Academic literature on the topic 'Protein material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Protein material"
Carter, Nathan A., and Tijana Z. Grove. "Functional protein materials: beyond elastomeric and structural proteins." Polymer Chemistry 10, no. 23 (2019): 2952–59. http://dx.doi.org/10.1039/c9py00337a.
Full textWhyburn, Gordon P., Yujing Li, and Yu Huang. "Protein and protein assembly based material structures." Journal of Materials Chemistry 18, no. 32 (2008): 3755. http://dx.doi.org/10.1039/b807421f.
Full textNichols, Patrick E., Jeffrey S. Bates, and Taylor D. Sparks. "Exploration of Polytetrafluoroethylene as a Potential Material Replacement for Hemodialysis Applications." MRS Advances 1, no. 29 (2016): 2147–53. http://dx.doi.org/10.1557/adv.2016.473.
Full textJawerth, Louise, Elisabeth Fischer-Friedrich, Suropriya Saha, Jie Wang, Titus Franzmann, Xiaojie Zhang, Jenny Sachweh, et al. "Protein condensates as aging Maxwell fluids." Science 370, no. 6522 (December 10, 2020): 1317–23. http://dx.doi.org/10.1126/science.aaw4951.
Full textSrinivasan, U., G. H. Iyer, T. A. Przybycien, W. A. Samsonoff, and J. A. Bell. "Crystine: fibrous biomolecular material from protein crystals cross-linked in a specific geometry." Protein Engineering, Design and Selection 15, no. 11 (November 2002): 895–902. http://dx.doi.org/10.1093/protein/15.11.895.
Full textBaskaran, Nareshkumar, You-Cheng Chang, Chia-Hua Chang, Shun-Kai Hung, Chuan-Tse Kao, and Yang Wei. "Quantify the Protein–Protein Interaction Effects on Adsorption Related Lubricating Behaviors of α-Amylase on a Glass Surface." Polymers 12, no. 8 (July 25, 2020): 1658. http://dx.doi.org/10.3390/polym12081658.
Full textZegers, Ingrid, Thomas Keller, Wiebke Schreiber, Joanna Sheldon, Riccardo Albertini, Søren Blirup-Jensen, Myron Johnson, et al. "Characterization of the New Serum Protein Reference Material ERM-DA470k/IFCC: Value Assignment by Immunoassay." Clinical Chemistry 56, no. 12 (December 1, 2010): 1880–88. http://dx.doi.org/10.1373/clinchem.2010.148809.
Full textGanesan, Ramakrishnan, Karl Kratz, and Andreas Lendlein. "Multicomponent protein patterning of material surfaces." Journal of Materials Chemistry 20, no. 35 (2010): 7322. http://dx.doi.org/10.1039/b926690a.
Full textMessia, Maria Cristina, Francesca Cuomo, Luisa Falasca, Maria Carmela Trivisonno, Elisa De Arcangelis, and Emanuele Marconi. "Nutritional and Technological Quality of High Protein Pasta." Foods 10, no. 3 (March 11, 2021): 589. http://dx.doi.org/10.3390/foods10030589.
Full textWoodruff, Jeffrey B., Oliver Wueseke, and Anthony A. Hyman. "Pericentriolar material structure and dynamics." Philosophical Transactions of the Royal Society B: Biological Sciences 369, no. 1650 (September 5, 2014): 20130459. http://dx.doi.org/10.1098/rstb.2013.0459.
Full textDissertations / Theses on the topic "Protein material"
Ilic, Natasa, Nektaria Lalangas, Jowan Rostami, and Alexander Wiorek. "Nya material från protein-nanofibrer." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-208749.
