To see the other types of publications on this topic, follow the link: Prosymna.

Journal articles on the topic 'Prosymna'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 16 journal articles for your research on the topic 'Prosymna.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Heinicke, Matthew P., James E. Titus-McQuillan, Juan D. Daza, Elizabeth M. Kull, Edward L. Stanley, and Aaron M. Bauer. "Phylogeny and evolution of unique skull morphologies in dietary specialist African shovel-snouted snakes (Lamprophiidae: Prosymna)." Biological Journal of the Linnean Society 131, no. 1 (July 25, 2020): 136–53. http://dx.doi.org/10.1093/biolinnean/blaa076.

Full text
Abstract:
Abstract Prosymna is a specialized African snake genus lacking close relatives. The evolutionary relationships and history within Prosymna are poorly understood. Here we assembled a multi-gene data set including representatives for 11 of 16 species to investigate the phylogenetic relationships of this group. Our analyses support the monophyly of Prosymna and are congruent with species groups previously recognized on the basis of external morphology. Divergences among extant Prosymna began in the mid-Cenozoic, with the earliest divergence splitting northern from southern lineages. High-resolution computed tomography scans confirm that a specialized skull morphology is found across the genus and was probably present in the common ancestor of Prosymna. This specialization is exemplified by dentition featuring reduced anterior but greatly enlarged, blade-like posterior maxillary teeth and an unusually high degree of fusion of cranial bones. One species, P. visseri, has a hammer-like maxilla unlike that of any other known snake. Evidence for oophagy in Prosymna and the possible roles of morphological specializations in egg-slitting or egg-crushing feeding mechanisms are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Demakopoulou, K., E. Mangou, R. E. Jones, and E. Photos-Jones. "Mycenaean black inlaid metalware in the National Archaeological Museum, Athens: a technical examination." Annual of the British School at Athens 90 (November 1995): 137–53. http://dx.doi.org/10.1017/s0068245400016117.

Full text
Abstract:
Current technical interest in the nature of the black inlaid decoration on ancient metalware has stimulated an examination of some of the well-known bronze daggers, silver vessels, and other fragments, all with inlaid decoration and dating to the 16–14th centuries BC, from Mycenae, Prosymna, Dendra, Routsi, and Pylos. Results of non-destructive X-ray fluorescence analysis point to great versatility in working with copper (or bronze)–gold–silver alloys. The black inlaid decoration is usually copper/bronze–gold alloy with small quantities of silver. Four of the objects were also examined by X-ray radiography.
APA, Harvard, Vancouver, ISO, and other styles
3

Steinmann. "The Chamber Tombs at Prosymna: A New Social and Political Interpretation for a Group of Tombs." Hesperia: The Journal of the American School of Classical Studies at Athens 89, no. 3 (2020): 379. http://dx.doi.org/10.2972/hesperia.89.3.0379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

VIDAL, NICOLAS, WILLIAM R. BRANCH, OLIVIER S. G. PAUWELS, S. BLAIR HEDGES, DONALD G. BROADLEY, MICHAEL WINK, CORINNE CRUAUD, ULRICH JOGER, and ZOLTÁN TAMÁS NAGY. "Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)." Zootaxa 1945, no. 1 (November 28, 2008): 51–66. http://dx.doi.org/10.11646/zootaxa.1945.1.3.

