To see the other types of publications on this topic, follow the link: Propulsion électrique de satellite.

Journal articles on the topic 'Propulsion électrique de satellite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Propulsion électrique de satellite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

-KOPPEL, Christophe R. "Sous-systèmes de propulsion électrique pour satellites et sondes spatiales." Revue de l'Electricité et de l'Electronique -, no. 08 (2000): 71. http://dx.doi.org/10.3845/ree.2000.084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

-Mazodier, Laurent. "La propulsion électrique des navires." Revue de l'Electricité et de l'Electronique -, no. 03 (1997): 30. http://dx.doi.org/10.3845/ree.1997.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

-GONDOUIN, D. "Nouvelles topologies de systèmes de propulsion électrique de navires." Revue de l'Electricité et de l'Electronique -, no. 09 (2000): 48. http://dx.doi.org/10.3845/ree.2000.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sabadosh, Lyubomyr, Serhii Larkov, Oleg Kravchenko, and Vladyslav Sereda. "Increasingly Safe, High-Energy Propulsion System for Nano-Satellites." Transactions on Aerospace Research 2018, no. 4 (2018): 38–44. http://dx.doi.org/10.2478/tar-2018-0028.

Full text
Abstract:
Summary Numerous attempts have been undertaken to develop propulsion systems for nano-satellite-type spacecrafts to enable their maneuvering in orbits. One of the potentially viable chemical propellant propulsion systems is a hybrid system. The present paper studies propellant composition variants with the metal hydride as fuel that can be chosen for a nano-satellite hybrid propulsion system. It defines key requirements for chemical propellant nano-satellite propulsion systems, and specifies potential propellant pairs based on a compact metal hydride. The study describes basic technical charac
APA, Harvard, Vancouver, ISO, and other styles
5

Zaberchik, Michael, Dan R. Lev, Eviatar Edlerman, and Avner Kaidar. "Fabrication and Testing of the Cold Gas Propulsion System Flight Unit for the Adelis-SAMSON Nano-Satellites." Aerospace 6, no. 8 (2019): 91. http://dx.doi.org/10.3390/aerospace6080091.

Full text
Abstract:
Adelis-SAMSON is a nano-satellite mission aimed at performing geo-location of target signals on Earth using a tight three-satellite formation in space. To maintain formation, each nano-satellite is equipped with a cold gas propulsion system. The design, qualification, and integration of the Adelis-SAMSON nano-satellite propulsion system is presented in this paper. The cold gas propulsion system mass is approximately 2 kg, takes a volume of 2U, and generates a thrust of 80 mN from four thrusters using krypton as a propellant. We first present the propulsion system requirements and corresponding
APA, Harvard, Vancouver, ISO, and other styles
6

Prickett, R. P., and J. V. Hoang. "Satellite propulsion performance modeling using flight data." Journal of Propulsion and Power 8, no. 5 (1992): 971–79. http://dx.doi.org/10.2514/3.23581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sochacki, Mateusz, and Janusz Narkiewicz. "Propulsion System Modelling for Multi-Satellite Missions Performed by Nanosatellites." Transactions on Aerospace Research 2018, no. 4 (2018): 58–67. http://dx.doi.org/10.2478/tar-2018-0030.

Full text
Abstract:
Abstract Progress in miniaturization of satellite components allows complex missions to be performed by small spacecraft. Growing interest in the small satellite sector has led to development of standards such as CubeSat, contributing to lower costs of satellite development and increasing their service competitiveness. Small satellites are seen now as a prospective replacement for conventional sized satellites in the future, providing also services for demanding users. New paradigms of multi-satellite missions such as fractionation and federalization also open up new prospects for applications
APA, Harvard, Vancouver, ISO, and other styles
8

