Dissertations / Theses on the topic 'Propulseurs à plasmas'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 40 dissertations / theses for your research on the topic 'Propulseurs à plasmas.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Vial, Vanessa. "Etudes physiques et paramétriques de propulseurs plasma pour applications spatiales." Orléans, 2004. http://www.theses.fr/2004ORLE2061.
Full textRossi, Alberto. "Développement d'outils d'optimisation dédiés aux circuits magnétiques des propulseurs à effet Hall." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19234/1/ROSSI_Alberto_public.pdf.
Full textPrioul, Mathieu. "Etude expérimentale des propulseurs de type Hall : processus collisionnels, comportement dynamique, micro-instabilités et phénomènes de transport." Orléans, 2002. http://www.theses.fr/2002ORLE2058.
Full textVillemant, Marc. "Modélisation et caractérisation expérimentale de l’influence de l’émission électronique sur le fonctionnement des propulseurs à courant de Hall." Thesis, Toulouse, ISAE, 2018. http://www.theses.fr/2018ESAE0038.
Full textNowadays, plasma Hall thrusters are used in space industry for satellites orbit rising and satellites attitude control. Nonetheless, the comprehension their physical functioning remains patchy. Several phenomena such as abnormal electron mobility or the thrusters performance dependency to wall material are still not understood. Consequently the current process to improve and qualify Hall thrusters are involving expansive and time-consuming experimental validation which, in the end, does not ensure the release of an operational thruster. Consequently, plasma behaviour in Hall thruster is a key topic of research, which could lead to non-negligible improvement in Hall thruster technology development.This Ph.D. consists in the modelling and characterization of plasma/wall interaction in Hall thrusters and its impact on Hall thruster’s performance. This Ph.D. has focused on the influence of the electron emission under electron impact on Hall thruster’s performances. It has been divided into three parts. Firstly, an experimental investigation has been carried out in order to obtain reference data on materials commonly used as plasma thruster wall (bore nitride and silicon dioxide). A literature review has been made in order to find a theoretical basis fitted to the elaboration of an electron emission model fitting the requirement of a particle in cell simulation of a Hall thruster. In second part, a detailed electron emission model based on this literature review and validated by comparison to experimental data and to a Monte-Carlo model developed in ONERA (called OSMOSEE) has been developed. This model offers the possibility to describe electron emission yield, angular and energy distribution of emitted electrons depending on various physical parameters (e.g. incident electron energy, incident electron angle, impinged material, etc.). Besides, as it is an analytical model, it computes in a reduced time (a few minutes to one hour). In a third and last part, this electron emission model has been implemented in a Particle-In-Cell (PIC) simulation of Hall thruster’s plasma and a parametric study has been carried out in order to characterize the influence of electron emission phenomenon on global plasma behaviour. This parametric study has shown that electron emission has a non-negligible impact on energy balance at plasma/wall interface and on electron distribution function in the plasma, which can’t be considered as Maxwellian
Dubois, Loic. "Etudes expérimentales du concept de propulseur de Hall double étage." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30320/document.
Full textIn Hall thrusters, the same physical phenomenon is used both to generate the plasma and to accelerate ions. Furthermore, only a single operating point is experimentally observed. The double stage Hall thruster (DSHT) design could allow a separate control of ionization (thrust) and ions acceleration (ISP) to make the system more versatile. The work carried out during this PhD aims to experimentally demonstrate the relevance and the feasibility of this concept. Firstly, a new design of DSHT, called ID-HALL, was proposed and a new prototype was built. It combines the concentric cylinder configuration of a single stage Hall thruster with a magnetized inductively coupled RF plasma source (ICP) whose coil is placed inside the inner cylinder. The ICP source was improved in terms of power coupling efficiency by adding ferrite parts and by decreasing the heating RF frequency. The ICP source used in the ID-HALL thruster was then characterized independently of the thruster using argon and xenon and varying pressure. The experimental setup has allowed to measure the spatial variations of the electron density and temperature. Finally, the thruster was mounted in its vacuum chamber and preliminary measures (voltage-current characteristics, RPA measurements) were led. At the same time, simulations using a two-dimensional hybrid model were performed in single and double stage. A versatile operation for voltages lower than 150 V was highlighted. An emphasis will be given to demonstrate that the current density (given by the ion flux probe) and the ions energy (given by the RPA) might be significantly decoupled
Ndiaye, Abdoul Aziz. "Evaluation des constantes atomiques pour l'élaboration des modèles collisionnel-radiatifs." Paris 11, 2009. http://www.theses.fr/2009PA112043.
