une classe ${\cal C}$ plus vaste de groupes (qui contient les groupes hyperboliques selon Gromov, les produits libres et les produits amalgamés ``malnormaux'') et aux quasi-actions par quasi-isométries (avec points fixes éventuels) de ces groupes sur un espace métrique mesuré d'entropie bornée. Nous montrons aussi que ${\cal C}$ est fermé pour une topologie naturelle. Nous appliquons ce résultat au cas où $X$ est le graphe de Cayley d'un groupe $G$ commensurable à un groupe $\Gamma \in {\cal C}$, obtenant des résultats
de finitude qui s'appliquent en particulier aux groupes hyperboliques selon Gromov et aux groupes fondamentaux de variétés de diamètre borné. Ces derniers résultats apportent un éclairage nouveau aux questions de l'existence d'un minorant universel de l'entropie pour l'ensemble des groupes $G$ de ce type et de l'existence, pour chacun de ces groupes, d'un système générateur d'entropie algébrique minimale.
Baur, Karin. "Deux contributions a la théorie de représentations de groupes algébriques." Phd thesis, 2002. http://tel.archives-ouvertes.fr/tel-00012189.
Full textUne partie étudie la propriété de séparation d'un sous-ensemble dans un espace vectoriel complex.