-Michaux, Raymond. "Les machines discoïdes à champ axial dans les systèmes de propulsion électrique." Revue de l'Electricité et de l'Electronique -, no. 03 (1997): 37. http://dx.doi.org/10.3845/ree.1997.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wapman, Jonathan D., David C. Sternberg, Kevin Lo, Michael Wang, Laura Jones-Wilson, and Swati Mohan. "Jet Propulsion Laboratory Small Satellite Dynamics Testbed Planar Air-Bearing Propulsion System Characterization." Journal of Spacecraft and Rockets 58, no. 4 (2021): 954–71. http://dx.doi.org/10.2514/1.a34857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khoucha, Farid, Abdelkhader Khoudiri, Mohamed EH Benbouzid, and Abdelaziz Kheloui. "Commande DTC d’une propulsion moteur asynchrone/onduleur multiniveau asymétrique pour un véhicule électrique." European Journal of Electrical Engineering 14, no. 2-3 (2011): 237–54. http://dx.doi.org/10.3166/ejee.14.237-254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yang, An-Shik, and Tien-Chuan Kuo. "Design Analysis of a Satellite Hydrazine Propulsion System." Journal of Propulsion and Power 18, no. 2 (2002): 270–79. http://dx.doi.org/10.2514/2.5966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kang, H. S. "Launch - Installation and Propulsion Control Satellite Locator System." IFAC Proceedings Volumes 33, no. 16 (2000): 161–66. http://dx.doi.org/10.1016/s1474-6670(17)39621-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Soares Neto, T. G., J. Gobbo-Ferreira, A. J. G. Cobo, and G. M. Cruz. "Ir-Ru/Al2O3 catalysts used in satellite propulsion." Brazilian Journal of Chemical Engineering 20, no. 3 (2003): 273–82. http://dx.doi.org/10.1590/s0104-66322003000300007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

NICULESCU, Filip, Constantin VALCU, Traian TIPA, Adrian SAVESCU, Mirela VASILE, and Constantin SANDU. "Measurement system for the parameters of satellite propulsion." INCAS BULLETIN 11, no. 3 (2019): 127–34. http://dx.doi.org/10.13111/2066-8201.2019.11.3.11.

Full text
Abstract:
Within the STRAuSS (Advanced Solar Thermal Propulsion System for Increasing of Satellite Operational Life) project to investigate the extension of a satellite operation period, a new valve type and a new type of nozzle were designed. Extending the period of operation of the satellite propulsion is an important factor for increasing its activity period and reducing the production and launch costs. To measure the force generated when releasing propellant gas from the satellite reservoir, a dynamic fine-scale force measurement system has been designed. This system also measures experiment paramet
APA, Harvard, Vancouver, ISO, and other styles
15

KISARA, Katsuto, Hiroshi MIYAJIMA, and Kazuhiro NAKAHASHI. "Nozzle performance of bipropellant engines for satellite propulsion." Journal of the Japan Society for Aeronautical and Space Sciences 33, no. 373 (1985): 76–81. http://dx.doi.org/10.2322/jjsass1969.33.76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ranjan, Ravi, S. K. Chou, Fahid Riaz, and Kumarasamy Karthikeyan. "Cold gas micro propulsion development for satellite application." Energy Procedia 143 (December 2017): 754–61. http://dx.doi.org/10.1016/j.egypro.2017.12.758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lotfy, A., W. Anis, and Joseph V. M. Halim. "Design PV system for a small GEO satellite and studying the effect of using different types of propulsion." International Journal of Advances in Applied Sciences 8, no. 1 (2019): 54. http://dx.doi.org/10.11591/ijaas.v8.i1.pp54-63.

Full text
Abstract:
<p>This paper presents an optimum design of the solar Photo-Voltaic (PV) power system for small Geostationary Earth Orbit (GEO) satellites using triple junction solar cells and advanced Lithium Ion batteries. The paper applies the proposed system on various propulsion technologies; full chemical, full electrical and hybrid propulsions. This research work studies the capability to fulfil efficiently all the satellite power requirements during both the launching and the on-station phases while reducing the high cost challenge. Since the propulsion type is a key factor for the satellite cos
APA, Harvard, Vancouver, ISO, and other styles
18

-LETELLIER, Paul. "Les machines à aimants permanents de grande puissance dans les systèmes de propulsion électrique." Revue de l'Electricité et de l'Electronique -, no. 09 (2000): 53. http://dx.doi.org/10.3845/ree.2000.091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Potrivitu, George-Cristian, Yufei Sun, Muhammad Wisnuh Aggriawan bin Rohaizat, et al. "A Review of Low-Power Electric Propulsion Research at the Space Propulsion Centre Singapore." Aerospace 7, no. 6 (2020): 67. http://dx.doi.org/10.3390/aerospace7060067.

Full text
Abstract:
The age of space electric propulsion arrived and found the space exploration endeavors at a paradigm shift in the context of new space. Mega-constellations of small satellites on low-Earth orbit (LEO) are proposed by many emerging commercial actors. Naturally, the boom in the small satellite market drives the necessity of propulsion systems that are both power and fuel efficient and accommodate small form-factors. Most of the existing electric propulsion technologies have reached the maturity level and can be the prime choices to enable mission versatility for small satellite platforms in Eart
APA, Harvard, Vancouver, ISO, and other styles
20