Full textThe ionic propulsion is currently a need of satellites and spacecraft, due to the substantial saving accomplished on the loaded mass comparing with traditional chemical thrusters. With the arising of more ambitious scientific projects, requiring detailed control as satellites, spatial interferometry, compensation of trail in the high atmosphere, and experiments in microgravity, new technological solutions are developed by the scientific community, notably the technology of electrical reactors with field effect so called FEEP (Field Emission Electric Propulsion). These new generation microthrusters, with dimension about 10 cm in diameter, with ultra precision control capability, and able to produce an appropriate thrust modulation in the Newton scale, constitute an extreme challenge in these new scientific applications. If this technology seems to be mature, nonetheless we are still from constructing optimized thrusters FEEP. In this frame, a definite diagnostic of plasma properties remains necessary. The objective of our work was to contribute substantially to the improvement of models for Indium plasmas used for these diagnostics. Our first work was the construction of suitable atomic database. The compilation of published data allowed us to get energy levels considered with good precision, which are in very good agreements with the experimental spectra. However, larger uncertainties appeared in the determination of radiative and collisional rates coefficients. The second part of our work was to insert our atomic database into kinetic and statistical models. With these models, we evaluated the ionization state evolution of the plasma and the distribution of the excited states population as a function of the temperature Te and the density Ne of free electrons. The density of thrusters being weak, we start with a Coronal model, from which, by a hybrid approach, we also estimated the excited states distribution. The domain validity estimation of Coronal approximation shows that the plasmas of thrusters are on this domain’s limit and even beyond for some of atomic and ionic levels considered. We therefore constructed a detailed Collisional Radiative code, named CORAD, which treats in a more precise manner the kinetics of the states of In I, II and the fundamental state of In III. With this code, we have analyzed the influence of the electronic density on the medium ionization and on the population density. The code CORAD gives both the Coronal and ETL limits in low and in high electronic density and in the regime between these two limits. The last part of our work was devoted to the analysis of experimental spectra. The energies of spectral lines have been found for all the cases in very good agreement with our atomic database. The analysis of the spectra does not allow us to estimate accurately the plasma density. However, we have obtained a good estimation of the electronic temperature. The comparison of In I and In II lines led us to conclude that the whole spectra cannot be interpreted by assuming a homogeneous source at a uniform temperature
Jolivet, Laurent. "Étude de l'influence de l'émission électronique secondaire sur le phénomène de gaine et application aux propulseurs de satellite à effet Hall." Toulouse, ENSAE, 2000. http://www.theses.fr/2000ESAE0020.
Full textChable, Stéphane. "Modélisation numérique d'un propulseur à plasma stationnaire." Toulouse, ENSAE, 2003. http://www.theses.fr/2003ESAE0007.
Full textSary, Gaétan. "Modélisation d'une cathode creuse pour propulseur à plasma." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30182/document.
Full textA hollow cathode is a critical component of plasma thrusters. In a plasma thruster, a propellant gas is ionized in a discharge chamber and accelerated out of it so as to generate thrust. In Hall thrusters in particular, the ionization of the gas is caused by an intense electron current (from a few to hundred amps) which flows through the discharge chamber. The hollow cathode is the device which is responsible for providing the discharge current. This key element is often idealized in thruster numerical models and its physical behavior is rarely studied for its own sake. Yet, developing high power Hall thrusters, designed to propel in the long run every type of space mission, requires new hollow cathodes able to supply an intense electron current (over 100 A) over a duration on the order of ten thousand hours. So far, designing new cathodes proved difficult because of the lack of model capable of predicting the performance of a cathode based on its design. In this work, we build up a predictive model of a hollow cathode capable of simulating the physics relevant to the operation of the cathode. In the end, we aim at using this model to associate design characteristics of the cathode to key aspects of the cathode performance during operation. Our goal with this model is to guide the development of future high power hollow cathodes. We will first briefly describe the range of application of hollow cathodes related to space propulsion. Then we will give a brief account of the working principles of the cathode and we will set the numerical models available in the literature prior to this one out. The numerical model developed in this work will then be described. It includes a fluid treatment of the plasma as well as an account of the heat fluxes to the walls which largely control the performance of the cathode. Simulation results will be thoroughly compared to experimental measurements available in the literature and specific aspects of the model will be refined to match up simulation results with the physical reality. For instance, a model that specifically represents the transition region between the internal plasma of the cathode and the plume of the cathode will be described. This model will enable us to highlight plasma instability phenomena which were so far observed experimentally, yet never properly included in hollow cathode models. Using the model just developed, we will analyze the physics of a particular hollow cathode which has been developed by NASA at the Jet Propulsion Laboratory, the NSTAR hollow cathode. Then, thanks to the numerical model, we will be able to carry out a parametric study revolving around the design of the NSTAR cathode. This will allow us to bring out the influence of the design on the cathode performance and we will eventually express recommendations regarding the design of future high power cathodes. To conclude, the versatility of the numerical model built up here will also be displayed through simulations of the behavior of a hollow cathode based on an alternate geometry
Popelier, Lara. "Développement du propulseur PEGASES : source inductive à haute performance et accélération successive de faisceaux d'ions positifs et d'ions négatifs." Phd thesis, Ecole Polytechnique X, 2012. http://tel.archives-ouvertes.fr/tel-00793098.
Full textAlbarède, Luc. "Etudes expérimentales d'un propulseur à effet Hall : comportement stationnaire et dynamique du flux d'électrons." Orléans, 2004. http://www.theses.fr/2004ORLE2070.