Full text
Abstract:
The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radiation termed Lamprophiidae by Vidal et al. (2007), that includes at least four major groups: the psammophiines, atractaspidines, lamprophiines and pseudoxyrhophiines. In this work, we reviewed the recent taxonomic history of the lamprophiids, and built a data set including two nuclear protein-coding genes (c-mos and RAG2), two mitochondrial rRNA genes (12S and 16S rRNA) and two mitochondrial protein-coding genes (cytochrome b and ND4) for 85 species belonging to 45 genera (thus representing about 75% of the generic diversity and 30% of the specific diversity of the radiation), in order to clarify the phylogenetic relationships of this large and neglected group at the subfamilial and generic levels. To this aim, 480 new sequences were produced. The vast majority of the investigated genera fall into four main monophyletic clusters, that correspond to the four subfamilies mentioned above, although the content of atractaspidines, lamprophiines and pseudoxyrhophiines is revised. We confirm the polyphyly of the genus Stenophis, and the relegation of the genus name Dromophis to the synonymy of the genus name Psammophis. Gonionotophis brussauxi is nested within Mehelya. The genus Lamprophis Fitzinger, 1843 is paraphyletic with respect to Lycodonomorphus Fitzinger, 1843. Lamprophis swazicus is the sister-group to Hormonotus modestus, and may warrant generic recognition. Molecular data do not support the traditional placement of Micrelaps within the Atractaspidinae, but its phylogenetic position, along with that of Oxyrhabdium (previously considered to belong to the Xenodermatidae), requires additional molecular data and they are both treated as Elapoidea incertae sedis. The interrelationships of Psammophiinae, Atractaspidinae, Lamprophiinae, Pseudoxyrhophiinae, Prosymna (13 sp.), Pseudaspis (1 sp.) and Pythonodipsas (1 sp.), Buhoma (2 species), and Psammodynastes (1 sp.) remain unresolved. Finally, the genus Lycognathophis, endemic to the Seychelles, does not belong to the African radiation, but to the Natricidae.
APA, Harvard, Vancouver, ISO, and other styles
5

Kravanja, Z., and I. E. Grossmann. "Prosyn—an MINLP process synthesizer." Computers & Chemical Engineering 14, no. 12 (December 1990): 1363–78. http://dx.doi.org/10.1016/0098-1354(90)80018-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rouf, Abdul, Pankaj Gupta, Mushtaq A. Aga, Brijesh Kumar, Asha Chaubey, Rajinder Parshad, and Subhash C. Taneja. "Chemoenzymatic synthesis of piperoxan, prosympal, dibozane, and doxazosin." Tetrahedron: Asymmetry 23, no. 22-23 (December 2012): 1615–23. http://dx.doi.org/10.1016/j.tetasy.2012.10.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Starkovich, Britt. "Dietary changes during the Upper Palaeolithic at Klissoura Cave 1 (Prosymni), Peloponnese, Greece." Before Farming 2009, no. 3 (January 2009): 1–14. http://dx.doi.org/10.3828/bfarm.2009.3.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kravanja, Zdravko, and Ignacio E. Grossmann. "Prosyn — An automated topology and parameter process synthesizer." Computers & Chemical Engineering 17 (January 1993): S87—S94. http://dx.doi.org/10.1016/0098-1354(93)80212-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kravanja, Z. "Prosyn - an automated topology and parameter process synthesizer." Computers & Chemical Engineering 17, no. 1 (1993): S87—S94. http://dx.doi.org/10.1016/0098-1354(93)85013-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hacke, W., K. R. Lees, T. Timmerhuis, J. Haan, L. Hantson, M. Hennerici, and H. C. Diener. "Cardiovascular Safety of Lubeluzole (Prosynap®) in Patients with Ischemic Stroke." Cerebrovascular Diseases 8, no. 5 (1998): 247–54. http://dx.doi.org/10.1159/000015861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dickinson, Jennifer. "Prosymo maksymal’nyi perepost! Tactical and Discursive Uses of Social Media in Ukraine’s EuroMaidan." Ab Imperio 2014, no. 3 (2014): 75–93. http://dx.doi.org/10.1353/imp.2014.0058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Rouf, Abdul, Mushtaq A. Aga, Brijesh Kumar, and Subhash Chandra Taneja. "A facile approach to chiral 1,4-benzodioxane toward the syntheses of doxazosin, prosympal, piperoxan, and dibozane." Tetrahedron Letters 54, no. 48 (November 2013): 6420–22. http://dx.doi.org/10.1016/j.tetlet.2013.09.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kravanja, Z., and I. E. Grossmann. "New developments and capabilities in prosyn—An automated topology and parameter process synthesizer." Computers & Chemical Engineering 18, no. 11-12 (November 1994): 1097–114. http://dx.doi.org/10.1016/s0098-1354(94)85027-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Saakian, Alexander. "Sorption properties of root systems as a criterion for adjusting soil fertility models." АгроЭкоИнфо 3, no. 45 (June 5, 2021): 15. http://dx.doi.org/10.51419/20213315.