Gagne, Kevin, M. McDevitt, and Darren Hitt. "A Dual Mode Propulsion System for Small Satellite Applications." Aerospace 5, no. 2 (2018): 52. http://dx.doi.org/10.3390/aerospace5020052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kronhaus, Igal, and Klaus Schilling. "PICO-SATELLITE ORBIT AND ATTITUDE CONTROL BY ELECTRIC PROPULSION." IFAC Proceedings Volumes 46, no. 19 (2013): 277–82. http://dx.doi.org/10.3182/20130902-5-de-2040.00045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Lev, Dan R., Gregory D. Emsellem, and Ashley K. Hallock. "The Rise of the Electric Age for Satellite Propulsion." New Space 5, no. 1 (2017): 4–14. http://dx.doi.org/10.1089/space.2016.0020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

OKAMOTO, Hirouyki, Mitsuteru SUGIKI, and Shin SATORI. "A3 Development of the Electric Propulsion for Small Satellite." Proceedings of the Space Engineering Conference 2002.10 (2002): 9–12. http://dx.doi.org/10.1299/jsmesec.2002.10.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Savvas, Spiridon, Dimitrios Malamas, Alexandros Manoudis, et al. "Power Processing Unit For Micro Satellite Electric Propulsion System." E3S Web of Conferences 16 (2017): 15004. http://dx.doi.org/10.1051/e3sconf/20171615004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Guerrini, G., C. Michaut, M. Bacal, A. N. Vesselovzorov, and A. A. Pogorelov. "An intense Hall-type ion source for satellite propulsion." Review of Scientific Instruments 69, no. 2 (1998): 804–6. http://dx.doi.org/10.1063/1.1148572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Wei, Jie Zhang, Huajun Chen, Bin Zhang, Feng Liu, and Jun Zhao. "Assembly Method for Satellite Propulsion System based on HoloLens." IOP Conference Series: Materials Science and Engineering 608 (August 27, 2019): 012035. http://dx.doi.org/10.1088/1757-899x/608/1/012035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Manente, M., F. Trezzolani, M. Magarotto, et al. "REGULUS: A propulsion platform to boost small satellite missions." Acta Astronautica 157 (April 2019): 241–49. http://dx.doi.org/10.1016/j.actaastro.2018.12.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Pallichadath, V., L. Turmaine, A. Melaika, et al. "In-orbit micro-propulsion demonstrator for PICO-satellite applications." Acta Astronautica 165 (December 2019): 414–23. http://dx.doi.org/10.1016/j.actaastro.2019.09.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Holdaway, R., Y. S. Wong, A. R. Martin, and P. M. Latham. "A reappraisal of satellite orbit raising by electric propulsion." Acta Astronautica 19, no. 6-7 (1989): 535–38. http://dx.doi.org/10.1016/0094-5765(89)90121-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Ze, and Tao Song. "Study on Mixture Ratio Control of Bipropellant Propulsion System on Satellite Based on Bypass Control System." Applied Mechanics and Materials 390 (August 2013): 338–42. http://dx.doi.org/10.4028/www.scientific.net/amm.390.338.

Full text
Abstract:
Bipropellant propulsion system (MON-1MMH) provides motivation for orbit transfer, attitude control and station keeping, is mainly applied for GEO satellite. Most bipropellant propulsion systems of satellite do not have the ability to control mixture ratio of oxidizer and fuel. The primary function of bypass control system, as an important part of bipropellant propulsion system, is to control helium pressure in the propellant tanks in order to control mixture ratio. This paper researches adjustment of mixture ratio for bipropellant propulsion system. Mathematical model for key components in byp
APA, Harvard, Vancouver, ISO, and other styles
31

-LARS, Bertrand. "Quelle propulsion électrique pour des navires militaires de premier rang type frégate de 5000 tonnes ?" Revue de l'Electricité et de l'Electronique -, no. 03 (2006): 46. http://dx.doi.org/10.3845/ree.2006.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bartolo, Denis, and Cécile Cottin-Bizonne. "Matière active synthétique." Reflets de la physique, no. 57 (April 2018): 27–31. http://dx.doi.org/10.1051/refdp/201857027.

Full text
Abstract:
Ces dix dernières années, la maîtrise des propriétés interfaciales d’objets micrométriques a permis la motorisation de robots colloïdaux, notamment par propulsion électrique ou électrochimique. Ces micronageurs artificiels se sont révélés capables de s’auto-organiser en de nouvelles classes de matériaux aux propriétés inattendues. Dans cet article, nous décrivons l’organisation originale de deux types de particules colloïdales autopropulsées : des colloïdes Janus non-attractifs exhibant un comportement collectif de type adhésif, et des colloïdes rouleurs (dits de Quincke) qui s’assemblent en d
APA, Harvard, Vancouver, ISO, and other styles
33

Sandu, Constantin, Valentin Silivestru, Grigore Cican, et al. "On a New Type of Combined Solar–Thermal/Cold Gas Propulsion System Used for LEO Satellite’s Attitude Control." Applied Sciences 10, no. 20 (2020): 7197. http://dx.doi.org/10.3390/app10207197.