Full textLeray, Gary. "PEGASES: Plasma Propulsion with Electronegative Gases." Phd thesis, Ecole Polytechnique X, 2009. http://pastel.archives-ouvertes.fr/pastel-00005935.
Full textPerez, Luna Jaime. "Modélisation et diagnostics d'un propulseur à effet Hall." Toulouse 3, 2008. http://www.theses.fr/2008TOU30155.
Full textOne of the greatest challenges in space exploration is to develop spacecrafts capable of covering great distances with little fuel. Electric thrusters, among which is the Hall effect thruster, are capable of this thanks to their high exhaust velocity. During my PhD, I have tried to understand the physics involved in these thrusters, by means of numerical models and accurate diagnostics. My hosting group has been working on hybrid modeling of these thrusters for about ten years. However, the electron fluid description in such models is still a challenge. One of the problems of the fluid model is the difficulty of solving the fluid equations in 2D. This first problem has been overcome by using a new algorithm. This algorithm makes it now easier to study thrusters with complex magnetic fields. The second problem concerns electron transport which is not well understood. A deep study of a fully particle model in the axial and azimuthal directions has shown that an azimuthal electric field wave, present in the thruster, enhances the electron transport. Also, I have developed a new method to extract the electric field and ionization term profiles from laser spectroscopy measurements. The comparison between these results and those obtained with our hybrid model shows the limit of the electron transport description used until now. This comparison has also shown a possible path to follow in order to correctly describe the electron transport in hybrid models for Hall effect thrusters
Vialis, Théo. "Développement d’un propulseur plasma à résonance cyclotron électronique pour les satellites." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS344.
Full textElectric propulsion is an alternative technology to the chemical propulsion that enables reducing propellant consumption for satellites. ONERA is developing an electric ECR thruster with a thrust around 1 mN and an electric power less than 50 W. The thruster creates a plasma by electron cyclotron resonance and accelerates it through a magnetic nozzle. In this thesis work, an optimization of the measurement diagnostics is done. The work also aims at identifying the important parameters for the performances of the thruster and at improving the understanding of underlying physics, in order to increase the thruster efficiency. Several prototypes have been developed and a thrust stand that can directly measure the thrust has been modified. Some parametric studies have been led and have shown that the thruster performance strongly depends on xenon mass-flow rate to microwave power ratio. It has also shown that the external conductor of the plasma source and the ambient pressure have a significant influence on the performances. Following a geometric optimization, a maximum total efficiency of more than 12% has been obtained. Separate measurements of the magnetic and thermal thrust have shown that the magnetic thrust is the main component of the total thrust. A 1D-3V PIC code has been used to simulate the behavior of the thruster. The analysis of the results has shown that the ECR heating and particle acceleration in the magnetic nozzle could be properly computed. The role of the parallel and perpendicular component of electron pressure has been evidenced by this work
Garrigues, Laurent. "MODELISATION D'UN PROPULSEUR A PLASMA STATIONNAIRE POUR SATELLITES." Phd thesis, Université Paul Sabatier - Toulouse III, 1998. http://tel.archives-ouvertes.fr/tel-00440015.
Full textGuglielmi, Alexandre. "Propulseur à courant de Hall double étage à source RF inductive : étude expérimentale du fonctionnement et des instabilités basses fréquences." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30243.
Full textUnlike chemical thrusters, electric Hall current thrusters are small motors used for station keeping, orbiting, and interplanetary missions. Often characterized by low thrusts, they have the advantage of having a very high ejection speed and specific impulse. The principle is based on the ionization of a rare gas (Xe, Kr) by a potential difference applied through a magnetic barrier. The locally weaker electronic conductivity in the barrier leads to the creation of an electric field in this region. The ions are then subjected to this field and are therefore accelerated to speeds which may exceed several tens of km/s. The electric field at this barrier is then responsible for the acceleration of the ions and therefore, simultaneously, for the thrust and the specific impulse. In order to modify independently these two parameters, a double stage Hall thruster (ID-Hall, Inductive Double stage HALL thruster)) has been developed. The first stage is the ionization stage, consisting of an independent plasma source (ICP source), and the second stage is the acceleration region with the magnetic barrier. Using different diagnostics (ionic flux probe, retarding potential analyzer, high speed camera, current-voltage probes, segmented anode, etc.) and a numerical model (HALLIS), we were able to characterize the plasma, its instabilities, and thruster performance. Despite the singular magnetic mapping of this thruster, the characteristics in single stage operation are comparable to those of conventional Hall current thrusters. In dual-stage operation, the RF source significantly affects the transport of electrons in the thruster. In addition, other double-stage results show that at low discharge voltages, the discharge current is lower than at single stage. The energy of the extracted ions is higher in double stage and the ion current decreases with increasing RF power but remains close to the ion current in single stage. This study was carried out in Xenon and Argon. Low-frequency oscillations of large amplitudes (Breathing Mode) were observed experimentally, analyzed by time-resolved probe and compared to results obtained by the model. Other azimuthal instabilities (Rotating Spokes) have also been identified as well as studied electrically and by imaging. As soon as the source is active, at low RF power, these previous instabilities are strongly attenuated, while at higher power, other azimuthal instabilities appear (Striations). These azimutals instabilities were also studied around the source alone, by imaging in different gases and using a PIC-MCC model
Perot, Triffault Carole. "Etude d'un propulseur plasmique et du jet de plasma associé." Orléans, 1999. http://www.theses.fr/1999ORLE2072.
