Contents
Academic literature on the topic 'Propulseurs à plasmas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Propulseurs à plasmas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Propulseurs à plasmas"
Mazouffre, Stéphane. "Les propulseurs à plasma - Une technologie spatiale d’avant-garde." Reflets de la physique, no. 14 (May 2009): 15–19. http://dx.doi.org/10.1051/refdp/2009009.
Full textDissertations / Theses on the topic "Propulseurs à plasmas"
Vial, Vanessa. "Etudes physiques et paramétriques de propulseurs plasma pour applications spatiales." Orléans, 2004. http://www.theses.fr/2004ORLE2061.
Full textRossi, Alberto. "Développement d'outils d'optimisation dédiés aux circuits magnétiques des propulseurs à effet Hall." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19234/1/ROSSI_Alberto_public.pdf.
Full textPrioul, Mathieu. "Etude expérimentale des propulseurs de type Hall : processus collisionnels, comportement dynamique, micro-instabilités et phénomènes de transport." Orléans, 2002. http://www.theses.fr/2002ORLE2058.
Full textVillemant, Marc. "Modélisation et caractérisation expérimentale de l’influence de l’émission électronique sur le fonctionnement des propulseurs à courant de Hall." Thesis, Toulouse, ISAE, 2018. http://www.theses.fr/2018ESAE0038.
Full textNowadays, plasma Hall thrusters are used in space industry for satellites orbit rising and satellites attitude control. Nonetheless, the comprehension their physical functioning remains patchy. Several phenomena such as abnormal electron mobility or the thrusters performance dependency to wall material are still not understood. Consequently the current process to improve and qualify Hall thrusters are involving expansive and time-consuming experimental validation which, in the end, does not ensure the release of an operational thruster. Consequently, plasma behaviour in Hall thruster is a key topic of research, which could lead to non-negligible improvement in Hall thruster technology development.This Ph.D. consists in the modelling and characterization of plasma/wall interaction in Hall thrusters and its impact on Hall thruster’s performance. This Ph.D. has focused on the influence of the electron emission under electron impact on Hall thruster’s performances. It has been divided into three parts. Firstly, an experimental investigation has been carried out in order to obtain reference data on materials commonly used as plasma thruster wall (bore nitride and silicon dioxide). A literature review has been made in order to find a theoretical basis fitted to the elaboration of an electron emission model fitting the requirement of a particle in cell simulation of a Hall thruster. In second part, a detailed electron emission model based on this literature review and validated by comparison to experimental data and to a Monte-Carlo model developed in ONERA (called OSMOSEE) has been developed. This model offers the possibility to describe electron emission yield, angular and energy distribution of emitted electrons depending on various physical parameters (e.g. incident electron energy, incident electron angle, impinged material, etc.). Besides, as it is an analytical model, it computes in a reduced time (a few minutes to one hour). In a third and last part, this electron emission model has been implemented in a Particle-In-Cell (PIC) simulation of Hall thruster’s plasma and a parametric study has been carried out in order to characterize the influence of electron emission phenomenon on global plasma behaviour. This parametric study has shown that electron emission has a non-negligible impact on energy balance at plasma/wall interface and on electron distribution function in the plasma, which can’t be considered as Maxwellian
Dubois, Loic. "Etudes expérimentales du concept de propulseur de Hall double étage." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30320/document.
Full textIn Hall thrusters, the same physical phenomenon is used both to generate the plasma and to accelerate ions. Furthermore, only a single operating point is experimentally observed. The double stage Hall thruster (DSHT) design could allow a separate control of ionization (thrust) and ions acceleration (ISP) to make the system more versatile. The work carried out during this PhD aims to experimentally demonstrate the relevance and the feasibility of this concept. Firstly, a new design of DSHT, called ID-HALL, was proposed and a new prototype was built. It combines the concentric cylinder configuration of a single stage Hall thruster with a magnetized inductively coupled RF plasma source (ICP) whose coil is placed inside the inner cylinder. The ICP source was improved in terms of power coupling efficiency by adding ferrite parts and by decreasing the heating RF frequency. The ICP source used in the ID-HALL thruster was then characterized independently of the thruster using argon and xenon and varying pressure. The experimental setup has allowed to measure the spatial variations of the electron density and temperature. Finally, the thruster was mounted in its vacuum chamber and preliminary measures (voltage-current characteristics, RPA measurements) were led. At the same time, simulations using a two-dimensional hybrid model were performed in single and double stage. A versatile operation for voltages lower than 150 V was highlighted. An emphasis will be given to demonstrate that the current density (given by the ion flux probe) and the ions energy (given by the RPA) might be significantly decoupled
Ndiaye, Abdoul Aziz. "Evaluation des constantes atomiques pour l'élaboration des modèles collisionnel-radiatifs." Paris 11, 2009. http://www.theses.fr/2009PA112043.