Full textDuring this bachelor thesis project, the impact of protein nanofibers on materials has been analysed by comparing films made from fibrillar and non-fibrillar protein. Fibrillation of soy protein isolate was performed during at least 24 hours at pH 2 and a temperature of 85 ◦C. Analysis of the nanofibers was made with Thioflavin T (ThT) fluorescence and atomic force microscopy (AFM). The spectra from ThT Fluorescens indicated the presence of β-sheets and AFM confirmed that the fibrils had a morphology that is characteristic of protein nanofibers. The results indicated that heating time and protein type were the parameters which had the largest impact on the morphology of the fibrils. The synthesised films from both fibrillar and non-fibrillar protein were coherent with exception of some cracks. The elastic modulus from AFM indicated that the fibrillar film was more heterogeneous compared to the non-fibrillar film. To attain coherent films, the plasticising agent glycerol was added. To summarise, both fibrillar as well as non-fibrillar materials were successfully synthesised, however, further research is necessary to optimise the properties of the material.
Rosengren, Åsa. "Cell-protein-material interactions on bioceramics and model surfaces /." Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4688.
Full textRosengren, Åsa. "Cell-protein-material Interactions on Bioceramics and Model Surfaces." Doctoral thesis, Uppsala University, Surface Biotechnology, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4688.
Full textThe objective of this thesis was to investigate and characterize the interaction between blood proteins and different surfaces with emphasis on protein adsorption to bioceramics and model surfaces. Special effort was made to monitor the spontaneous and selective adsorption of proteins from human plasma and to examine the orientation, conformation and functional behavior of single proteins after adsorption.
Five different ceramic biomaterials: alumina (Al2O3), zirconia (ZrO2), hydroxyapatite (Ca10(PO4)6(OH)2) and two glass-ceramics, AP40 (SiO2-CaO-Na2O-P2O5-MgO-K2O-CaF2) and RKKP (AP40 with Ta2O3-La2O3), were exposed to human plasma and their protein binding capacities and affinities for specific proteins were studied by chromatography, protein assays, two-dimensional gel electrophoresis and Western blotting. The studies showed that all materials adsorbed approximately the same high amount of plasma proteins and that they therefore should be fully covered by proteins in an in vivo setting. The adsorbed proteins were different for most materials which could explain their previously observed different levels of tissue integration in vivo.
Four of the proteins that behaved differently, ceruloplasmin, prothrombin, α2-HS-glycoprotein and α1-antichymotrypsin, were selected for characterization with atomic force microscopy and ellipsometry. The studies, which were performed on ultraflat silicon wafers (silica), showed that the proteins oriented themselves with their long axis parallel to the surface or as in case of ceruloplasmin with one of its larger sides towards the surface. All of them had globular shapes but other conformational details were not resolved. Furthermore, prothrombin (none of the others) formed multilayers at high proteins concentrations.
The functional behaviour of the adsorbed proteins, referring to their cell binding and cell spreading capacity on silica and a positive cell adhesion reference surface (Thermanox®), was affected by the underlying substrate. Ceruloplasmin, α2-HS-glycoprotein and α1-antichymotrypsin stimulated cell attachment to silica, but suppressed attachment to Thermanox®. Prothrombin stimulated cell attachment to both surfaces. The attachment was in most cases mediated both by cell membrane-receptors (integrins) and by non-specific interactions between the cell and the material.
This thesis showed that the compositional mixture, orientation, conformation and functional behavior of the adsorbed proteins are determined by the properties of the underlying surface and if these parameters are controlled very different cellular responses can be induced.
González, García Cristina. "BIOLOGICAL ACTIVITY OF FIBRONECTIN AT THE CELL-MATERIAL INTERFACE." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/17701.
Full textGonzález García, C. (2012). BIOLOGICAL ACTIVITY OF FIBRONECTIN AT THE CELL-MATERIAL INTERFACE [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17701
Palancia
Turnbull, Robert Edward. "Regulation of monocyte anti-thrombotic gene and protein expression through platelet-derived material." Thesis, University of Leicester, 2016. http://hdl.handle.net/2381/36700.
Full textAllen, Mark Andrew. "Protein Cage Architectures as a Nano-Platform for Material Synthesis and Metal Binding." Thesis, Montana State University, 2006. http://etd.lib.montana.edu/etd/2006/allen/AllenM0806.pdf.
Full textLlopis, Hernández Virginia. "Material-driven fibronectin fibrillogenesis to engineer cell function." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/90412.
Full textEn esta tesis se estudia la interacción de una proteina de la matriz extracelular, fibronectina (FN) como interfase en la interacción entre células y materiales, para diseñar microambientes con el propósito de ser usados en el futuro en ingeniería tisular. Se estudia la adsorción y conformación de FN y la relación con el diferente comportamiento celular: la adhesión celular, la reorganización y remodelado de la FN en la interfase célula-material, el papel que juegan los factores de crecimiento y sus interacciones con los componentes de la matriz extracelular, la respuesta immunológica y el destino celular de células madre influenciadas por las señales extrínsecas provenientes de microambientes elaborados a partir de proteínas de la matriz extracelular. Con el objetivo de investigar la respuesta a la FN en términos de conformación y cantidad absorbida a diferentes propiedades químicas del material, se usaron materiales modelo: monocapas autoensambladas (self-assembled monolayers, SAM). Las químicas estudiadas fueron CH3 and OH. La adsorption de FN, adhesion y señalización (adhesiones focales, expresión de interinas y fosforilación de quinasas de adhesiones focales (FAK)) se estudiaron en relación a la reorganización y secreción de FN y degradación de la matriz extracelular. Se demuestra que la degradación de la matriz extracelular en la interfase célula-material depende de la química de la superficie, a través de las metaloproteinasas. Se ha descubierto una relación directa entre la actividad de la FN que se encuentra en el material y la expresión de metaloproteinasa 9 (MMP9), a través de la expresión de integrinas, formación de adhesiones focales, reorganización de la matriz extracelular y fosforilación de FAK En el siguiente capítulo se emplean materiales poliméricos con una sutil diferencia en la composición química, provocando una diferencia drástica en la conformación de la FN: se pasa de una conformación globular en PMA (polimetil acrilato) a una conformación en forma de red interconectada en PEA (polietil acrilato). Con el propósito de relacionar la adhesión celular con la degradación de la matriz extracelular, se estudia la formación de adhesiones focales (vinculina), la expresión y fosforilación de FAK, la unión específica de integrinas y la expresión de las integrinas ¿5 and ¿v. Se demuestra que la formación de una red de FN sobre PEA induce la actividad proteolítica: la actividad de las MMPs es mayor, actuando como mecanismo compensatorio a la incapacidad de reorganización de la red de FN. Haciendo uso de la conformación de la FN sobre PEA, se estudiaron las interacciones entre la proteína-material y el destino celular de células madres. La FN posee un dominio de unión de factores de crecimiento (FNIII12-14) y se ha demostrado que se produce una respuesta sinérgica cuando el reconocimiento ocurre junto con el dominio de unión celular (FNIII9-10). En esta tesis se demuestra que el dominio de unión de factores de crecimiento está disponible en la conformación que adquiere sobre PEA y se diseñan microambientes para controlar el comportamiento celular y regeneración de tejido. Se estudia la unión y presentación de BMP2 y su efecto en la diferenciación de células madre mesenquimales. Los microambientes desarrollados, ademas de mejorar la actividad de los factores de crecimiento comparado con la administración soluble, también reduce la cantidad de factores de crecimiento que se tendría que administrar, mejorando la seguridad y efectividad. Finalmente se estudió la reacción inmunológica a los microambientes desarrollados usando células dendríticas, estudiando además la influencia de la estructura de la conformación de las proteínas en la activación de las células dendríticas a través de las integrinas. Los microambientes no indujeron ninguna maduración de células dendríticas, mientras que la conformación de la FN muestra control
En aquesta tesi s'estudia la interacció entre una proteïna de la matriu extracel.lular, fibronectina (FN) com interfase en la interaccio entre cèl·lules i materials, per a dissenyar microambients amb el propòsit d'utilitzar-se al futur en enginyeria tissular. S'estudia l'adsorció i conformació de la FN i la relació amb el diferent comportament cel·lular: l'adhesió cel·lular, la reorganització i remodelat de la FN a la interfase cèl·lula-material, el paper que juguen els factors de creixement i les seus interaccions amb els components de la matriu extracel·lular, la resposta immunològica i el destí cel·lular de cèl·lules mare influenciades pels senyals extrínseques provinents de microambients elaborats a partir de proteïnes de la matriu extracel·lular. Amb l'objectiu d'investigar la respostar a la FN en termes de conformació i quantitat absorbida a diferents propietats químiques del material, s'utilitzaren materials model: monocapes autoacoblades (self-assembled monolayers, SAM). Les químiques estudiades van ser CH3 and OH. L'absorció de FN, adhesió i senyalització (adhesions focals, expressió d'integrines i fosforilació de quinases d'adhesions focals (FAK)) es van estudiar en relació a al reorganització i secreció de la FN i degradació de la matriu extracel·lular. Es demostra que la degradació de la matriu extracelular en la interfase cèl·lula-material depèn de la química de la superficie, a través de les metal·loproteïnases. S'ha descobert una relació directa entra l'activitat de la FN que es troba en el material i l'expressió de metaloproteinasa 9, a través de l'expressió d'integrines, formació d'adhesions focals, reorganització de la matriu extracel·lular i fosforilació de FAK. Al següent capítol es fan servir materials polimèrics amb una subtil diferència en la composició química, provocant una diferència dràstica en la conformació de la FN: es passa d'una conformació globular en PMA (polimetil acrilat) a una conformació en forma de xarxa interconnectada en PEA (polietil acrilat). Amb el propòsit de relacionar l'adhesió cel·lular amb la degradació de la matriu extracel·lular, s'estudia la formació d'adhesions focals (vinculina), l'expressió i fosforilació de FAK, la unió específica d'integrines i l'expressió de les integrines ¿5 and ¿v. Es demostra que la formació d'una xarxa de FN sobre PEA indueix l'activitat proteolítica: l'activitat de les MMPs és més gran, actuant com a mecanisme compensatori a la incapacitat de reorganització de la xarxa de FN. Fent ús de la conformació de la FN sobre PEA, es van estudiar les interaccions entre la proteïna-material i el destí cel·lular de cèl·lules mares. La FN posseeix un domini d'unió de factors de creixement (FNIII12-14) i s'ha demostrat que es produeix una resposta sinèrgica quan el reconeixement ocurreix juntament amb el domini d'unió cel·lular (FNIII9- 10). En aquesta tesi es demostra que el domini d'unió de factors de creixement està disponible a la conformació que adquireix sobre PEA i es dissenyen microambients per controlar el comportament cel·lular i regeneració de teixit. S'estudia la unió i presentació de BMP2 i el seu efecte en la diferenciació de cèl·lules mare mesenquimals. Els microambientes desenvolupats, a més de millorar l'activitat dels factors de creixement comparat amb l'administració soluble, també redueix la quantitat de factors de creixement que s'hauria d'administrar, millorant la seguretat i efectivitat. Finalment es va estudiar la reacció immunològica als microambients desenvolupats usant cèl·lules dendrítiques, estudiant a més la influència de l'estructura de la conformació de les proteïnes en l'activació de les cèl·lules dendrítiques a través de les integrines. Els microambients no van induir cap maduració de cèl·lules dendrítiques, mentre que la conformació de la FN mostra controlar la morfologia de les cèl·lules dendrítiques i
Llopis Hernández, V. (2017). Material-driven fibronectin fibrillogenesis to engineer cell function [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90412
TESIS
Bodlund, Ida. "Coagulant Protein from plant materials: Potential Water Treatment Agent." Licentiate thesis, KTH, Industriell bioteknologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-107335.
Full textQC 20121214
Kappiyoor, Ravi. "Mechanical Properties of Elastomeric Proteins." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/54563.
Full textPh. D.
Robbins, Steven C. "Distribution of Colloidal Material in Activated Sludge as Influenced by Cations." Thesis, Virginia Tech, 2004. http://hdl.handle.net/10919/45540.
Full textMaster of Science
Books on the topic "Protein material"
György, Marko-Varga, and Oroszlan Peter, eds. Emerging technologies in protein and genomic material anaylsis. Amsterdam: Elsevier, 2003.
Find full textMcGrath, Kevin, and David Kaplan, eds. Protein-Based Materials. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-4094-5.
Full text1962-, McGrath Kevin, and Kaplan David 1953-, eds. Protein-based materials. Boston: Birkhäuser, 1997.
Find full textProgram, Massachusetts Genetics. Maternal serum alpha-feto protein: Screening test. Boston, MA: Massachusetts Genetics Program, Division of Perinatal Health, Bureau of Parent, Child and Adolescent Health, Massachusetts Dept. of Public Health, 1990.
Find full textKhataee, A. R. Mechanical and dynamical principles of protein nanomotors: The key to nano-engineering applications. New York: Nova Science Publishers, 2010.
Find full textKhataee, A. R. Mechanical and dynamical principles of protein nanomotors: The key to nano-engineering applications. Hauppauge, N.Y: Nova Science Publishers, 2009.
Find full textSeliger, Larsen Barbara, and McEwen Charles N. 1942-, eds. Mass spectrometry of biological materials. 2nd ed. New York: Marcel Dekker, 1998.
Find full textStanisław, Błażewicz, ed. Biopolymers: Lignin, proteins, bioactive nanocomposites. Berlin: Springer, 2010.
Find full textBook chapters on the topic "Protein material"
McKenzie, Janice L., Thomas J. Webster, and J. L. McKenzie. "Protein Interactions at Material Surfaces." In Biomedical Materials, 399–422. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49206-9_12.
Full textMcKenzie, Janice L., and Thomas J. Webster. "Protein Interactions at Material Surfaces." In Biomedical Materials, 215–37. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-84872-3_8.
Full textBragg, Jason G., and Andreas Wagner. "The Evolution of Protein Material Costs." In Evolutionary Genomics and Systems Biology, 203–11. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470570418.ch11.
Full textMurtaza, Mian Anjum, and Kashif Ameer. "Food Processing Industrial Byproducts as Raw Material for the Production of Plant Protein Foods." In Plant Protein Foods, 109–29. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91206-2_4.
Full textKunz, Meik. "Material und Methoden." In Modellierung und Simulation von Protein-Interaktionen am Beispiel von Wirts-Pathogen-Interaktionen, 43–48. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-16778-3_2.
Full textSchiesser, William E. "Virus Protein ODE/PDE Models." In Virus Host Cell Genetic Material Transport, 1–4. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68865-3_1.
Full textMills, O. E., and A. J. Broome. "Isolation of Flavor Compounds from Protein Material." In ACS Symposium Series, 85–91. Washington, DC: American Chemical Society, 1998. http://dx.doi.org/10.1021/bk-1998-0705.ch008.
Full textMaschke, A., A. Lucke, W. Vogelhuber, C. Fischbach, B. Appel, T. Blunk, and A. Göpferich. "Lipids: An Alternative Material for Protein and Peptide Release." In ACS Symposium Series, 176–96. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0879.ch013.
Full textWard, C. A. "Blood Protein-Material Interactions That Lead to Cellular Adhesion." In ACS Symposium Series, 551–65. Washington, DC: American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0343.ch034.
Full textBlaich, Rolf. "Function of Genetic Material Transposable Elements, Seed Proteins, and Protein Synthesis in Higher Plants." In Progress in Botany, 198–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-45607-7_14.
Full textConference papers on the topic "Protein material"
Teng, Weibing, Joseph Cappello, and Xiaoyi Wu. "Viscoelastic Properties of Genetically Engineered Silk-Elastin-Like Protein Polymers." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192252.
Full textPanda, Rupayana, Satya Narayan Sahu, Fahmida Khan, and Subrat Kumar Pattanayak. "Binding performance of phytochemicals with mutant threonine-protein kinase Chk2 protein: An in silico study." In PROCEEDINGS OF ADVANCED MATERIAL, ENGINEERING & TECHNOLOGY. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0019655.
Full textLin, Zhen-Rong, Yun-Yun Xu, and Tao Zhang. "Application of Nanometer Materials in Protein Separation." In 3rd Annual International Conference on Advanced Material Engineering (AME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/ame-17.2017.50.
Full textLisnichenko, Marina, and Stanislav Protasov. "BIO MATERIAL MODELING QUANTUM CIRCUIT COMPRESSION." In Mathematical modeling in materials science of electronic component. LCC MAKS Press, 2022. http://dx.doi.org/10.29003/m3058.mmmsec-2022/15-17.
Full textMunthe, Eika Abigail, Saronom Silaban, and Zainuddin Muchtar. "Discovery Learning Based E-Module on Protein Material Development." In Proceedings of the 4th Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/aisteel-19.2019.137.
Full textShawkat Zamil, K. M., and Julia Rahman. "Prediction of Protein-Protein Interaction from Amino Acid Sequence Using Ensemble Classifier." In 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). IEEE, 2018. http://dx.doi.org/10.1109/ic4me2.2018.8465485.
Full textMattern-Schain, Samuel I., Mary-Anne Nguyen, Tayler M. Schimel, James Manuel, Joshua Maraj, Donald Leo, Eric Freeman, Scott Lenaghan, and Stephen A. Sarles. "Totipotent Cellularly-Inspired Materials." In ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/smasis2019-5745.
Full textOtt, Lindsey, Cindy Vu, Ashley Farris, Robert Weatherly, and Michael Detamore. "Material Composition Gradients and Protein Release for Tracheal Defect Repair." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14391.
Full textJafar Khan Kasi, Ajab Khan Kasi, Nitin Afzulpurkar, and Naveed Sheikh. "Notice of Retraction: Protein sensor for the waste dialysate material." In 2010 2nd International Conference on Mechanical and Electronics Engineering (ICMEE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icmee.2010.5558420.
Full textPratakshya, Preeta, and Alon Gorodetsky. "Tunable Assembly and Refractive Index of a Cephalopod Protein-Based Material." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/noma.2021.nom1d.4.
Full textReports on the topic "Protein material"
Lu, Hong P. Controlling Protein Conformations to Explore Unprecedented Material Properties by Single-Molecule Surgery. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada584676.
Full textEvans, John Spencer. Material lessons of biology: structure function studies of protein sequences involved in inorganic composite material formation. Final Technical Report. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1560814.
Full textDea, Jack Y., and Lev Sheiba. Material and Acoustical Studies of Elastic Protein-Based Polymers Engineered for Selected Acoustical and Non-Acoustical Characteristics. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada403518.
Full textGafny, Ron, A. L. N. Rao, and Edna Tanne. Etiology of the Rugose Wood Disease of Grapevine and Molecular Study of the Associated Trichoviruses. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575269.bard.
Full textBarakat, Dr Shima, Dr Samuel Short, Dr Bernhard Strauss, and Dr Pantea Lotfian. https://www.food.gov.uk/research/research-projects/alternative-proteins-for-human-consumption. Food Standards Agency, June 2022. http://dx.doi.org/10.46756/sci.fsa.wdu243.
Full textBarefoot, Susan F., Bonita A. Glatz, Nathan Gollop, and Thomas A. Hughes. Bacteriocin Markers for Propionibacteria Gene Transfer Systems. United States Department of Agriculture, June 2000. http://dx.doi.org/10.32747/2000.7573993.bard.
Full textCrisosto, Carlos, Susan Lurie, Haya Friedman, Ebenezer Ogundiwin, Cameron Peace, and George Manganaris. Biological Systems Approach to Developing Mealiness-free Peach and Nectarine Fruit. United States Department of Agriculture, 2007. http://dx.doi.org/10.32747/2007.7592650.bard.
Full textSmith, G. S., A. Nowak, and C. Safinya. Advanced biomolecular materials based on membrane-protein/polymer complexation. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/296874.
Full textLewis, Randolph V. Designing Spider Silk Proteins for Materials Applications. Fort Belvoir, VA: Defense Technical Information Center, October 2009. http://dx.doi.org/10.21236/ada516656.
Full textShort, Samuel, Bernhard Strauss, and Pantea Lotfian. Emerging technologies that will impact on the UK Food System. Food Standards Agency, June 2021. http://dx.doi.org/10.46756/sci.fsa.srf852.
Full text