Full textCannat, Félix. "Caractérisation et modélisation d'un propulseur plasma à résonance cyclotronique des électrons." Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01271986v2/document.
Full textThe purpose of this work is the characterization and theoretical investigation of an electron cyclotron resonance plasma thruster. The objectives is to study the physics of the thruster (energy transfer by cyclotron resonance, ionization process, coupling microwave/plasma and acceleration process) to improve his performances, efficiency and development dimensioning tools. An experimental prototype of the thruster was characterized around the operating freedoms degrees as frequency, magnetic field, the power, the geometry and the gas flow. The results are used to set the conditions for a nominal operation of the thruster in terms of performances and efficiency. It was shown that the position of the resonance area and the operating pressure are the two keys parameters for the optimization of the thruster. This research helped to increase performance and total efficiency of the thruster. For a power of 30 watts and a flow rate of 0. 1 mg/s, the thrust provided 1 mN with a specific impulse of 1000 s for 16 % total efficiency. In parallel, a discharge model is adapted to the configuration of the thruster. He estimates the thruster performance, identifies key points and provides sizing prospects for a new version of the thruster. To complete the model, preliminary simulations of electromagnetic wave propagation and microwave plasma coupling magnetized are carried out. The results obtained make it possible to better understand the microwave power deposition in the plasma source and reproduce the influence of the magnetic field observed experimentally
Bredin, Jérôme. "D éveloppement de diagnostics électrostatiques pour le filtrage magn étique et la formation du plasma ion-ion dans le propulseur PEGASES." Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00993207.
Full textCoche, Philippe. "Modélisation cinétique d’un propulseur à effet Hall." Toulouse 3, 2013. http://thesesups.ups-tlse.fr/1995/.
Full textHall effect thrusters are used for station-keeping of satellites in geostationary orbit. The originality of this kind of thruster is the use of a magnetic field which traps the electrons and creates a high electric field region. In this region, the ions are accelerated and extracted from the plasma to provide a thrust. Electron transport across the magnetic field lines is a major issue in predicting the thruster performance. Several transport mechanisms as collision phenomena and plasma turbulence have been identified to play a role but their exact contribution is still not clear. Based on two numerical particle models ("Particle-In-Cell"), composed of an explicit and implicit trajectory-tracking schemes, this work thesis aims at analyzing the proceeding of a discharge in order to isolate the transport mechanisms of electrons. It also aims at providing a better understanding of the plasma turbulence on the discharge behavior. We emphasize the strong unstationnary character of the discharge. We also study a particular transport mechanism, governed by turbulence and volumic collisions, using a particle-test numerical model
LERAY, PHILIPPE. "Etude de la physique interne d'un propulseur a plasma stationaire par spectometrie optique d'emission." Paris 11, 1997. http://www.theses.fr/1997PA112418.
Full textCavalier, Jordan. "Modèles cinétiques et caractérisation expérimentale des fluctuations électrostatiques dans un propulseur à effet Hall." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0130/document.
Full textThe study of turbulent phenomena that grow at the exit plane of the Hall thruster is required to modelize the anomalous transport (in contrast to the diffusion transport) of electrons across the magnetic field lines. The dispersion relations of two instabilities that can be responsible for this transport have been mesured at millimetric scales by mean of the collective light scattering diagnostic. The aim of the thesis is to describe them theoretically as well as experimentally, improving the understanding of the Hall thruster transport. In the thesis, an instability that propagates principally azimuthally is caracterized as the ExB electron drift instability and an analytical model that describes the experimental frequency is derived and validated. In addition, the manuscript presents an original method to unfold the signal of the collective scattering diagnostic from the instrumental function of this mode. Once corrected, the experimental dispersion relations can be adjusted by the frequency given by the analytical model, allowing to measure experimentally and in an original way the electron temperature and density in the energetic ion jet of the Hall thruster plasma. The second instability that is mainly propagating in the axial direction is caracterized as the two-stream instability between the simply and doubly charged ions of the plasma
Gawron, Damien. "Phénomènes de transport ionique dans le plasma d’un propulseur à effet Hall à forte puissance : étude par spectroscopie laser." Orléans, 2007. http://www.theses.fr/2007ORLE2061.
Full textROCHE, STEPHANIE. "Analyse par spectroscopie optique d'emission du plasma des propulseurs a effet hall - application a l'erosion des ceramiques." Paris 11, 2001. http://www.theses.fr/2001PA112119.
Full textDucrocq, Alexandre. "Rôle des instabilités électroniques de dérive dans le transport électronique du propulseur à effet Hall." Phd thesis, Ecole Polytechnique X, 2006. http://pastel.archives-ouvertes.fr/pastel-00002029.