Full text
Abstract:
The paper evaluates the sorption properties of the root systems of rice, wheat, vegetable and fruit crops, and weeds in soils with optimal moisture, irrigation, and the development of anaerobiosis. It is shown that different types and varieties of crops differ in the sorption properties of the roots, which must be taken into account when adjusting the optimal soil properties and fertilizer doses. Thus, the ratio of Ca/Fe in the equilibrium nutrient solution was 72.6 under the rice variety "Liman"; 165.0 under the variety" Spalchik"; 222 under the weed prosyanka; 720 under the weed klubnekamysh. The ratio of Md/Ca, Ca/Mp and Ca/Zn in the non-equilibrium nutrient solution of Knopa (1:1) after growing seedlings was -17.4; 300.0 and 17.2, respectively, under cauliflower; 6.6; 53.9 and 8.7 under early white cabbage. It is proven, that the sorption properties of the root systems of plant species and varieties should be taken into account when adjusting the optima of soil properties and fertilizer systems for the planned crop, upon phytomelioration of soils. Keywords: ROOTS, SORPTION PROPERTIES, SOIL FERTILITY MODELS, FERTILIZER SYSTEMS
APA, Harvard, Vancouver, ISO, and other styles
15

Rouf, Abdul, Mushtaq A. Aga, Brijesh Kumar, and Subhash Chandra Taneja. "ChemInform Abstract: A Facile Approach to Chiral 1,4-Benzodioxane Toward the Syntheses of Doxazosin, Prosympal, Piperoxan, and Dibozane." ChemInform 45, no. 13 (March 14, 2014): no. http://dx.doi.org/10.1002/chin.201413170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Fernandez-Triana, Jose, Mark R. Shaw, Caroline Boudreault, Melanie Beaudin, and Gavin R. Broad. "Annotated and illustrated world checklist of Microgastrinae parasitoid wasps (Hymenoptera, Braconidae)." ZooKeys 920 (March 23, 2020): 1–1089. http://dx.doi.org/10.3897/zookeys.920.39128.

Full text
Abstract:
A checklist of world species of Microgastrinae parasitoid wasps (Hymenoptera: Braconidae) is provided. A total of 81 genera and 2,999 extant species are recognized as valid, including 36 nominal species that are currently considered as species inquirendae. Two genera are synonymized under Apanteles. Nine lectotypes are designated. A total of 318 new combinations, three new replacement names, three species name amendments, and seven species status revised are proposed. Additionally, three species names are treated as nomina dubia, and 52 species names are considered as unavailable names (including 14 as nomina nuda). A total of three extinct genera and 12 extinct species are also listed. Unlike in many previous treatments of the subfamily, tribal concepts are judged to be inadequate, so genera are listed alphabetically. Brief diagnoses of all Microgastrinae genera, as understood in this paper, are presented. Illustrations of all extant genera (at least one species per genus, usually more) are included to showcase morphological diversity. Primary types of Microgastrinae are deposited in 108 institutions worldwide, although 76% are concentrated in 17 collections. Localities of primary types, in 138 countries, are reported. Recorded species distributions are listed by biogeographical region and by country. Microgastrine wasps are recorded from all continents except Antarctica; specimens can be found in all major terrestrial ecosystems, from 82°N to 55°S, and from sea level up to at least 4,500 m a.s.l. The Oriental (46) and Neotropical (43) regions have the largest number of genera recorded, whereas the Palaearctic region (28) is the least diverse. Currently, the highest species richness is in the Palearctic region (827), due to more historical study there, followed by the Neotropical (768) and Oriental (752) regions, which are expected to be the most species rich. Based on ratios of Lepidoptera and Microgastrinae species from several areas, the actual world diversity of Microgastrinae is expected to be between 30,000–50,000 species; although these ratios were mostly based on data from temperate areas and thus must be treated with caution, the single tropical area included had a similar ratio to the temperate ones. Almost 45,000 specimens of Microgastrinae from 67 different genera (83% of microgastrine genera) have complete or partial DNA barcode sequences deposited in the Barcode of Life Data System; the DNA barcodes represent 3,545 putative species or Barcode Index Numbers (BINs), as estimated from the molecular data. Information on the number of sequences and BINs per genus are detailed in the checklist. Microgastrinae hosts are here considered to be restricted to Eulepidoptera, i.e., most of the Lepidoptera except for the four most basal superfamilies (Micropterigoidea, Eriocranioidea, Hepialoidea and Nepticuloidea), with all previous literature records of other insect orders and those primitive Lepidoptera lineages being considered incorrect. The following nomenclatural acts are proposed: 1) Two genera are synonymyzed under Apanteles: Cecidobracon Kieffer & Jörgensen, 1910, new synonym and Holcapanteles Cameron, 1905, new synonym; 2) Nine lectotype designations are made for Alphomelon disputabile (Ashmead, 1900), Alphomelon nigriceps (Ashmead, 1900), Cotesia salebrosa (Marshall, 1885), Diolcogaster xanthaspis (Ashmead, 1900), Dolichogenidea ononidis (Marshall, 1889), Glyptapanteles acraeae (Wilkinson, 1932), Glyptapanteles guyanensis (Cameron, 1911), Glyptapanteles militaris (Walsh, 1861), and Pseudapanteles annulicornis Ashmead, 1900; 3) Three new replacement names are a) Diolcogaster aurangabadensis Fernandez-Triana, replacing Diolcogaster indicus (Rao & Chalikwar, 1970) [nec Diolcogaster indicus (Wilkinson, 1927)], b) Dolichogenidea incystatae Fernandez-Triana, replacing Dolichogenidea lobesia Liu & Chen, 2019 [nec Dolichogenidea lobesia Fagan-Jeffries & Austin, 2019], and c) Microplitis vitobiasi Fernandez-Triana, replacing Microplitis variicolor Tobias, 1964 [nec Microplitis varicolor Viereck, 1917]; 4) Three names amended are Apanteles irenecarrilloae Fernandez-Triana, 2014, Cotesia ayerzai (Brèthes, 1920), and Cotesia riverai (Porter, 1916); 5) Seven species have their status revised: Cotesia arctica (Thomson, 1895), Cotesia okamotoi (Watanabe, 1921), Cotesia ukrainica (Tobias, 1986), Dolichogenidea appellator (Telenga, 1949), Dolichogenidea murinanae (Capek & Zwölfer, 1957), Hypomicrogaster acarnas Nixon, 1965, and Nyereria nigricoxis (Wilkinson, 1932); 6) New combinations are given for 318 species: Alloplitis congensis, Alloplitis detractus, Apanteles asphondyliae, Apanteles braziliensis, Apanteles sulciscutis, Choeras aper, Choeras apollion, Choeras daphne, Choeras fomes, Choeras gerontius, Choeras helle, Choeras irates, Choeras libanius, Choeras longiterebrus, Choeras loretta, Choeras recusans, Choeras sordidus, Choeras stenoterga, Choeras superbus, Choeras sylleptae, Choeras