Full textThe ionic propulsion is currently a need of satellites and spacecraft, due to the substantial saving accomplished on the loaded mass comparing with traditional chemical thrusters. With the arising of more ambitious scientific projects, requiring detailed control as satellites, spatial interferometry, compensation of trail in the high atmosphere, and experiments in microgravity, new technological solutions are developed by the scientific community, notably the technology of electrical reactors with field effect so called FEEP (Field Emission Electric Propulsion). These new generation microthrusters, with dimension about 10 cm in diameter, with ultra precision control capability, and able to produce an appropriate thrust modulation in the Newton scale, constitute an extreme challenge in these new scientific applications. If this technology seems to be mature, nonetheless we are still from constructing optimized thrusters FEEP. In this frame, a definite diagnostic of plasma properties remains necessary. The objective of our work was to contribute substantially to the improvement of models for Indium plasmas used for these diagnostics. Our first work was the construction of suitable atomic database. The compilation of published data allowed us to get energy levels considered with good precision, which are in very good agreements with the experimental spectra. However, larger uncertainties appeared in the determination of radiative and collisional rates coefficients. The second part of our work was to insert our atomic database into kinetic and statistical models. With these models, we evaluated the ionization state evolution of the plasma and the distribution of the excited states population as a function of the temperature Te and the density Ne of free electrons. The density of thrusters being weak, we start with a Coronal model, from which, by a hybrid approach, we also estimated the excited states distribution. The domain validity estimation of Coronal approximation shows that the plasmas of thrusters are on this domain’s limit and even beyond for some of atomic and ionic levels considered. We therefore constructed a detailed Collisional Radiative code, named CORAD, which treats in a more precise manner the kinetics of the states of In I, II and the fundamental state of In III. With this code, we have analyzed the influence of the electronic density on the medium ionization and on the population density. The code CORAD gives both the Coronal and ETL limits in low and in high electronic density and in the regime between these two limits. The last part of our work was devoted to the analysis of experimental spectra. The energies of spectral lines have been found for all the cases in very good agreement with our atomic database. The analysis of the spectra does not allow us to estimate accurately the plasma density. However, we have obtained a good estimation of the electronic temperature. The comparison of In I and In II lines led us to conclude that the whole spectra cannot be interpreted by assuming a homogeneous source at a uniform temperature
Jolivet, Laurent. "Étude de l'influence de l'émission électronique secondaire sur le phénomène de gaine et application aux propulseurs de satellite à effet Hall." Toulouse, ENSAE, 2000. http://www.theses.fr/2000ESAE0020.
Full textChable, Stéphane. "Modélisation numérique d'un propulseur à plasma stationnaire." Toulouse, ENSAE, 2003. http://www.theses.fr/2003ESAE0007.
Full textSary, Gaétan. "Modélisation d'une cathode creuse pour propulseur à plasma." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30182/document.
Full textA hollow cathode is a critical component of plasma thrusters. In a plasma thruster, a propellant gas is ionized in a discharge chamber and accelerated out of it so as to generate thrust. In Hall thrusters in particular, the ionization of the gas is caused by an intense electron current (from a few to hundred amps) which flows through the discharge chamber. The hollow cathode is the device which is responsible for providing the discharge current. This key element is often idealized in thruster numerical models and its physical behavior is rarely studied for its own sake. Yet, developing high power Hall thrusters, designed to propel in the long run every type of space mission, requires new hollow cathodes able to supply an intense electron current (over 100 A) over a duration on the order of ten thousand hours. So far, designing new cathodes proved difficult because of the lack of model capable of predicting the performance of a cathode based on its design. In this work, we build up a predictive model of a hollow cathode capable of simulating the physics relevant to the operation of the cathode. In the end, we aim at using this model to associate design characteristics of the cathode to key aspects of the cathode performance during operation. Our goal with this model is to guide the development of future high power hollow cathodes. We will first briefly describe the range of application of hollow cathodes related to space propulsion. Then we will give a brief account of the working principles of the cathode and we will set the numerical models available in the literature prior to this one out. The numerical model developed in this work will then be described. It includes a fluid treatment of the plasma as well as an account of the heat fluxes to the walls which largely control the performance of the cathode. Simulation results will be thoroughly compared to experimental measurements available in the literature and specific aspects of the model will be refined to match up simulation results with the physical reality. For instance, a model that specifically represents the transition region between the internal plasma of the cathode and the plume of the cathode will be described. This model will enable us to highlight plasma instability phenomena which were so far observed experimentally, yet never properly included in hollow cathode models. Using the model just developed, we will analyze the physics of a particular hollow cathode which has been developed by NASA at the Jet Propulsion Laboratory, the NSTAR hollow cathode. Then, thanks to the numerical model, we will be able to carry out a parametric study revolving around the design of the NSTAR cathode. This will allow us to bring out the influence of the design on the cathode performance and we will eventually express recommendations regarding the design of future high power cathodes. To conclude, the versatility of the numerical model built up here will also be displayed through simulations of the behavior of a hollow cathode based on an alternate geometry
Popelier, Lara. "Développement du propulseur PEGASES : source inductive à haute performance et accélération successive de faisceaux d'ions positifs et d'ions négatifs." Phd thesis, Ecole Polytechnique X, 2012. http://tel.archives-ouvertes.fr/tel-00793098.
Full text