Full textDarnon, Franck. "Comportements transitoires d'un propulseur a plasma de type spt 100 : caracteristiques dynamiques de la decharge, du plasma et du jet ionique." Orléans, 1999. http://www.theses.fr/1999ORLE2031.
Full textPeterschmitt, Simon. "Development of a Stable and Efficient Electron Cyclotron Resonance Thruster with Magnetic Nozzle." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX053.
Full textPlasma thrusters are the subject of growing interest as a means for small satellite propulsion. Miniaturizations of mature technologies as well as innovative concepts have been proposed such as the electron-cyclotron resonance thruster with magnetic nozzle (ECRT). This thruster appears as a potentially disruptive technology because it is gridless, neutralizerless, and only requires one power supply. This work consists in the development of an ECRT with magnetic nozzle and its accompanying experimental test bench, able to accurately demonstrate high thruster efficiency during prolonged steady state operation. Previous studies on the ECRT were limited by a significant lack of accuracy on key measurements, due to the specific setup and technology needed for this thruster. The experimental procedure and the setup are thus heavily upgraded to improve the accuracy of experimental data. However, peculiarities of the magnetic nozzle complicate the interpretation of the ion current density measurements, thus our analysis of performance is mainly based on thrust balance measurements. Besides, thruster performance is shown to significantly increase when decreasing vacuum tank pressure down to 10-7 mbar Xenon, and facility effects are investigated by testing the thruster both at ONERA (France) and at JLU (Germany). Well aware of these experimental difficulties, we study the efficiency of the thruster as a function of neutral gas injection, magnetic field topology, and boundary conditions of the magnetic nozzle. In addition, we address erosion issues in two ways: first by a change of materials, and second by a change of coupling structure (coaxial, or circular waveguide). Waveguide coupling yields insufficient ion energies for space propulsion requirements but manufacturing the coaxial coupling structure with graphite appears to substantially mitigate erosion. These results enable to design and test a ~ 30 W and a ~ 200 W thruster consistently yielding state-of-the-art efficiencies as compared to other thruster types while having sufficient estimated lifetime. In order to shed light on the experimental outcomes, a new modelling approach is developed based on the study of electron trajectories and a Fokker-Planck heating model calculating the formation of the electron energy distribution function in the thruster
Gerst, Jan Dennis. "Investigation of magnetized radio frequency plasma sources for electric space propulsion." Phd thesis, Université d'Orléans, 2013. http://tel.archives-ouvertes.fr/tel-00977801.
Full textGascon, Nicolas. "Etude de propulseurs plasmiques à effet Hall pour systèmes spatiaux : performances, propriétés des décharges et modélisation hydrodynamique." Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11059.
Full textGuerrini, Gilles. "Etude expérimentale des phénomènes de décharge et propagation d'ondes dans les propulseurs ioniques à dérive d'électrons en cycle fermé." Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11021.
Full textSadouni, Sarah. "Modélisation fluide du transport et des instabilités dans des sources plasma froid magnétisé." Thesis, Toulouse 3, 2020. http://www.theses.fr/2020TOU30014.
Full textIt is well known from experiments that magnetized low-temperature plasmas in devices such as Hall thrusters and ion sources often show the emergence of instabilities that can cause anomalous transport phenomena and strongly affect the device operation. In this thesis we investigate the possibilities to simulate these instabilities self-consistently by fluid modeling. This is of great potential interest for engineering. We used a quasineutral fluid code developed at the LAPLACE laboratory, called MAGNIS (MAGnetized Ion Source), solving a set of fluid equations for electrons and ions in a 2D domain perpendicular to the magnetic field lines. It was found that in many cases of practical interest, MAGNIS simulations show plasma instabilities and fluctuations. A first goal of this thesis is to understand the origin of the instabilities observed in MAGNIS and make sure that they are a physical result and not numerical artifacts. For this purpose, we carried out a detailed linear stability analysis based on dispersion relations, from which analytical growth rates and frequencies were successfully compared with those measured in MAGNIS simulations for simple configurations forced to remain in a linear regime. We then identified these linear unstable modes and their responsible mechanisms (involving parameters such as the density gradient, electric and magnetic fields and inertia), known from the literature, that are likely to occur in these fluid simulations. Subsequently, we simulated the nonlinear evolution and saturation of the instabilities and quantified the anomalous transport generated in different cases relevant to ion sources, depending on various key parameters of the system (electric and magnetic fields and electron temperature). Finally, we highlighted several limitations of MAGNIS, and more generally of fluid models, due to the physical approximations made (quasineutrality, absence of kinetic effects). We showed that the fluid modes are sometimes most unstable at infinitely small scales for which the theory is no longer valid and which cannot be resolved numerically. We proposed, and tested in MAGNIS, ways to overcome this problem by introducing effective diffusion terms representing small scale processes (non-neutrality, Larmor radius)
Latocha, Vladimir. "Deux problèmes en transport des particules chargées intervenant dans la modélisation d'un propulseur ionique." Toulouse, INSA, 2001. https://tel.archives-ouvertes.fr/tel-00002194.
Full textThe modelling of the ionic thruster belonging to the SPT class raises many problems of plasma physics. We studied two of them, namely the electron transport and the computation of the electric potential. The electron transport is subject to the influence of the fields (magnetic and electric) set in the channel of the thruster on the one hand, and to the collisions of electrons with heavy species and at the walls on the oher hand. We participated to the development of a SHE model, wich is derived by performing an asymptotic analysis of the Boltzmann equation with a condition that models the reflection at the walls. This model allow to approximate the Electron Energy Distribution Function by solving a diffusion equation in the {position, energy} space, whose scales are macroscopic. More precisely, we extended an existing approach to the case where scattering against atoms are taken into account, as well as inelastic collisions at the walls. Then we compared the implementation of this model tot the results of a Monte Carlo simulation. We obtain similar results at a very reduced computational cost. This work lead to three publications, which are incorporated to the thesis. In a second stage, we studied the computation of the electric field in two dimensions. Due to the presence of a magnetic field, this problem gives rise to an anisotropic elliptic problem. Furthermore, the conductivities along the magnetic field and across the magnetic field lines can differ by several orders of magnitude. We implemented a finite volume scheme and we showed the numerical difficulties raised by such anisotropies. Hence, we improved this method by relating the solution of a highly anisotropic problem to a sequence of isotropic problems. This method proved to behabe well and we should be able to treat realistic cases shortly
Latocha, Vladimir. "Deux problemes en transport des particules chargees intervenant dans la modelisation d'un propulseur ionique." Phd thesis, INSA de Toulouse, 2001. http://tel.archives-ouvertes.fr/tel-00002194.
Full textproblèmes dans le domaine du transport des particules chargées. Nous nous
intéressons à deux de ces problèmes, à savoir le transport des électrons et
le calcul du potentiel électrique.
Le transport des électrons résulte de l'influence conjuguée des champs
(électrique et magnétique) établis dans la cavité du propulseur et des
collisions des électrons (dans la cavité et avec la paroi limitant celle-ci).
Nous avons participé au développement d'un modèle SHE (Spherical Harmonics
Expansion) qui résulte d'une analyse asymptotique de l'équation de Boltzmann
munie de conditions de réflexion aux bords. Ce modèle permet d'approcher la
fonction de distribution en énergie des électrons en résolvant une
équation de diffusion dans un espace \{position, énergie\}. Plus précisément,
nous avons étendu une démarche existante au cas où les collisions en volume
(excitation, ionisation) et les collisions inélastiques à la paroi
(attachement et émission secondaire) sont prises en compte. Enfin, nous
avons écrit un code de résolution du modèle SHE, dont les résultats ont
été comparés avec ceux d'une méthode de Monte Carlo.
\vspace*{1mm}
Dans un deuxième temps, nous avons étudié le calcul du potentiel électrique.
La présence du champ magnétique impose d'écrire le courant d'électrons sous
la forme ${\cal J}=\sigma \nabla W$
où W est le potentiel électrique et le tenseur de conductivité $\sigma$
est fortement anisotrope compte tenu des grandeurs physiques en jeu dans
le SPT. Pour résoudre $\mbox{div }{\cal J}(x,y)=S(x,y)$,
nous avons implémenté une méthode de volumes finis
sur maillage cartésien permettant de résoudre ce problème elliptique
anisotrope, et nous avons vérifié qu'elle échouait lorsque le rapport
d'anisotropie devenait grand. Aussi nous avons développé une méthode de
paramétrisation, qui consiste à extrapoler la solution d'un problème
anisotrope à l'aide d'une suite de problèmes isotropes. Cette méthode a
donné des résultats encourageants pour de forts rapports d'anisotropie,
et devrait nous permettre d'atteindre des cas réels.
Garnier, Yvan. "Pulvérisation ionique de matériaux céramiques dans le cadre de la caractérisation d'un propulseur à effet hall." Toulouse, ENSAE, 1999. http://www.theses.fr/1999ESAE0023.
Full textCroes, Vivien. "Plasma discharge 2D modeling of a Hall thruster." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX060/document.
Full textAs space applications are increasingly crucial in our daily life, satellite operating costs need to be decreased. This can be achieved through the use of cost efficient electric propulsion systems. One of the most successful and competitive electric propulsion system is the Hall effect thruster, but this system is characterized by its complexity and remains poorly understood. Indeed some key questions, concerning electron anomalous transport or plasma/wall interactions, are still to be answered.Answers to both questions are based on kinetic mechanisms, and thus cannot be solved with fluid models. Furthermore the temporal and geometrical scales of these mechanisms make them difficult to be experimentally measured. Consequently we chose, in order to answer those questions, to develop a bi-dimensional fully kinetic simulation tool.Using a simplified simulation of the Hall effect thruster, we observed the importance of the azimuthal electron drift instability for anomalous cross-field electron transport. Then, using a realistic model of a Hall effect thruster, we were able to study the effects of plasma/wall interactions on the plasma discharge characteristics, as well as to quantify the coupled effects of secondary electron emission and electron drift instability on the anomalous transport. Through parametric study of secondary electron emission, three plasma discharge regimes were identified. Finally the impact of alternative propellants was studied
Pigeon, Valentin. "Laser induced fluorescence study of plasma-insulator wall interaction involving secondary electron emission." Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0307.
Full textIn Hall-effect ion thrusters, the interaction between the plasma and the ceramic walls has an impact on the devices’ lifetime and performances. This is partially due to the secondary electron emission (SEE), a phenomenon that may cool down the plasma, resulting in a lower ionization rate, and may trigger turbulence and instabilities. For these reasons, it is necessary to understand the plasma-ceramic wall interaction and evaluate the impact of the SEE. This study mainly focuses on plasma sheaths – the fundamental mechanism involved in plasma-wall interaction – standing in front of Hall thrusters’ ceramics. Those sheaths are compared to other materials’ ones used in plasma devices, and the influence of the SEE on them is studied. The experimental part of the study mainly relies on the laser induced fluorescence diagnostic that allows to probe plasma sheaths in a non-intrusive way. The sheaths’ structure, the ion density variations and the ion distribution functions’ shape are presented and discussed. It is shown that the sheath is material dependent and that the thrusters’ ceramics’ SEE is lower than for the other studied ceramics, which is coherent with previous measurements. Also, a peak in the ion density is observed near the sheath entrance, a result not captured by the classical sheath theory. These experimental results are compared with a 1D kinetic sheath model and kinetic simulations that use the SEE yields found in the literature. Finally, the first step of highly emissive plasma sheath measured with laser induced fluorescence is presented
Grimaud, Lou. "Magnetic shielding topology applied to low power Hall thrusters." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2046/document.
Full textHall thrusters are one of the most used rocket electric propulsion technology. They combine moderate specific impulse with high thrust to power ratio which makes them ideal for a wide range of practical commercial and scientific applications. One of their limitations is the erosion of the thruster walls which reduces their lifespan.The magnetic shielding topology is a proposed solution to prolong the lifespan. It is implemented on a small200W Hall thruster.In this thesis the scaling of classical unshielded Hall thrusters down to 200 and 100W is discussed. A 200W low power magnetically shielded Hall thruster is compared with an identically sized unshielded one. The ion behavior inside the thruster is measured and significant differences are found across the discharge channel.Both thrusters are tested with classical BN-SiO2 and graphite walls. The magnetically shielded thruster is not sensitive to the material change while the discharge current increase by 25% in the unshielded one. The result is a maximum efficiency of 38% for boron nitride in the unshielded thruster but only 31% with graphite.The shielded thruster achieves a significantly lower efficiency with only 25% efficiency with both materials.Analysis of the experimental results as well as simulations of the thrusters reveal that the performance difference is mostly caused by low propellant utilization. This low propellant utilization comes from the fact that the ionization region doesn’t cover all of the discharge channel. A new magnetically shielded thruster is designed to solve this issue
Charoy, Thomas. "Numerical study of electron transport in Hall thrusters." Thesis, Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAX046.
Full textIn the last decade, the number of satellites orbiting around Earth has grown exponentially. Thanks to their low propellant consumption, more and more electric thrusters are now used aboard these satellites, with the Hall thrusters being one of the most efficient. From the diversity of applications stems the need of widening the thruster power capabilities. However, due to a lack of knowledge on Hall thruster physics, this scaling is currently done empirically, which limits the efficiency of the newly developed thrusters and increases the development time and cost. To overcome this issue, numerical models can be used but a deeper understanding on key phenomena is still needed, more specifically on the electron anomalous transport which should be self-consistently accounted for to properly capture the discharge behaviour.As this transport is related to the azimuthal electron drift instability, an existing 2D Particle-In-Cell code was further developed to simulate this azimuthal direction along with the axial direction in which the ions are accelerated, producing the thrust. Prior to analyse the discharge behaviour, this code has been verified on a benchmark case, with 6 other PIC codes developed in different international research groups. This simplified case was later used to stress-test previous analytical developments to approximate the instability-enhanced electron-ion friction force which represents the contribution of the azimuthal instabilities to the anomalous transport. Then, the neutral dynamics has been included to capture the full self-consistent behaviour of the discharge. We used an artificial scaling technique, increasing the vacuum permittivity, to relax the PIC stability constraints and speed-up the simulations. Thanks to an efficient code parallelisation, we managed to reduce this scaling factor to a small value, hence simulating a case close to reality. The electron-ion friction force was found to be the main contributor to the anomalous transport throughout the whole low-frequency breathing mode oscillations. Finally, the complex interaction between the breathing mode, the ion-transit time instabilities and the azimuthal electron drift instabilities has been studied, with the formation of long-wavelength structures associated with an enhanced anomalous transport
Diop-Ngom, Fatou. "Source de particules neutres monocinétiques : diagnostics spécifiques et étude physique d'une source de Hall en plasma d'argon ou en mixture xénon-argon." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2025/document.
Full textSince the 50s, electric propulsion has improved in order to establish itself on space propulsion field. The Hall Effect Thruster (HET) are mainly used for trajectory correction or satellites orbit maintaining. The HET provide high current densities and low energy ion beam that making it a good candidate for other applications such as microelectronics or surface treatments. Xenon propellant is most commonly used due to its high atomic mass and its low ionization energy. However, the high cost and difficult supply of xenon, leads to looking for alternative propellant for HET operation. In this context, this PhD thesis had as goal the development of a functional Argon low power source. Argon discharge ignition is not immediate, that why a progressive approach which involves gas mixture discharges was adopted. The Xe-Ar discharge gives very interesting results for the understanding of physical mechanisms governing HET. The characterization of Xe II ions velocity (Laser Induced Fluorescence) associated to the energy analysis by RPA have provided access to useful information on ionization and acceleration areas. An original time resolved RPA technique, based on an ultra-fast discharge interruption or on the discharge current oscillations, has been developed. This technique allows the identification and the quantification of different species present in the ion beam. Thanks to the discharge Xe-Ar study, a pure argon discharge could be initiated and characterized for the first time in a low power HET
Potrivitu, George-Cristian. "Low–voltage External Discharge Plasma Thruster and Hollow Cathodes Plasma Plume Diagnostics Utilising Electrostatic Probes and Retarding Potential Analyser." Thesis, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59796.
Full textLa présente thèse est le résultat d'une période de recherche à l'Institut des Sciences Spatiales et Astronautiques de l'Agence Spatiale Japonaise, ISAS / JAXA qui a suivi la voie des diagnostics du plasma de la plume de propulseurs électriques spatiaux. Au cours des études expérimentales, deux cathodes creuses à fort courant et un prototype innovant d'un propulseur basse tension à décharge externe de plasma (XPT) avaient leurs faisceaux de plasma diagnostiqués en utilisant des sondes électrostatiques et un analyseur à potentiel retardé. La plume d’un propulseur à effet Hall et d’une cathode creuse est définie comme un plasma quasi-neutre non-magnétisé qui est principalement formé de particules neutres, d’électrons, d’ions monovalents et bivalents. Les techniques de diagnostic du plasma fournissent des informations, via des observations pratiques, afin de bien comprendre la dynamique des composants de la plume mentionnés ci-dessus, les processus physiques qui se déroulent dans la plume et leurs effets sur une sonde spatiale, par exemple. La maîtrise de ces aspects du plasma de la plume généré par les propulseurs électriques spatiaux renforce les processus de conception de ce type de propulsion, ce qui conduit à des dispositifs hautement efficaces. Tout d'abord, l'introduction donne un aperçu sur les principes fondamentaux de cathodes creuses et de propulseurs à effet Hall, et une brève présentation des techniques de diagnostic du plasma utilisées lors de la recherche : sondes de Langmuir simples et doubles, des sondes émissives et d’analyseur à potentiel retardé. Ensuite, les principes fondamentaux de diagnostic de la plume sont représentés de manière exhaustive, d’abord la théorie cinétique classique du plasma, les fonctions de distribution en énergie et pour terminer une vue d'ensemble de la théorie de la collecte de charge par des sondes cylindriques. Par la suite, les particularités des diverses techniques d'analyse sont exposées pour les sondes de Langmuir, les sondes émissives et RPA, en mettant l'accent sur leurs avantages et leurs inconvénients. Les montages expérimentaux pour les procédures de diagnostic de la plume-plasma de cathodes et du XPT sont ensuite décrits. La logique expérimentale, les schémas électriques ainsi qu'une présentation de la conception et de la fabrication de chaque sonde sont largement discutés. Les résultats expérimentaux pour les cathodes creuses sont exposés de façon à présenter la différence entre plusieurs méthodes d'analyse de données appliquées aux données brutes. Une discussion s’ensuit, basée sur les résultats afin d'identifier efficacement les mécanismes qui ont produits les propriétés électroniques observées. Pour la première fois, la plume d'un propulseur à décharge externe de plasma a été diagnostiquée en utilisant des sondes de Langmuir doubles. La thèse met en évidence les principaux résultats obtenus pour le diagnostic en champ lointain de la plume-plasma du XPT. Les résultats expérimentaux pour les positions sur l'axe du propulseur et le cartes 2D de la plume pour plusieurs distances axiales loin de l’anode offrent une base pour de futures mesures, un terme de comparaison et une base de données pour appuyer les codes numériques. Les résultats sont discutés et sont rapportés aux données de performances du propulseur obtenus lors des essais précédents. La thèse comprend des analyses de la cohérence entre les données expérimentales et les résultats de simulation numérique, et les incertitudes des paramètres mesurés du plasma associées à chaque procédure d'analyse des données sont évaluées pour chaque ensemble de données. Enfin, les conclusions soulignent les principaux aspects de la recherche et une poursuite des travaux sur les techniques de diagnostic de plasma pour les cathodes creuses et le XPT est suggérée.