Full text
Abstract:
This paper presents the development, construction and testing of a new type of solar–thermal propulsion system which can be used for low earth orbit (LEO) satellites. Currently, the vast majority of LEO satellites are fitted with a cold gas propulsion system. Although such a propulsion system is preferred, the service duration of an LEO satellite is limited by the amount of cold gas they carry onboard. In the case of the new type of solar–thermal propulsion system proposed in this paper, the cold gas is first transferred from the main tank in a cylindrical service tank/buffer tank which is pla
APA, Harvard, Vancouver, ISO, and other styles
34

Byers, David C., and John W. Dankanich. "Geosynchronous-Earth-Orbit Communication Satellite Deliveries with Integrated Electric Propulsion." Journal of Propulsion and Power 24, no. 6 (2008): 1369–75. http://dx.doi.org/10.2514/1.35322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Harmansa, Nicholas-E., Georg Herdrich, Stefanos Fasoulas, and Ulrich Gotzig. "DEVELOPMENT OF A SATELLITE PROPULSION SYSTEM BASED ON WATER ELECTROLYSIS." International Journal of Energetic Materials and Chemical Propulsion 18, no. 3 (2019): 185–99. http://dx.doi.org/10.1615/intjenergeticmaterialschemprop.2019028538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Pierre, Jean-François. "Electric propulsion: a key to success in the satellite market." Air & Space Europe 1, no. 5-6 (1999): 21–22. http://dx.doi.org/10.1016/s1290-0958(00)88865-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fourie, Dan, Ian M. Hedgecock, Francesco De Simone, Elsie M. Sunderland, and Nicola Pirrone. "Are mercury emissions from satellite electric propulsion an environmental concern?" Environmental Research Letters 14, no. 12 (2019): 124021. http://dx.doi.org/10.1088/1748-9326/ab4b75.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Xing, Yi, Mengyun Zhou, Tailin Xu, et al. "Core@Satellite Janus Nanomotors with pH‐Responsive Multi‐phoretic Propulsion." Angewandte Chemie 132, no. 34 (2020): 14474–78. http://dx.doi.org/10.1002/ange.202006421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xing, Yi, Mengyun Zhou, Tailin Xu, et al. "Core@Satellite Janus Nanomotors with pH‐Responsive Multi‐phoretic Propulsion." Angewandte Chemie International Edition 59, no. 34 (2020): 14368–72. http://dx.doi.org/10.1002/anie.202006421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Blanes, Jose M., Ausias Garrigos, Jose A. Carrasco, et al. "Two-Stage MPPT Power Regulator for Satellite Electrical Propulsion System." IEEE Transactions on Aerospace and Electronic Systems 47, no. 3 (2011): 1617–30. http://dx.doi.org/10.1109/taes.2011.5937254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Han, Cho Young, Jae Ho You, Kyun Ho Lee, Hui Kyung Kim, and Sung Nam Lee. "Sensitivity analyses of satellite propulsion components with their thermal modelling." Advances in Space Research 47, no. 3 (2011): 466–79. http://dx.doi.org/10.1016/j.asr.2010.09.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Miller, Sara, Mitchell L. R. Walker, Jack Agolli, and John Dankanich. "Correction: Survey and Performance Evaluation of Small- Satellite Propulsion Technologies." Journal of Spacecraft and Rockets 58, no. 4 (2021): 1. http://dx.doi.org/10.2514/1.a34774.c1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lin, Zhen, and Yong Li. "Performance Analysis of Bipropellant Propulsion System on Special Working Conditions." Applied Mechanics and Materials 390 (August 2013): 296–300. http://dx.doi.org/10.4028/www.scientific.net/amm.390.296.

Full text
Abstract:
At the end of a test satellite, oxidant of the propulsion system was exhausted ahead of fuel. Long-term monopropellant working condition without combustion, cool gas flow working condition and interim working condition were experienced, which trouble the de-orbit control of the satellite. In order to evaluate the performance of the propulsion system on the special working conditions during the satellite de-orbit, theoretic analysis of the specific thrusters is introduced. And effective calculation method is built. Based on the method and obtained remote data, the thrust and specific impulse of
APA, Harvard, Vancouver, ISO, and other styles
44

Somov, Ye I., S. A. Butyrin, and S. Ye Somov. "ADDITIONAL LAUNCHING AND APPROACH OF A SPACE ROBOT FOR SERVICING A GEOSTATIONARY SATELLITE." Izvestiya of Samara Scientific Center of the Russian Academy of Sciences 23, no. 2 (2021): 75–83. http://dx.doi.org/10.37313/1990-5378-2021-23-2-75-83.