vacillatrix, Choeras vacillatropsis, Choeras venilia, Cotesia asavari, Cotesia bactriana, Cotesia bambeytripla, Cotesia berberidis, Cotesia bhairavi, Cotesia biezankoi, Cotesia bifida, Cotesia caligophagus, Cotesia cheesmanae, Cotesia compressithorax, Cotesia delphinensis, Cotesia effrena, Cotesia euphobetri, Cotesia elaeodes, Cotesia endii, Cotesia euthaliae, Cotesia exelastisae, Cotesia hiberniae, Cotesia hyperion, Cotesia hypopygialis, Cotesia hypsipylae, Cotesia jujubae, Cotesia lesbiae, Cotesia levigaster, Cotesia lizeri, Cotesia malevola, Cotesia malshri, Cotesia menezesi, Cotesia muzaffarensis, Cotesia neptisis, Cotesia nycteus, Cotesia oeceticola, Cotesia oppidicola, Cotesia opsiphanis, Cotesia pachkuriae, Cotesia paludicolae, Cotesia parbhanii, Cotesia parvicornis, Cotesia pratapae, Cotesia prozorovi, Cotesia pterophoriphagus, Cotesia radiarytensis, Cotesia rangii, Cotesia riverai, Cotesia ruficoxis, Cotesia senegalensis, Cotesia seyali, Cotesia sphenarchi, Cotesia sphingivora, Cotesia transuta, Cotesia turkestanica, Diolcogaster abengouroui, Diolcogaster agama, Diolcogaster ambositrensis, Diolcogaster anandra, Diolcogaster annulata, Diolcogaster bambeyi, Diolcogaster bicolorina, Diolcogaster cariniger, Diolcogaster cincticornis, Diolcogaster cingulata, Diolcogaster coronata, Diolcogaster coxalis, Diolcogaster dipika, Diolcogaster earina, Diolcogaster epectina, Diolcogaster epectinopsis, Diolcogaster grangeri, Diolcogaster heterocera, Diolcogaster homocera, Diolcogaster indica, Diolcogaster insularis, Diolcogaster kivuana, Diolcogaster mediosulcata, Diolcogaster megaulax, Diolcogaster neglecta, Diolcogaster nigromacula, Diolcogaster palpicolor, Diolcogaster persimilis, Diolcogaster plecopterae, Diolcogaster plutocongoensis, Diolcogaster psilocnema, Diolcogaster rufithorax, Diolcogaster semirufa, Diolcogaster seyrigi, Diolcogaster subtorquata, Diolcogaster sulcata, Diolcogaster torquatiger, Diolcogaster tristiculus, Diolcogaster turneri, Diolcogaster vulcana, Diolcogaster wittei, Distatrix anthedon, Distatrix cerales, Distatrix cuspidalis, Distatrix euproctidis, Distatrix flava, Distatrix geometrivora, Distatrix maia, Distatrix tookei, Distatrix termina, Distatrix simulissima, Dolichogenidea agamedes, Dolichogenidea aluella, Dolichogenidea argiope, Dolichogenidea atreus, Dolichogenidea bakeri, Dolichogenidea basiflava, Dolichogenidea bersa, Dolichogenidea biplagae, Dolichogenidea bisulcata, Dolichogenidea catonix, Dolichogenidea chrysis, Dolichogenidea coffea, Dolichogenidea coretas, Dolichogenidea cyane, Dolichogenidea diaphantus, Dolichogenidea diparopsidis, Dolichogenidea dryas, Dolichogenidea earterus, Dolichogenidea ensiger, Dolichogenidea eros, Dolichogenidea evadne, Dolichogenidea falcator, Dolichogenidea gelechiidivoris, Dolichogenidea gobica, Dolichogenidea hyalinis, Dolichogenidea iriarte, Dolichogenidea lakhaensis, Dolichogenidea lampe, Dolichogenidea laspeyresiella, Dolichogenidea latistigma, Dolichogenidea lebene, Dolichogenidea lucidinervis, Dolichogenidea malacosomae, Dolichogenidea maro, Dolichogenidea mendosae, Dolichogenidea monticola, Dolichogenidea nigra, Dolichogenidea olivierellae, Dolichogenidea parallelis, Dolichogenidea pelopea, Dolichogenidea pelops, Dolichogenidea phaenna, Dolichogenidea pisenor, Dolichogenidea roepkei, Dolichogenidea scabra, Dolichogenidea statius, Dolichogenidea stenotelas, Dolichogenidea striata, Dolichogenidea wittei, Exoryza