Academic literature on the topic 'Protein-Protein Docking - Algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Protein-Protein Docking - Algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Protein-Protein Docking - Algorithms"
Vreven, Thom, Howook Hwang, and Zhiping Weng. "Exploring Angular Distance in Protein-Protein Docking Algorithms." PLoS ONE 8, no. 2 (February 21, 2013): e56645. http://dx.doi.org/10.1371/journal.pone.0056645.
Full textCakici, Serdar, Selcuk Sumengen, Ugur Sezerman, and Selim Balcisoy. "DockPro: A VR-Based Tool for Protein-Protein Docking Problem." International Journal of Virtual Reality 8, no. 2 (January 1, 2009): 19–23. http://dx.doi.org/10.20870/ijvr.2009.8.2.2720.
Full textRuiz Echartea, Maria Elisa, Isaure Chauvot de Beauchêne, and David W. Ritchie. "EROS-DOCK: protein–protein docking using exhaustive branch-and-bound rotational search." Bioinformatics 35, no. 23 (May 24, 2019): 5003–10. http://dx.doi.org/10.1093/bioinformatics/btz434.
Full textCherfils, Jacqueline, and Joël Janin. "Protein docking algorithms: simulating molecular recognition." Current Opinion in Structural Biology 3, no. 2 (April 1993): 265–69. http://dx.doi.org/10.1016/s0959-440x(05)80162-9.
Full textSunny, Sharon, and P. B. Jayaraj. "A Geometric Complementarity-Based Tool for Protein–Protein Docking." Journal of Computational Biophysics and Chemistry 21, no. 01 (December 9, 2021): 35–46. http://dx.doi.org/10.1142/s273741652250003x.
Full textSukhwal, Anshul, and Ramanathan Sowdhamini. "PPCheck: A Webserver for the Quantitative Analysis of Protein-Protein Interfaces and Prediction of Residue Hotspots." Bioinformatics and Biology Insights 9 (January 2015): BBI.S25928. http://dx.doi.org/10.4137/bbi.s25928.
Full textZheng, Jinfang, Xu Hong, Juan Xie, Xiaoxue Tong, and Shiyong Liu. "P3DOCK: a protein–RNA docking webserver based on template-based and template-free docking." Bioinformatics 36, no. 1 (June 7, 2019): 96–103. http://dx.doi.org/10.1093/bioinformatics/btz478.
Full textDUAN, YUHUA, BOOJALA V. B. REDDY, and YIANNIS N. KAZNESSIS. "RESIDUE CONSERVATION INFORMATION FOR GENERATING NEAR-NATIVE STRUCTURES IN PROTEIN–PROTEIN DOCKING." Journal of Bioinformatics and Computational Biology 04, no. 04 (August 2006): 793–806. http://dx.doi.org/10.1142/s0219720006002223.
Full textHan, Ye, Simin Zhang, and Fei He. "A Point Cloud-Based Deep Learning Model for Protein Docking Decoys Evaluation." Mathematics 11, no. 8 (April 11, 2023): 1817. http://dx.doi.org/10.3390/math11081817.
Full textChen, Jui-Le, Chun-Wei Tsai, Ming-Chao Chiang, and Chu-Sing Yang. "A High Performance Cloud-Based Protein-Ligand Docking Prediction Algorithm." BioMed Research International 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/909717.
Full textDissertations / Theses on the topic "Protein-Protein Docking - Algorithms"
Derevyanko, Georgy. "Structure-based algorithms for protein-protein interactions." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY070/document.
Full textThe phenotype of every known living organism is determined mainly by the complicated interactions between the proteins produced in this organism. Understanding the orchestration of the organismal responses to the external or internal stimuli is based on the understanding of the interactions of individual proteins and their complexes structures. The prediction of a complex of two or more proteins is the problem of the protein-protein docking field. Docking algorithms usually have two major steps: exhaustive 6D rigid-body search followed by the scoring. In this work we made contribution to both of these steps. We developed a novel algorithm for 6D exhaustive search, HermiteFit. It is based on Hermite decomposition of 3D functions into the Hermite basis. We implemented this algorithm in the program for fitting low-resolution electron density maps. We showed that it outperforms existing algorithms in terms of time-per-point while maintaining the same output model accuracy. We also developed a novel approach to computation of a scoring function, which is based on simple logical arguments and avoids an ambiguous computation of the reference state. We compared it to the existing scoring functions on the widely used protein-protein docking benchmarks. Finally, we developed an approach to include water-protein interactions into the scoring functions and validated our method during the Critical Assessment of Protein Interactions round 47
Sajjadi, Sajdeh [Verfasser]. "Step by step in fast protein-protein docking algorithms / Sajdeh Sajjadi." Lübeck : Zentrale Hochschulbibliothek Lübeck, 2014. http://d-nb.info/1060276887/34.
Full textJiménez, García Brian. "Development and optimization of high-performance computational tools for protein-protein docking." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/398790.
Full textGràcies als recents avenços en computació, el nostre coneixement de la química que suporta la vida ha incrementat enormement i ens ha conduït a comprendre que la química de la vida és més sofisticada del que mai haguéssim pensat. Les proteïnes juguen un paper fonamental en aquesta química i són descrites habitualment com a les fàbriques de les cèl·lules. A més a més, les proteïnes estan involucrades en gairebé tots els processos fonamentals en els éssers vius. Malauradament, el nostre coneixement de la funció de moltes proteïnes és encara escaig degut a les limitacions actuals de molts mètodes experimentals, que encara no són capaços de proporcionar-nos estructures de cristall per a molts complexes proteïna-proteïna. El desenvolupament de tècniques i eines informàtiques d’acoblament proteïna-proteïna pot ésser crucial per a ajudar-nos a reduir aquest forat. En aquesta tesis, hem presentat un nou mètode computacional de predicció d’acoblament proteïna-proteïna, LightDock, que és capaç de fer servir diverses funcions energètiques definides per l’usuari i incloure un model de flexibilitat de la cadena principal mitjançant la anàlisis de modes normals. Segon, diverses eines d’interès per a la comunitat científica i basades en tecnologia web han sigut desenvolupades: un servidor web de predicció d’acoblament proteïna-proteïna, una eina online per a caracteritzar les interfícies d’acoblament proteïna-proteïna i una eina web per a incloure dades experimentals de tipus SAXS. A més a més, les optimitzacions fetes al protocol pyDock i la conseqüent millora en rendiment han propiciat que el nostre grup de recerca obtingués la cinquena posició entre més de 60 grups en les dues darreres avaluacions de l’experiment internacional CAPRI. Finalment, hem dissenyat i compilat els banc de proves d’acoblament proteïna-proteïna (versió 5) i proteïna-ARN (versió 1), molt importants per a la comunitat ja que permeten provar i desenvolupar nous mètodes i analitzar-ne el rendiment en aquest marc de referència comú.
Gonçalves, Reinaldo Bellini. "Development and validation of new methods of distribution of initial population on genetic algorithms for the problem of protein-ligand docking." Laboratório Nacional de Computação Científica, 2008. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=154.
Full textOs métodos de docking proteína-ligante, são métodos computacionais usados para predizer o modo de ligação de moléculas candidatas a fármaco em seu receptor. O docking permite o teste de centenas de compostos em um curto espaço de tempo, auxiliando na descoberta de novos candidatos a fármacos. A grande complexidade que envolve a ligação do complexo ligante-proteína, torna o problema de docking difícil de ser resolvido computacionalmente. Neste trabalho, são usados os Algoritmos Genéticos, que são uma técnica de otimização baseada na teoria da evolução biológica de Darwin. O algoritmo proposto foi implementado e testado inicialmente por Camila S. de Magalhães em sua tese de doutorado, junto ao Grupo de Modelagem Molecular de Sistemas Biológicos do LNCC, com um conjunto de 5 ligantes de HIV-1 protease. Foi construido um novo conjunto utilizado para teste, agora com 49 estruturas com propriedades físico-químicas diversas, distribuidos em 22 famílias distintas de proteínas, permitindo um teste mais amplo do algoritmo. Foi realizado um estudo aprofundado sobre a dependência do Algoritmo Genético em relação à distribuição da sua população inicial e investigou-se formas mais eficientes e robustas de gerar a mesma. Dentre estas, a proposta de distribuir a população inicial baseada nas coordenadas dos indivíduos de menor energia na população (proposta 5), é muito promissora. Esta distribuição permitiu o algoritmo obter bons resultados, encontrando soluções de menor energia na população muito próximas a estrutura experimental otimizada, sem possuir informações específicas sobre a estrutura experimental. Este fato é muito importante, pois torna o algoritmo mais realista, tendo em vista que no desenho racional de fármacos real não se dispoe da estrutura experimental.
Oledzki, Peter Richard. "Developing a protein-ligand docking algorithm : FlexLigDock." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435818.
Full textBetts, Matthew James. "Analysis and prediction of protein-protein recognition." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313795.
Full textTai, Hio Kuan. "Protein-ligand docking and virtual screening based on chaos-embedded particle swarm optimization algorithm." Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3948431.
Full textRuiz, Echartea Maria Elisa. "Pairwise and Multi-Component Protein-Protein Docking Using Exhaustive Branch-and-Bound Tri-Dimensional Rotational Searches." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0306.
Full textDetermination of tri-dimensional (3D) structures of protein complexes is crucial to increase research advances on biological processes that help, for instance, to understand the development of diseases and their possible prevention or treatment. The difficulties and high costs of experimental methods to determine protein 3D structures and the importance of protein complexes for research have encouraged the use of computer science for developing tools to help filling this gap, such as protein docking algorithms. The protein docking problem has been studied for over 40 years. However, developing accurate and efficient protein docking algorithms remains a challenging problem due to the size of the search space, the approximate nature of the scoring functions used, and often the inherent flexibility of the protein structures to be docked. This thesis presents an algorithm to rigidly dock proteins using a series of exhaustive 3D branch-and-bound rotational searches in which non-clashing orientations are scored using ATTRACT. The rotational space is represented as a quaternion “π-ball”, which is systematically sub-divided in a “branch-and-bound” manner, allowing efficient pruning of rotations that will give steric clashes. The contribution of this thesis can be described in three main parts as follows. 1) The algorithm called EROS-DOCK to assemble two proteins. It was tested on 173 Docking Benchmark complexes. According to the CAPRI quality criteria, EROS-DOCK typically gives more acceptable or medium quality solutions than ATTRACT and ZDOCK. 2)The extension of the EROS-DOCK algorithm to allow the use of atom-atom or residue-residue distance restraints. The results show that using even just one residue-residue restraint in each interaction interface is sufficient to increase the number of cases with acceptable solutions within the top-10 from 51 to 121 out of 173 pairwise docking cases. Hence, EROS-DOCK offers a new improved search strategy to incorporate experimental data, of which a proof-of-principle using data-driven computational restraints is demonstrated in this thesis, and this might be especially important for multi-body complexes. 3)The extension of the algorithm to dock trimeric complexes. Here, the proposed method is based on the premise that all of the interfaces in a multi-body docking solution should be similar to at least one interface in each of the lists of pairwise docking solutions. The algorithm was tested on a home-made benchmark of 11 three-body cases. Seven complexes obtained at least one acceptable quality solution in the top-50. In future, the EROS-DOCK algorithm can evolve by integrating improved scoring functions and other types of restraints. Moreover, it can be used as a component in elaborate workflows to efficiently solve complex problems of multi-protein assemblies
Mucs, Daniel. "Computational methods for prediction of protein-ligand interactions." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/computational-methods-for-prediction-of-proteinligand-interactions(33ad0b24-ef7b-4dff-8e28-597a2f34e079).html.
Full textSkone, Gwyn S. "Stratagems for effective function evaluation in computational chemistry." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:8843465b-3e5f-45d9-a973-3b27949407ef.
Full textBook chapters on the topic "Protein-Protein Docking - Algorithms"
Mishra, Nikita, and Negin Forouzesh. "Protein-Ligand Binding with Applications in Molecular Docking." In Algorithms and Methods in Structural Bioinformatics, 1–16. Cham: Springer International Publishing, 2012. http://dx.doi.org/10.1007/978-3-031-05914-8_1.
Full textCavasotto, Claudio N. "Handling Protein Flexibility in Docking and High-Throughput Docking: From Algorithms to Applications." In Methods and Principles in Medicinal Chemistry, 245–62. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633326.ch9.
Full textLiu, Zhuoran, Changsheng Zhang, Qidong Zhao, Bin Zhang, and Wenjuan Sun. "Comparative Study of Evolutionary Algorithms for Protein-Ligand Docking Problem on the AutoDock." In Simulation Tools and Techniques, 598–607. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32216-8_58.
Full textLenhof, Hans-Peter. "An Algorithm for the Protein Docking Problem." In Bioinformatics: From Nucleic Acids and Proteins to Cell Metabolism, 125–39. Weinheim, Germany: Wiley-VCH Verlag GmbH, 2007. http://dx.doi.org/10.1002/9783527615193.ch10.
Full textHurwitz, Naama, and Haim J. Wolfson. "Memdock: An α-Helical Membrane Protein Docking Algorithm." In Methods in Molecular Biology, 111–17. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1468-6_7.
Full textChoi, Vicky, and Navin Goyal. "A Combinatorial Shape Matching Algorithm for Rigid Protein Docking." In Combinatorial Pattern Matching, 285–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27801-6_21.
Full textReddy, S. V. G., K. Thammi Reddy, and V. Valli Kumari. "The Computational Analysis of Protein – Ligand Docking with Diverse Genetic Algorithm Parameters." In Advances in Intelligent Systems and Computing, 129–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13728-5_14.
Full textHasani, Horia Jalily, and Khaled H. Barakat. "Protein-Protein Docking." In Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery, 173–95. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0115-2.ch007.
Full textHasani, Horia Jalily, and Khaled H. Barakat. "Protein-Protein Docking." In Pharmaceutical Sciences, 1092–114. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1762-7.ch042.
Full textAfanasyeva, Arina, Chioko Nagao, and Kenji Mizuguchi. "Docking algorithms and scoring functions." In Protein Interactions, 257–69. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811211874_0010.
Full textConference papers on the topic "Protein-Protein Docking - Algorithms"
Li, Zhao, Zhang Tianchi, and Zhang Jing. "Optimization Algorithms for Flexible Protein-Protein Docking." In 2012 Third International Conference on Digital Manufacturing and Automation (ICDMA). IEEE, 2012. http://dx.doi.org/10.1109/icdma.2012.135.
Full textAtilgan, Emrah, and Jianjun Hu. "Efficient protein-ligand docking using sustainable evolutionary algorithms." In 2010 10th International Conference on Hybrid Intelligent Systems (HIS 2010). IEEE, 2010. http://dx.doi.org/10.1109/his.2010.5600082.
Full textLo, Ying-Tsang, Yueh-Lin Tsai, Hsin-Wei Wang, Yu-Ping Hsu, and Tun-Wen Pai. "Using Solid Angles to Detect Protein Docking Regions by CUDA Parallel Algorithms." In 2010 International Symposium on Parallel and Distributed Processing with Applications (ISPA). IEEE, 2010. http://dx.doi.org/10.1109/ispa.2010.66.
Full textSunny, Sharon, Gautham Sreekumar, and Jayaraj P. B. "SFLADock: A Memetic Protein-Protein Docking Algorithm." In 2022 IEEE International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2022. http://dx.doi.org/10.1109/icdcece53908.2022.9793129.
Full textHashmi, Irina, and Amarda Shehu. "A basin hopping algorithm for protein-protein docking." In 2012 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2012. http://dx.doi.org/10.1109/bibm.2012.6392725.
Full textAtilgan, Emrah, and Jianjun Hu. "Efficient protein-ligand docking using sustainable evolutionary algorithm." In the 12th annual conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1830483.1830521.
Full textAo, Meng Chi, and Shirley W. I. Siu. "Evaluating Variants of Firefly Algorithm for Ligand Pose Prediction in Protein-ligand Docking Program." In ICBBT 2020: 2020 12th International Conference on Bioinformatics and Biomedical Technology. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3405758.3405761.
Full textMoghadasi, Mohammad, Dima Kozakov, Pirooz Vakili, Sandor Vajda, and Ioannis C. Paschalidis. "A new distributed algorithm for side-chain positioning in the process of protein docking." In 2013 IEEE 52nd Annual Conference on Decision and Control (CDC). IEEE, 2013. http://dx.doi.org/10.1109/cdc.2013.6759970.
Full textRondon, Paola, Henry Arguello, and Rodrigo Torres. "Development of a zoned genetic algorithm for semi-flexible protein-ligand docking in drug design." In 2011 6th Colombian Computing Congress (CCC). IEEE, 2011. http://dx.doi.org/10.1109/colomcc.2011.5936321.
Full textRuiz-Tagle, Benjamin, Manuel Villalobos-Cid, Marcio Dorn, and Mario Inostroza-Ponta. "Evaluating the use of local search strategies for a memetic algorithm for the protein-ligand docking problem." In 2017 36th International Conference of the Chilean Computer Science Society (SCCC). IEEE, 2017. http://dx.doi.org/10.1109/sccc.2017.8405141.
Full text