Full text
Abstract:
The problems of additional launching a space robot into a geostationary orbit and approaching a geostationary satellite for its maintenance are considered. The robot's attitude and orbit control system uses an electric propulsion unit, a propulsion system based on eight electric thermo-catalytic engines with pulse-width modulation of their thrust, and a gyro moment cluster based on four single-gimbal control moment gyroscopes (gyrodines). Numerical results are presented that demonstrate the effectiveness of the developed discrete guidance and control algorithms.
APA, Harvard, Vancouver, ISO, and other styles
45

-Lott, C. "Filtrage actif du réseau et lissage actif du couple à bord des navires à propulsion électrique." Revue de l'Electricité et de l'Electronique -, no. 03 (1997): 54. http://dx.doi.org/10.3845/ree.1997.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lian, Xiaobin, Jiafu Liu, Laohu Yuan, and Naigang Cui. "Mixed fault diagnosis scheme for satellite formation." Aircraft Engineering and Aerospace Technology 90, no. 2 (2018): 427–34. http://dx.doi.org/10.1108/aeat-11-2016-0206.

Full text
Abstract:
Purpose The purpose of this paper is to present a solution for the uncertain fault with the propulsion subsystem of satellite formation, using the Lur’e differential inclusion linear state observers (DILSOs) and fuzzy wavelet neural network (FWNN) to perform fault detection and diagnosis. Design/methodology/approach The uncertain fault system cannot be described based on the accurate differential equations. The set-value mapping is introduced into the state equations to solve the problem of uncertainty, but it will cause output uncertainty. The problem can be solved by linearization of Lur’e d
APA, Harvard, Vancouver, ISO, and other styles
47

Chudoba, B., G. Coleman, L. Gonzalez, E. Haney, A. Oza, and V. Ricketts. "Orbital transfer vehicle (OTV) system sizing study for manned GEO satellite servicing." Aeronautical Journal 120, no. 1226 (2016): 573–99. http://dx.doi.org/10.1017/aer.2016.3.

Full text
Abstract:
ABSTRACTIn an effort to quantify the feasibility of candidate space architectures for astronauts servicing Geosynchronous Earth Orbit (GEO) satellites, a conceptual assessment of architecture-concept and operations-technology combinations has been performed. The focus has been the development of a system with the capability to transfer payload to and from geostationary orbit. Two primary concepts of operations have been selected: (a) Direct insertion/re-entry (Concept of Operations 1 – CONOP 1); (b) Launch to low-earth orbit at Kennedy Space Center inclination angle with an orbital transfer to
APA, Harvard, Vancouver, ISO, and other styles
48

Khandekar, Pravin, Kanishka Biswas, Dushyant Kothari, and H. Muthurajan. "Nano Mechanical Properties of Ceramic Polymer Composite Micro Thruster Developed Using 3D Printing Technology." Advanced Science Letters 24, no. 8 (2018): 5884–90. http://dx.doi.org/10.1166/asl.2018.12214.

Full text
Abstract:
Nano and micro satellites, when revolving around the earth, may drift by very small angle from their orbit. But this small angle drift may result in large deviation from their original orbit over a long distance which these satellite covers over a period of time. For the course correction of these satellites, very small thrust is required in specific direction. Normal propulsion system cannot serve this purpose, because the thrust may be too large for these satellites. That’s where the role of micro thrusters becomes important. These are MEMS devices which can produce very small thrust and can
APA, Harvard, Vancouver, ISO, and other styles
49

Mahmoud, Tarek, Saed Othman, A. Farrag, and Ahmed ELRaffiey. "ORBIT CONTROL USING ELECTRIC PROPULSION SYSTEMS FOR EARTH OBSERVATION SATELLITE SWARM." Journal of Al-Azhar University Engineering Sector 15, no. 55 (2020): 560–72. http://dx.doi.org/10.21608/auej.2020.87879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Soares, M. S., R. D. Barbosa, G. M. da Cruz, J. A. J. Rodrigues, and S. Ribeiro. "Effect of niobium addition in support catalysts applied in satellite propulsion." Materials Chemistry and Physics 189 (March 2017): 153–61. http://dx.doi.org/10.1016/j.matchemphys.2016.12.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!