asotae, Exoryza belippicola, Exoryza hylas, Exoryza megagaster, Exoryza oryzae, Glyptapanteles aggestus, Glyptapanteles agynus, Glyptapanteles aithos, Glyptapanteles amenophis, Glyptapanteles antarctiae, Glyptapanteles anubis, Glyptapanteles arginae, Glyptapanteles argus, Glyptapanteles atylana, Glyptapanteles badgleyi, Glyptapanteles bataviensis, Glyptapanteles bistonis, Glyptapanteles borocerae, Glyptapanteles cacao, Glyptapanteles cadei, Glyptapanteles cinyras, Glyptapanteles eryphanidis, Glyptapanteles euproctisiphagus, Glyptapanteles eutelus, Glyptapanteles fabiae, Glyptapanteles fulvigaster, Glyptapanteles fuscinervis, Glyptapanteles gahinga, Glyptapanteles globatus, Glyptapanteles glyphodes, Glyptapanteles guierae, Glyptapanteles horus, Glyptapanteles intricatus, Glyptapanteles lamprosemae, Glyptapanteles lefevrei, Glyptapanteles leucotretae, Glyptapanteles lissopleurus, Glyptapanteles madecassus, Glyptapanteles marquesi, Glyptapanteles melanotus, Glyptapanteles melissus, Glyptapanteles merope, Glyptapanteles naromae, Glyptapanteles nepitae, Glyptapanteles nigrescens, Glyptapanteles ninus, Glyptapanteles nkuli, Glyptapanteles parasundanus, Glyptapanteles penelope, Glyptapanteles penthocratus, Glyptapanteles philippinensis, Glyptapanteles philocampus, Glyptapanteles phoebe, Glyptapanteles phytometraduplus, Glyptapanteles propylae, Glyptapanteles puera, Glyptapanteles seydeli, Glyptapanteles siderion, Glyptapanteles simus, Glyptapanteles speciosissimus, Glyptapanteles spilosomae, Glyptapanteles subpunctatus, Glyptapanteles thespis, Glyptapanteles thoseae, Glyptapanteles venustus, Glyptapanteles wilkinsoni, Hypomicrogaster samarshalli, Iconella cajani, Iconella detrectans, Iconella jason, Iconella lynceus, Iconella pyrene, Iconella tedanius, Illidops azamgarhensis, Illidops lamprosemae, Illidops trabea, Keylimepie striatus, Microplitis adisurae, Microplitis mexicanus, Neoclarkinella ariadne, Neoclarkinella curvinervus, Neoclarkinella sundana, Nyereria ituriensis, Nyereria nioro, Nyereria proagynus, Nyereria taoi, Nyereria vallatae, Parapanteles aethiopicus, Parapanteles alternatus, Parapanteles aso, Parapanteles atellae, Parapanteles bagicha, Parapanteles cleo, Parapanteles cyclorhaphus, Parapanteles demades, Parapanteles endymion, Parapanteles epiplemicidus, Parapanteles expulsus, Parapanteles fallax, Parapanteles folia, Parapanteles furax, Parapanteles hemitheae, Parapanteles hyposidrae, Parapanteles indicus, Parapanteles javensis, Parapanteles jhaverii, Parapanteles maculipalpis, Parapanteles maynei, Parapanteles neocajani, Parapanteles neohyblaeae, Parapanteles nydia, Parapanteles prosper, Parapanteles prosymna, Parapanteles punctatissimus, Parapanteles regalis, Parapanteles sarpedon, Parapanteles sartamus, Parapanteles scultena, Parapanteles transvaalensis, Parapanteles turri, Parapanteles xanthopholis, Pholetesor acutus, Pholetesor brevivalvatus, Pholetesor extentus, Pholetesor ingenuoides, Pholetesor kuwayamai, Promicrogaster apidanus, Promicrogaster briareus, Promicrogaster conopiae, Promicrogaster emesa, Promicrogaster grandicula, Promicrogaster orsedice, Promicrogaster repleta, Promicrogaster typhon, Sathon bekilyensis, Sathon flavofacialis, Sathon laurae, Sathon mikeno, Sathon ruandanus, Sathon rufotestaceus, Venanides astydamia, Venanides demeter, Venanides parmula, and Venanides symmysta.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography